

Assessment of Constructed Wetlands for Treatment of Domestic Wastewater in Small Communities: Konya City (Turkey) Experiences

Bilgehan Nas^{*}, Mustafa Cop

Selcuk University, Engineering Faculty, Department of Environmental Engineering, Konya, Turkey

Received July 6, 2017; Accepted August 14, 2017

Abstract: Constructed wetlands (CWs) are artificial wastewater treatment systems consisting of shallow ponds, which have been planted with aquatic plants to treat wastewater. CWs are widely used for the treatment of domestic wastewaters of small communities in Turkey. Design, construction, operation and maintenance of constructed wetlands are important for the treatment of domestic wastewater. CWs that build in Turkey could not be operated efficiently due to making some faults about its project, construction and operation stage. In this study, design, construction and operation problems of 48 constructed wetlands in Konya city, Turkey, are evaluated.

Keywords: Constructed Wetlands, Wetlands, Wastewater Treatment, Wastewater

Introduction

Constructed Wetlands (CWs) are a natural, low-cost, eco-technological biological wastewater treatment technology designed to mimic processes found in natural wetland ecosystems, which is now standing as the potential alternative or supplementary systems for the treatment of wastewater (UN-HABITAT, 2008). CWs are an appropriate technology for small communities in rural and suburban areas. CWs are artificial wastewater treatment systems consisting of shallow ponds which have been planted with aquatic plants and which rely upon natural microbial, biological, physical and chemical processes to treat wastewater. A CW is a shallow basin filled with some sort of filter material (medium), usually sand or gravel, and planted with vegetation tolerant of saturated conditions. Wastewater is introduced into the basin and flows over the surface or through the substrate, and is discharged out of the basin through a structure which controls the depth of the wastewater in the wetland (UN-HABITAT, 2008). This system can be divided into two types, on one hand is free-water surface type (FWS) in which the water level is over the surface, and on the other hand is subsurface type (SF), in which the water level is maintained below the surface (Figure 1).

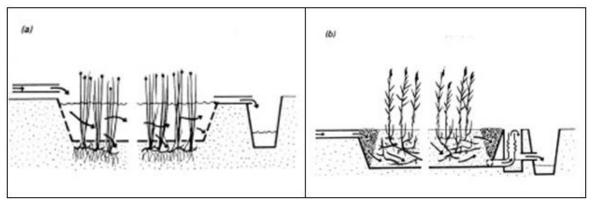


Figure 1. Schematic presenting each type of constructed wetlands which A: FWS, B: SF, (Brix, 1993)

A CW is a complex assemblage of wastewater, medium, vegetation and an array of microorganisms (most importantly bacteria). Vegetation plays a vital role in the wetlands as they provide surfaces and a suitable environment for microbial growth and filtration. Pollutants are removed within the wetlands by several complex physical, chemical and biological processes as shown in Table 1.

For the role of plants in constructed wetland, they contribute to nutrient transformation, offer mechanical resistance to flow, increase the retention time, facilitate settling of suspended particulates,

^{*}Corresponding: E-Mail: bilgehan.nas@gmail.com; Tel: +903322232092 Fax: +903322620021

and improve conductance of water through the media as the roots grow. The most frequently used plants species are *Scirpus sp.* (bulrush), *Typha sp.* (cattail), and *Pragmites communis* (reeds). Their typical characteristics are described in Table 2.

Figure 2. Photographs presenting each type of constructed wetlands in Turkey which A: Selcuk, Izmir (FWS), B: Hürriyet, Bursa (SF)

Wastewater Constituents	Removal Mechanism	
Sugmanded Solida	Sedimentation	
Suspended Solids	• Filtration	
Soluble Organice	Aerobic microbial degradation	
Soluble Organics	Anaerobic microbial degradation	
	Matrix sorption	
Phosphorous	• Plant uptake	
	Ammonification followed by microbial nitrification	
	• Denitrification	
Nitrogen	• Plant uptake	
	Matrix adsorption	
	Ammonia volatilization (Mostly in SF system)	
	Adsorption and cation exchange	
	Complexation	
Metals	• Precipitation	
	• Plant uptake	
	Microbial oxidation/reduction	
	Sedimentation	
	• Filtration	
Dathogons	Natural die-off	
Pathogens	Predation	
	• UV irradiation (SF system)	
	• Excretion of antibiotics from roots of macrophytes	

Table 1. Pollutant Removal Mechanisms in Constructed Wetlands (Cooper *et al.*, 1996)

Vegetation and its litter are necessary for successful performance of constructed wetlands and contribute aesthetically to the appearance. The vegetation to be planted in constructed wetlands should fulfill the following criteria:

- application of locally dominating macrophyte species;
- deep root penetration, strong rhizomes and massive fibrous root;
- considerable biomass or stem densities to achieve maximum translocation of water and assimilation of nutrients;
- maximum surface area for microbial populations;
- efficient oxygen transport into root zone to facilitate oxidation of reduced toxic metals and support a large rhizosphere.

Characteristics	Bulrush	Cattail	Reeds
Distribution	Worldwide	Worldwide	Worldwide
Temperature, °C	16-27	10-30	12-23
pH range	4-9	4-10	2-8
Maximum salinity tolerance, ppt	20	30	45
Root penetration in gravel, m.	0.6	0.4	0.3
Habitat values	Seeds and rhizomes as a food source for several water birds, muskrat, nutria and fish	Seeds and roots as a food source for water birds, muskrat, nutria and beaver	Low food value for most birds and animals
Drought resistant	Moderate	Possible	High
Growth	Moderate to rapid	Rapid	Very rapid

Table 2. Typical characteristics of some plant species used in constructed wetland (Crites & Tchobanoglous, 1998; Reed *et al.*, 1995).

The removal mechanisms for nitrogen in constructed wetlands are manifold and include volatilization, ammonification, nitrification/denitrification, plant uptake and matrix adsorption. The mechanism microbial major removal in most of the constructed wetlands is nitrification/denitrification. Ammonia is oxidized to nitrate by nitrifying bacteria in aerobic zones. Nitrates are converted to dinitrogen gas by denitrifying bacteria in anoxic and anaerobic zones. The mechanisms for phosphorus removal in constructed wetlands are adsorption, complexion and precipitation, storage, plant uptake and biotic assimilation (Watson et al., 1989). Nutrient removal in constructed wetlands is summarized in Figure 3.

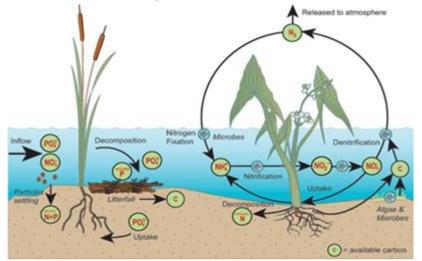


Figure 3. Nutrients removal in constructed wetlands

In recent years, septic tank designs have been developed to enhance removal efficiencies of solids and organic pollutants. The basic principle of such systems is to increase contact between the entering wastewater and the active biomass in the accumulated sludge. This is achieved by inserting baffles into the tank and forcing the wastewater to flow under and over the baffles as the wastewater passes from inlet to outlet. Wastewater flowing from bottom to top passes through the settled sludge and enables contact between wastewater and biomass.

Materials and Methods

Constructed Wetlands Application in Turkey

The use of CWs, especially for the treatment of domestic wastewaters of small settlements, is common in Turkey. According to Republic of Turkey the Ministry of Environment and Urbanisation, there are 260 artificial wetlands in Turkey. In addition, 1464 constructed wetlands were built by Directorate General of Local Administrations of the Ministry of Interior. Totally there are 1720 constructed wetlands in Turkey. These CWs serve 620.275 people in Turkey. According to Ministry of

Environment and Urbanisation in 2016, the population of Turkey is 65.025.536, which domestic wastewater ends with the wastewater treatment plant. Domestic wastewater of these population % 0,95 ends with CW.

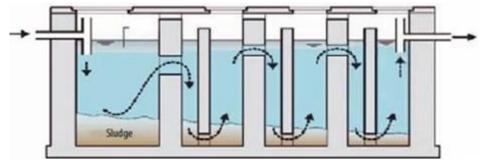


Figure 4. Schematic cross- section of an up flow septic tank

Constructed Wetlands in Konya City

There are 48 CWs in Konya as of year 2016. The town where the constructed wetlands are located and the population served by the CWs in Konya city are shown in Table 3. In this study evaluated CWs in Konya have septic tank and they are subsurface flow CW.

Tablo	3.	CWs	in	Konya	city

Town	Neighbourhood/District	Plant Name	Population	
	Altuntaș	Altuntaş CW	1882	
Akşehir	Çakıllar	Çakıllar CW	2646	
	Çamlı	Çamlı CW	1049	
	Değirmenköy	Değirmenköy CW	713	
	Karahüyük	Karahüyük CW	1941	
	Yazla	Yazla CW	1260	
Altınekin	Altınekin	Altınekin CW	13941	
	Avdancık	Avdancık CW	237	
	Bayafşar	Bayafşar CW	708	
D 1. :	Bayındır	Bayındır CW	436	
Beyşehir	Karaali	Karaali CW	2281	
	Karahisar	Karahisar CW	286	
	Kurucuova	Kurucuova CW	812	
Cihanbeyli	Günyüzü	Günyüzü CW	1874	
	Deștiğin	Deștiğin CW	1087	
Doğanhisar	Kemer	Kemer CW	414	
-	Konakkale	Konakkale CW	579	
TT-11	İvriz	İvriz-1 CW	4202	
Halkapınar	IVIIZ	İvriz-2 CW	4302	
	Çavuş	Çavuş CW	612	
Hüyük	Göçeri	Göçeri CW	472	
	Hüyük	Hüyük CW	14719	
	Avdan	Avdan CW	260	
	Beykonak	Beykonak CW	1177	
	Bulcuk	Bulcuk CW	364	
Ilgın	Büyükoba	Büyükoba CW	329	
	Çavuşçugöl	Çavuşçugöl CW	944	
	Çobankaya	Çobankaya CW	219	
	Kapaklı	Kapaklı CW	326	
	Çavdar	Çavdar CW	190	
Kadınhanı	Kökez	Kökez CW	403	
	Meydanlı	Meydanlı CW	378	
17 1	Yeşilyurt	Yeşilyurt CW	800	
Kulu	Zincirlikuyu	Zincirlikuyu CW	2079	
M	Bayat	Bayat CW	225	
Meram	İnlice	İnlice CW	797	

	Karaağaç	Karaağaç CW	161
	Kızılören	Kızılören CW	940
	Sağlık	Sağlık CW	551
Selçuklu	Güvenç	Güvenç CW	362
	Meydan	Meydan CW	201
	Selahattin	Selahattin CW	219
	Sızma	Sızma CW	2220
	Gevrekli	Gevrekli CW	1530
Seydişehir	Gökçehüyük	Gökçehüyük CW	334
• •	Kuran	Kuran CW	472
Tuzlukçu	Erdoğdu	Erdoğdu CW	294
Yunak	Hacıömeroğlu	Hacıömeroğlu CW	385

Results and Discussion

While common problems are encountered in the constructed wetlands in Konya, these problems are classified as project stage, construction stage and operation stage.

Figure 5. Clogging due to use unsuitable inlet and outlet structures

Figure 6. Clogging due to unsuitable media

Project Stage

- Wrong size land chosen due to incorrect population-flow rate calculations and mistakes in the predicted wastewater characterization.
- Die or not grown of vegetation due to unconsidered climatic conditions of district wrong calculation of amount CW plant.
- Animals such as sheep and cow entry to CWs for foraging because of absence wire fence
- Esthetics and health problems due to build CWs near to settlement.
- Not considering to access way to CWs.

Construction Stage

- Ground subsidence due to build septic tank with ignore soil properties,
- Clogging due to use unsuitable inlet and outlet pipe,
- Clogging due to use unsuitable inlet and outlet structures (Figure 5),

- Clogging due to use unsuitable media (Figure 6),
- Vegetation die or regional ponding due to unsuitable bed slope,
- Vegetation die due to choose wrong seed-time,
- Cannot control water depth in CW because of the unsuitable outlet structures.

Operation Stage

- Inadequate operation staff,
- Ignoring daily, monthly and yearly maintenance,
- Not pump out to septic tank (Figure 7),
- Not making plant harvest,
- Wrong set to water depth in CW,
- Not guard against clogging and weed.

Figure 7. Clogging septic tank

Conclusions

Due to low initial investment and operating costs, wastewater treatment using CWs is often preferred in small settlements in Turkey. However, existing CWs are not efficiently operated due to reasons such as projecting mistakes, unsuitable material selection, lack of regular maintenance, and lack of operating staff. It was determined that the plants were not planted and harvested in the right season. Because of this, plants are not found in most of the CWs. Besides, the effect of livestock activities in settlements was not considered. Despite all these negative experiences, CWs are an important alternative to wastewater treatment if it is correctly projected and operated.

References

Brix H, (1993) Constructed wetlands for water quality improvement. By G.A. Moshiri, CRC Press, Inc. ISBN 0-87371-550-0.

- Cooper PF, Job GD, Green MB, Shutes RBE, (1996) Reed Beds and Constructed Wetland for Wastewater Treatment. WRc Swindon, UK.
- UN-HABITAT, (2008) Constructed Wetlands Manual. UN-HABITAT Water for Asian Cities Programme Nepal, Kathmandu.
- Crites R, Tchobanoglous G, (1998) Small and Decentralized Wastewater Management Systems, WCV/Mc Graw-Hill.

Reed SC, Crites RW, Joe E, Middlebrooks, EJ, (1995) Natural Systems for Waste Management and Treatment, 2nd Edition. McGraw Hill, New York.