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1. Introduction 

As a result of the advances in communication and transportation technologies, today’s supply chains have 

geographically expanded. This fact drives inter-firm competition into global scale. Consequently, supply 

chains adopt lean principles, and partners in supply chain become more connected to gain cost advantage. 

However, these strategies make supply chains vulnerable in terms of supply chain risks. Today, an adverse 

event affected a supply chain partner can influence the entire chain. Therefore, supply chain risk management 

(SCRM) has gained importance in both industry and academia. Nowadays, firms must evaluate interdepend-

encies in their supply chain, identify their risks and measure likelihoods, effects and severities of the identified 

risks. Firms should develop risk management plans to avoid, mitigate or control the identified risks (Tummala 

and Schoenherr 2011). 

In global supply chains, SCRM is challenging due to the complex supply chain structures and interrelation-

ships. In fact, global supply chains can be investigated by decomposing them into sub-systems under several 

scales by using different viewpoints such as a geographical zone, a hazard level, a supplier group or a particular 

type of product. Then, risk management activities can proceed conveniently for the pre-specified critical sub-

systems. In addition, risk management in global supply chains should be flexible so that it can be adapted 

easily to rapid changes in supply chain environment and competition strategy. Furthermore, SCRM should 

mainly rely on quantitative data to perform more realistic and reliable risk analysis. 
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This study proposes an integrated SCRM framework for operational supply chain risk management in global 

scale. The proposed framework covers all phases of risk management, namely, risk identification, risk mitiga-

tion, risk monitoring and control phases. Particularly, the framework involves a risk identification phase in 

which the supply chain is decomposed into material-level or product-level sub-networks according to the de-

cision maker’s preference. Afterwards, risk mitigation strategies are simulated for the specified critical sub-

network, and the best factor levels for risk mitigation strategies are determined by an experimental design 

approach. In particular, redundancy and flexibility strategies are considered for risk mitigation. In this study, 

holding safety stock and excess production which is more than forecasted demand size are considered as re-

dundancy strategies. Additionally, supplier’s quantity flexibility is the flexibility strategy. These strategies are 

considered in combined manner and evaluated in terms of both efficiency and effectiveness. Herein, the annual 

holding cost of the supply chain is employed as a measure of efficiency. In addition, the ratio of premium 

freights to regular orders is used to measure the effectiveness of the strategies. Specifically, in case of a short-

age or delay risk, requesting a premium freight is an effective contingency strategy. However, premium freight 

is a type of last-minute shipment transported by airlines. It incurs very high costs to the responsible agent in a 

short time frame due to its setup cost and transportation mode. Additionally, it is an indicator of vulnerability 

of the supply chain. Hence, premium freight is used as an additional performance measure in this study to 

measure the effectiveness of the strategies. 

The proposed framework consisting of all phases of SCRM provides a comprehensive decision support for 

SCRM unlike the majority of the studies in this field. The proposed framework is a reliable and realistic tool 

as it uses quantitative data and employs statistical risk models relying on real historical data. Additionally, it 

is flexible in determining the focus of risk management and can be easily adapted to any changes in supply 

chain management strategy or environment. Furthermore, to our knowledge, premium freight is used as an 

effectiveness measure for the first time for risk mitigation strategies in SCRM field. 

The rest of the paper is organized as in the following. In Section 2, related studies in literature are overviewed. 

In Section 3, the proposed framework is presented. Section 4 presents an application of the proposed frame-

work to an automotive supply chain. In Section 5, results of the application are discussed, and managerial 

implications are provided. Section 6 concludes the study. 

2. The Related Literature 

As SCRM is still an emerging research field, definition of risk concepts and risk mitigating strategies are 

still unclear. Therefore, several review studies such as (Singhal, Agarwal, and Mittal 2011), (Tang and 

Nurmaya Musa 2011), (Colicchia and Strozzi 2012), (Sodhi, Son, and Tang 2012), (Rangel, de Oliveira, and 

Leite 2014), (Heckmann, Comes, and Nickel 2015), (Ho et al. 2015) and Pournader et al. (2020) have been 

published with the aim of classifying the studies on SCRM. Additionally, the reader can find broad descriptions 

of risk concepts and risk management strategies in (Chopra and Sodhi 2004), (Christopher and Peck 2004), 

and (Sheffi 2005). In this section, recent quantitative studies related to SCRM field are presented.  

The majority of the recent studies in the related field deal with the risk assessment phase of SCRM. In recent 

studies, multi-criteria decision making techniques, mathematical programming approaches, system analysis 

and simulation are utilized to assess supply chain risks. Among these approaches, multi-criteria decision 

making techniques are the most widely used tools in risk assessment. Wang et al. (2012) utilize a fuzzy 

analytical hierarchy process (AHP) model for risk assessment of implementing green initiatives in a fashion 

supply chain. Chaudhuri, Mohanty, and Singh (2013) utilize Failure Mode and Effects Analysis (FMEA) to 

prioritize the failure modes of vulnerable suppliers in new product development process. Chen and Wu (2013) 

propose an FMEA to categorize existing suppliers and select new suppliers by considering risk. Samvedi, Jain, 

and Chan (2013) utilize fuzzy AHP and fuzzy TOPSIS methods to obtain a supply chain risk index. Aqlan and 

Lam (2015a) propose a risk assessment framework which employs Bow-Tie analysis and fuzzy inference 

system for supply chains. In another study, Aqlan and Lam (2015b) quantify supply chain risks by Bow-Tie 

analysis, and select mitigation strategy by an optimization model. Govindan and Jepsen (2015) model supply 

chain uncertainties as intuitionistic fuzzy numbers and assess them via  ELECTRE-C. Oliveira et al. (2022) 

identify and assess the supply chain risks of a home-care service provider via FMEA.  
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There exist a few mathematical programming applications in risk assessment context. Cardoso et al. (2015) 

develop a mathematical model for supply chain design and planning to assess resilience of alternative supply 

chain structures under different disruption types. Klibi and Martel (2012) propose a risk modelling approach 

considering random, hazardous and deeply uncertain events causing supply chain disruptions. They utilize a 

Monte-Carlo approach to assess the disruption impact based on the descriptive models. 

Recently, system analysis and simulation approaches have become popular in risk assessment. Ghadge et al. 

(2013) develop a risk management framework by using systems approach to capture the dynamic 

characteristics of supply chain risks. Bueno-Solano and Cedillo-Campos (2014) investigate the impact of 

disruptions originated from terrorist acts via a system dynamics model. Wagner, Mizgier, and Arnez (2014) 

propose Monte-Carlo approach to evaluate possible losses due to disruptions in the US offshore oil industry. 

Guertler and Spinler (2015) demonstrate the criticality of the operational risks by using a system dynamics 

model that assesses the intra-organizational dynamics of risks.  

In view of the related body of knowledge, it can be stated that the number of studies building comprehensive 

SCRM frameworks considering all phases of SCRM is limited. Among them, Giannakis and Louis (2011) 

propose a multi-agent based decision support system for supply chain disruption management. Schmitt and 

Singh (2012) analyse inventory placement and back-up strategies against supply chain risks by a simulation 

model. Carvalho et al. (2012) use a supply chain simulation model to evaluate the effects of mitigation 

strategies on performance of each supply chain entity under a set of scenarios. Rajesh and Ravi (2015) employ 

a grey-DEMATEL approach to investigate cause-effect relationships between supply chain risk mitigation 

strategies. Simchi-Levi et al. (2015) develop a SCRM framework for Ford Motor Company to identify new 

risks, evaluate proactive risk mitigation plans, and derive optimal contingency plans. Oliveira et al. (2019) 

propose hybrid and flexible simulation-based optimization models for SCRM. However, they do not present a 

real world application of their model. Kara et al. (2020) present an integrated SCRM framework which 

employs data mining algorithms. Talukder et al. (2021) propose a multi-indicator supply chain management 

framework that provides leanness, agility, sustainability, and resilience in the dairy business.   

In this study, supply chain risks related to the physical flow in global supply chain networks are considered. 

In related literature, there exist a few study considering such large supply chain networks ((Chaudhuri, 

Mohanty, and Singh 2013), (Klibi and Martel 2012), (Wagner, Mizgier, and Arnez 2014), (Simchi-Levi et al. 

2015)). As global supply chains consist of several facilities spread on several countries, risk management in 

these supply chains is challenging. A possible solution to overcome this challenge may be decomposition of 

the supply chain network into sub-networks by a risk assessment procedure as Chaudhuri, Mohanty, and Singh 

(2013) and Klibi and Martel (2012) do. Hence, in this study, the supply chain network is decomposed into 

critical sub-networks to according to their risk level. Unlike the previous studies, the proposed framework has 

a more comprehensive risk identification phase in which the supply chain can be decomposed into the single-

product level or single-material level sub-networks. Therefore, the risks can be assessed at material or product-

level by considering the preference of supply chain managers. Consequently, the proposed framework enables 

the flexibility essential for the real-world SCRM practices.  

As stated previously, the proposed framework consists of a risk mitigation phase in addition to risk 

identification phase. In risk mitigation phase, redundancy and flexibility strategies are investigated to the aim 

of effective and efficient SCRM. In particular, holding safety stock and excess production which is more than 

forecasted demand size are considered as redundancy strategies. Additionally, supplier’s quantity flexibility is 

considered as the flexibility strategy. These strategies have been utilized in previous studies. However, they 

have not been evaluated from effectiveness and efficiency perspectives simultaneously. Effectiveness is the 

ability to achieve a predefined goal in case of adverse conditions. Efficiency is to ensure minimal spending of 

resources to reach the goal (Heckmann, Comes, and Nickel 2015). In this study, premium freight ratio and 

annual holding cost are utilized as effectiveness and efficiency measures, respectively. To the best of our 

knowledge, there exists no study in related literature considering premium freight as a SCRM performance 

measure. 
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3. The Proposed Supply Chain Risk Management Framework 

In this study, an integrated SCRM framework is developed to support SCRM decisions by considering 

holding costs and premium freights. The proposed framework considers not only premium freights but also 

supply chain costs to ensure both effectiveness and efficiency objectives in SCRM. Moreover, the proposed 

framework covers all commonly acknowledged phases of SCRM namely, risk identification, risk mitigation 

and risk monitoring and control. Furthermore, the proposed framework has the flexibility in executing material 

or product-level risk analyses according to preference of the decision maker. The process flow diagram sum-

marizing the phases of the proposed framework is illustrated in Figure 1. In subsequent sections, general pro-

cess of the framework is explained through risk management phases. 

3.1. Risk Identification 

Firstly, the risks affecting supply and delivery processes of the supply chain are identified. Basically, supply 

chain risks can be classified into inbound and outbound risks by considering physical flow direction. The 

inbound risks are related to the supply-side adverse events such as supplier delivery delay, delivery quantity 

loss and supplier disruptions. The outbound risks are arisen from customer-side adverse events such as 

customer demand variability, product delivery delay and shifting customer demand. As stated previously, the 

proposed framework has the flexibility in focusing on the inbound or outbound risks. In this context, inbound 

and/or outbound risks are quantified according to the preference of the manager. In particular, the supply chain 

risks are quantified through statistical models developed by using past order, premium freight and customer 

sales data. The risk models are obtained by fitting the historical data to probability distributions.  

Once the supply chain risks related to each agent are quantified, the most critical sub-network in terms of risk 

is identified. The critical sub-network may be related to a material or a product type. To identify the critical 

sub-network, the most critical material or product is determined. In this context, the criteria for critical sub-

network identification should be specified. In criteria determination, the adverse effects of risks related to the 

focal material or product and criticality of them should be considered. Hence, the critical sub-network 

identification stage involves multi-criteria decision making. Therefore, utilization of a multi-criteria decision 

making technique in this stage is appropriate. TOPSIS (Hwang & Yoon, 1981) is a suitable technique for this 

stage as it ranks the alternatives according to their criticality.  

Assume that a multi-criteria decision making problem has m alternatives, 𝐴1, 𝐴2, … , 𝐴𝑚 and n criteria, 

𝐶1, 𝐶2, … , 𝐶𝑛. The ratings associated with the alternatives with respect to each criterion is included in a decision 

matrix, 𝐷 = (𝑥𝑖𝑗)𝑚×𝑛. Then, the ratings are normalized to form the normalized decision matrix. 

In particular, in identification of material or product-level sub-networks, more than one decision matrices may 

come into consideration. As the suppliers and customers may be connected with more than one plant in the 

supply chain, more than one assessment for a criterion may come out. In this case, group decision making 

approaches can be used to merge the decision matrices into single decision matrix.  

The criteria weights are determined by using entropy weighting method (Deng, Yeh, & Willis, 2000). Entropy 

weighting method considers intrinsic information in each criterion, and does not require decision maker's 

judgment. In this sense, entropy weighting method is utilized to determine criteria weights to reduce human 

effort in decision making.  

The entropy value indicating the amount of information contained in each criterion is calculated as follows. 

𝑒𝑗 = −
1

ln(𝑛)
∑𝑥𝑖𝑗ln(𝑥𝑖𝑗)

𝑚

𝑖=1

 (3.1) 

The degree of divergence (𝑑𝑗) of the average intrinsic information related to each criterion is calculated as 

follows. 

𝑑𝑗 = 1 − 𝑒𝑗 (3.2) 
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Figure 1. Process flow diagram of the proposed framework 

As the degree of divergence represents divergence of the ratings in terms of criterion j, higher degree of 

divergence leads to higher criterion weight. In this sense, criteria weights are calculated as follows. 
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𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

 (3.3) 

Aggregation procedure of TOPSIS is based on weighted Euclidian distances to negative and positive ideal 

solution. 

𝑑𝑖
+ = √∑𝑤𝑗(𝑥𝑖𝑗 − 𝑝𝑗)

2

𝑛

𝑗=1

 (3.4) 

𝑑𝑖
− = √∑𝑤𝑗(𝑥𝑖𝑗 − 𝑛𝑗)

2

𝑛

𝑗=1

 (3.5) 

where 𝑑𝑖
+ is the distance of the alternative i to positive ideal solution, 𝑑𝑖

− is the distance of alternative i to 

negative ideal solution, 𝑝𝑗 is the positive ideal value for criterion j, and 𝑛𝑗 is the negative ideal value for 

criterion j. 

The overall criticality index for alternative i is calculated as follows. 

𝐶𝐶𝑖 =
𝑑𝑖
−

𝑑𝑖
− + 𝑑𝑖

+ 
(3.6) 

In the proposed framework, the overall criticality index obtained by TOPSIS present the criticality of material 

or product in terms of risk. The material (or product) with the highest level of overall criticality is identified 

as the most critical material (or product). The network related to the most critical material or product is 

specified as the critical sub-network. Afterwards, the critical sub-network is modelled to develop and evaluate 

risk mitigation strategies. Concept of the critical sub-network identification is illustrated with an example in 

Figure 2. An example supply chain system is demonstrated in Figure 2. In case of material-level analysis, the 

most critical material is identified as the material consumed by P1, P2, P3, and supplied by S2. Hence, the sub-

network consisting of S2, P1, P2, and P3 is identified as the critical sub-network. Alternatively, in case of 

product-level analysis, the most critical product is identified as the product demanded by C3. Therefore, the 

critical sub-network consists of the customer demanding the product (C3), the plant producing the product (P3) 

and the suppliers supplying the materials required for production of the product (S2 and S4).  

3.2 Risk Mitigation 

In this stage, a discrete event system simulation model of the critical sub-network is developed. By utilizing 

the simulation model, a number of risk mitigation strategies are evaluated in terms of their effectiveness and 

efficiency. In evaluation of the risk mitigation strategies, interrelationships between the strategies must be 

taken into account. For example, there is a strong relationship between redundancy and flexibility strategies. 

These strategies are effective in mitigating supply chain risks. However, combinations of these strategies often 

yield more effective and efficient risk mitigation due to their systemic effects. Herein, we cannot conclude that 

one strategy is superior to another strategy in terms of both effectiveness and efficiency. Therefore, in this 

study, these strategies are quantitatively described and evaluated by simulation experiments. The best 

combination of these strategies is determined in terms of effectiveness and efficiency. To evaluate the 

effectiveness and efficiency together, a multi-objective evaluation is required. Hence, both cost and premium 

freight performance are considered to measure efficiency and effectiveness together. To observe the effects of 

risk mitigation parameter levels a full factorial experiment is designed. Minitab Response Optimizer Tool is 

used to obtain the best parameter levels that give minimum annual holding cost and premium freight ratio.  
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Figure 2. An example to critical sub-network identification 

3.3 Risk Monitoring and Control 

After the risk mitigation strategies are determined, outcomes of these strategies are continually monitored 

and reviewed. To ensure the continuous improvement in supply chain competitiveness, the management take 

actions in cases of any change in supply chain environment and risk levels. In particular, costs and premium 

freights related to the critical sub-network are continuously monitored. The supply chain manager can revise 

the mitigation plan according to the changes in critical sub-network performance. In a stationary supply chain 

environment, the manager will mainly focus on supply chain efficiency. In this case, the effects of low safety 

stock levels or low supplier flexibility on supply chain performance should be analysed. In turbulent 

environments, the manager will focus on keeping premium freights under control. Moreover, risk identification 

and mitigation phases can be reiterated in case of a major change in supply chain environment. Furthermore, 

the criteria for critical sub-network identification can be reconsidered. 
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4. Application of the Proposed Framework 

The proposed framework is applied to a supply chain of a European automotive company. The supply chain 

consists of 752 suppliers, 12 plants and 55 customers. The plants assemble the materials into a semi-finished 

product specialized to the customer. The customers are just-in-time automobile manufacturers. Therefore, 

backlogging is not allowed in the supply chain. In case of a shortage risk, a premium freight is requested. 

The supply chain under concern operates six days in a week and 48 weeks in a year. Customers share their 

demand forecast with the plants in weekly basis. The plants adjust the customer demand forecast information 

by a demand forecast adjustment factor. In particular, customer demand forecast information is adjusted by 

multiplying it with demand forecast adjustment factor. The plants use the adjusted demand forecast information 

in developing their production plan and determining the order sizes to be placed to their suppliers.  

The plants use a periodic order-up-to policy for the materials’ inventory. At the beginning of each week, the 

weekly requirements for each material are calculated. Then, if it is needed, an order is placed. The order 

quantities are determined by considering safety stock level, transportation lead time and average daily 

consumption of material, as well as, quantity flexibility limits of the suppliers. The orders are processed by 

suppliers immediately and are delivered after a transportation lead time. Shipments and deliveries are made 

only in working days. Production and storage processes of the suppliers are not considered in this study.  

Inventory position of each plant is reviewed on daily basis. If inventory position of a material is below of the 

safety stock level and it is not the regular ordering day, an inbound premium freight must be requested from 

the supplier of the material. At the end of each week, customer demand is realized and filled from the inventory. 

The customer demand cannot be backordered. If it is not possible to deliver on time, final products are delivered 

to the customer by an outbound premium freight. The premium freights are delivered at the next day of the 

shipment. 

The required data for the analysis are obtained from the plan for every part spreadsheets which are used by the 

plants for production planning. The demand forecast adjustment factor for each plant is 1.07. The plants holds 

3.5 days of safety stock for each material. Supplier flexibility is presented as a percentage in the quantity 

flexibility contracts. In these contracts, 𝐹𝑙% flexibility means that the order quantity of a plant can be 𝐹𝑙% 

below or above of the contracted quantity. Currently, quantity flexibility of the suppliers is 50%. The quantity 

flexibility can be increased by making a new contract. However, the contracted unit price will be higher in 

case of a higher quantity flexibility. By consulting a supply chain manager, we model the relationship between 

supplier flexibility and unit price as in the following. 

𝑢𝑛𝑖𝑡𝑝𝑟𝑖𝑐𝑒𝑛𝑒𝑤 = [
100 + 20(𝐹𝑙𝑛𝑒𝑤 − 𝐹𝑙𝑐𝑢𝑟𝑟)

100
] 𝑢𝑛𝑖𝑡𝑝𝑟𝑖𝑐𝑒𝑐𝑢𝑟𝑟 (4.1) 

where 𝑢𝑛𝑖𝑡𝑝𝑟𝑖𝑐𝑒𝑐𝑢𝑟𝑟 is the current unit price under current quantity flexibility (𝐹𝑙𝑐𝑢𝑟𝑟), and 

𝑢𝑛𝑖𝑡𝑝𝑟𝑖𝑐𝑒𝑛𝑒𝑤 is the new unit price which is specified for 𝐹𝑙𝑛𝑒𝑤 quantity flexibility.  

In subsequent sections, identification and modeling of the critical sub-networks through material-level and 

product level risk management considerations are presented.  

4.1 Material-Level Risk Management 

This section focuses on the supply chain risks related to materials. Hence, the materials are investigated in 

terms of their criticality by the proposed risk identification procedure. As the inbound supply chain inventory 

consists of 7300 materials consumed by 12 plants, it is unreasonable to assess the risks related to all materials. 

Therefore, the materials that have a considerable share on annual inbound premium freight costs are identified 

by using Pareto principle. As a result, 37 out of 7300 materials presenting 80% of annual inbound premium 

cost are selected for risk identification. 
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4.1.1 Risk Identification 

The inbound risks of the focal supply chain are identified as supplier delivery delay and delivery quantity 

loss. The inbound risks are modelled by their occurrence and severity values. The fractions of late and under-

shipped deliveries are obtained by historical data and used as the occurrence values of delivery delay and 

delivery quantity loss, respectively. To quantify the severity values of inbound risks, delivery lateness and 

quantity loss data are obtained from historical order records. The historical data are fitted to a number of 

probability distributions such as normal, lognormal, exponential, Weibull and gamma distributions to obtain 

the risk models.  

The outbound risk is identified as variability in the material consumption. However, since a material type can 

be used in production of hundreds of different product types, it is impractical to model material consumption 

variability based on customer demand variability. Therefore, material consumption variability is assumed to 

follow a uniform distribution varying between 50% and 150% of average daily consumption in parallel with 

the supply chain manager’s opinion. 

Afterwards, the focal supply chain is decomposed into a critical sub-network by considering inbound supply 

chain risk performance. The criteria for critical sub-network identification are determined by the supply chain 

manager as number of inbound premium freights in previous year, monetary value of inbound premium 

freights in previous year and average weekly consumption of materials. However, these criteria are assessed 

by the plants with different ratings. Therefore, multiple decision matrices are formed. As stated previously, 

these decision matrices should be merged into unique decision matrix by using a group decision making 

approach. In this study, the decision matrices are merged by averaging the ratings of the plants. In the TOPSIS, 

the decision matrices are normalized into [0,1]. Hence, the positive ideal solution (𝑝𝑗) is one while the negative 

ideal solution (𝑛𝑗) is zero for all criteria. In the calculation of overall criticality index, the criteria weights are 

obtained as 0.33, 0.33, and 0.34 for the number of premium freights, the monetary value of premium freights 

and the average weekly consumption, respectively. The overall criticality indices calculated by using TOPSIS 

are presented in Table 1. As it can be seen from the table, the most critical material is M1. The critical sub-

network related to material M1 is presented in Figure 3. 

Table 1  

Overall criticality indices for materials 

Material 𝐶𝐶𝑖  Material 𝐶𝐶𝑖  Material 𝐶𝐶𝑖  Material 𝐶𝐶𝑖 

M1 0.14  M9 0.03  M8 0.02  M21 0.01 

M5 0.11  M24 0.03  M36 0.02  M31 0.01 

M16 0.08  M34 0.03  M18 0.02  M12 0.01 

M2 0.05  M6 0.03  M32 0.02  M28 0.01 

M3 0.05  M29 0.03  M33 0.02  M20 0.01 

M14 0.05  M17 0.02  M30 0.02  M26 0.00 

M11 0.04  M19 0.02  M10 0.01  M35 0.00 

M7 0.04  M22 0.02  M27 0.01    

M13 0.04  M4 0.02  M23 0.01    

M25 0.03  M15 0.02  M37 0.01    

4.1.2 Risk Mitigation 

In this phase, a simulation model of the critical sub-network is developed. The inbound risks affecting the 

critical sub-network are modelled by the aforementioned risk quantification approach. The delivery loss 

probability is calculated as 0.05. To determine the probability distribution of the delivery loss quantity, the 

historical delivery loss data are fitted to a number of distributions in MINITAB statistical software. The best 

fitted distribution is a lognormal distribution with parameters 0.52 and 0.23. The delivery delay probability is 

0.06. The delivery delay time distribution is specified as a lognormal (1.43, 0.46). By consulting the supply 

chain manager, material consumption variability distribution is specified as a uniform distribution varying 

between 50% and 150% of average daily consumption. 
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The performance measures are annual holding cost of supply chain and inbound premium freight ratio. Annual 

holding cost of supply chain involves annual holding costs of the plants associated with the critical material. 

Inbound premium ratio is the ratio of total amount of premium freights to total amount of orders associated 

with the critical material in the supply chain. 

 

Figure 3. The critical sub-network identified in case of material-level risk management 

The critical sub-network model is simulated for 104 weeks. The warm-up period is determined as two weeks 

by inspecting the variability in orders. Furthermore, required number of replications are determined by 

analysing the simulation outputs. In particular, a number of confidence intervals are calculated for annual 

holding cost and inbound premium freight ratio at the end of each replication. Until the confidence intervals 

become narrow enough, the replications proceed. The required half-length for the confidence intervals are 

0.15. As a result, 15 replications are found to be sufficient to predict the performance measures within the 

predefined error rate. 

To analyse the effects of risk mitigation strategies, a full factorial experimental design (Montgomery, 2008) is 

developed by considering five factor levels for safety stock and supplier flexibility (see Table 2). The response 

variables of the design are the annual holding cost and the premium freight ratio. The values for the response 

variables are obtained by the simulation model. According to the results of ANOVA, the effects of safety stock 

and supplier flexibility are significant on both annual holding cost and premium freight performances. To 

determine the best factor levels yielding minimum annual holding cost and premium freight ratio, MINITAB 

Response Optimizer tool is used. The best factor levels are determined as 4.5 days for safety stock and 30% 

for supplier flexibility. Comparison of the performances corresponding to the best factor levels and current 

factor levels is presented in Table 3. As one can see from the table, the new factor levels reduce the annual 

holding cost by 8% and the premium freight ratio by 3%. 

Table 2  

Factor levels considered in case of material-level risk management 

Factors Levels 

Safety stock 2.5 3 3.5* 4 4.5 

Flexibility 30% 40% 50%* 60% 70% 

*The current levels used in the supply chain 
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Table 3 

Performance comparison in case of material-level risk management 

 Safety 

Stock 

Supplier 

Flexibility 

Annual 

Holding Cost 

Inbound Premium 

Freight Ratio 

New factor levels 4.5 30% €4015 0.19 

Current factor levels 3.5 50% €4349 0.20 

4.2 Product-Level Risk Management 

In this section, the products are investigated in terms of their criticality by the proposed risk assessment 

procedure. Since there exist 2700 different types of products produced by the plants, it is unreasonable to deal 

with the risks associated with all products. Hence, the products that have a considerable share on annual 

outbound premium freight costs are identified by using Pareto principle. As a result, 13 out of 2700 products 

presenting 80% of annual outbound premium cost are selected for risk identification. 

4.2.1 Risk Identification 

In the product-level risk management case, the inbound risks are identified as supplier delivery delay and 

delivery loss. The occurrence and severity values are quantified by the probability distributions derived from 

past order data as the in material-level risk management case. Outbound risks are identified as the customer 

demand variability and the deviation of actual customer demand from the shared demand information. These 

risks are modelled as ordinary variabilities that occur every week and only severity values of them are 

modelled. To model outbound risks, the demand data are obtained from the historical customer demand 

records. 

Then, the focal supply chain is decomposed into a critical sub-network by considering outbound supply chain 

risk performance. By consulting the supply chain manager, the criteria for critical sub-network identification 

are determined as the number of outbound premium freights in previous year, monetary value of the outbound 

premium freights in previous year and average annual sales of the products. As in the material-level risk 

management case, the decision matrices are normalized into [0,1]. Therefore, the positive ideal solution is one 

and the negative ideal solution is zero for all criteria. The entropy weights are obtained as 0.34, 0.34, and 0.32 

for the number of outbound premium freights, the monetary value of premium freights and the average annual 

sales, respectively. The overall criticality indices calculated by using TOPSIS method are presented in Table 

4. As can be inferred from the table, the most critical product is PR1. The critical sub-network related to PR1 

is presented in Figure 4. 

4.2.2 Risk Mitigation 

In this phase, a simulation model of the critical sub-network is developed. The bill of material information 

related to PR1 is reported in Table 5. 

The inbound risks affecting the critical sub-network are modelled by the aforementioned risk quantification 

approach. The probability distributions that are best fitted to historical data are given in Table 6. The best fitted 

distributions are normal and Weibull distributions for delivery loss quantity and delivery delay, respectively. 

The customer demand is modelled by the demand forecast and the deviation of actual customer demand from 

the demand forecast. The best fitted probability distributions for the demand forecast and the deviation are 

Lognormal(6.27, 0.51) and Lognormal(0.07, 0.21), respectively.  

The performance measures are annual holding cost of supply chain, inbound premium freight ratio, and 

outbound premium freight ratio. Annual holding cost and inbound premium freight ratio are calculated as in 

Section 4.1.2. Outbound premium freight ratio is the ratio of total amount of the premium freights related to 

the products to the total amount of products sold.  
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Table 4 

Overall criticality indices for the products   

Products 𝑪𝑪𝒊 

PR1 0.18 

PR11 0.14 

PR6 0.14 

PR2 0.12 

PR3 0.10 

PR5 0.10 

PR4 0.08 

PR12 0.07 

PR7 0.05 

PR13 0.05 

PR8 0.04 

PR10 0.03 

PR9 0.03 

 

Figure 4. The critical sub-network identified in case of product-level risk management 

Table 5 

Bill of material for PR1 

Material Supplier  Quantity 

M2 S2 1 

M22 S2 3 

M71 S7 3 

M73 S7 3 

M76 S7 1 

M79 S7 3 

 

Table 6 

The inbound risk model in case of product-level risk management 

  Delivery Loss   Delivery Delay 

Suppliers Probability Quantity distribution   Probability Time distribution 

S2 0.05 Normal(0.45,0.17)  0.09 Weibull(1.65,1.61) 

S7 0.03 Normal(0.51,0.25)   0.07 Weibull(1.20,2.30) 

The warm-up period length and the number of replications are determined in the same manner described in 

Section 4.1.2. The critical sub-network model is simulated for 104 weeks and 15 replications. The warm-up 

period is specified as one week. To analyse the effects of risk mitigation strategies, a full factorial experimental 

design is developed for five factor levels for demand forecast adjustment factor, safety stock and supplier 
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flexibility. (see Table 7). The response variables are the annual holding cost, inbound and outbound premium 

freight ratios. The response values are obtained from the simulation model. 

Table 7 

Factor levels considered in the experiment 

Factors Levels 

Demand adj. 1 1.03 1.07* 1.11 1.15 

Safety stock 2.5 3 3.5* 4 4.5 

Flexibility 30% 40% 50%* 60% 70% 

*The current levels used in the supply chain 

According to the ANOVA results, all the factors have significant effect on the holding cost and the outbound 

premium freight ratio. However, only the supplier flexibility affects the inbound premium freight ratio 

significantly. The best factor levels yielding minimum annual holding cost, inbound and outbound premium 

freight ratios are determined via MINITAB Response Optimizer Tool. The best factor levels are 1.15, 2.5 and 

30% for demand forecast adjustment factor, safety stock and supplier flexibility, respectively. Comparison of 

the performances corresponding to these factor levels and current factor levels is presented in Table 8. The 

results reveal that the new factor levels reduce annual holding cost by 10%, inbound premium freight ratio by 

26%, and outbound premium freight ratio by 28%. 

Table 8 

Performance comparison of in case of product-level risk management 

 Demand 

Adj. Fac. 
Safety 

Stock 

Supplier 

Flexibility 

Annual 

Holding Cost 

Inbound Pre-

mium Freight 

Ratio 

Outbound Pre-

mium Freight 

Ratio 

New factor levels 1.15 2.5 30% €20254 0.07 0.04 

Current factor levels 1.07 3.5 50% €22425 0.10 0.06 

5. Discussion and Managerial Implications 

According to the results, the proposed framework is capable of ensuring a substantial improvement in terms 

of holding cost and premium freight performances. In this application, emphasizing on redundancy strategies 

improves the supply chain risk performance in both holding cost and premium freight aspects. In Figure 5, the 

main effects of safety stock and supplier flexibility levels on holding cost and premium freight ratio are given 

for the material-level risk management case. The ANOVA results shows that the effects of supplier flexibility 

on annual holding cost and premium freight ratio are significant. Moreover, safety stock level has a significant 

effect on premium freight ratio. In this case, higher supplier flexibility levels yield lower premium freight ratio, 

but increase holding cost. On the other hand, main effects of safety stock levels on premium freight ratio is 

nonlinear where the current safety stock level (3.5 days) incurs the worst premium freight performance. Thus, 

a compromise solution can be obtained among two objectives by decreasing supplier flexibility level and 

increasing safety stock level. In accordance with this result, the proposed framework improves both holding 

cost and premium freight ratio by reducing supplier flexibility and increasing safety stock levels (see Table 3). 

In Figure 6, main effects of demand forecast adjustment factor, safety stock, and supplier flexibility levels on 

supply chain performance are illustrated for product-level risk management case. According to the ANOVA 

results, demand forecast adjustment factor, safety stock and supplier flexibility have significant effect on 

annual holding cost and outbound premium freight ratio. Moreover, supplier flexibility has a significant effect 

on inbound premium freight ratio. As one can infer from the figure, demand forecast adjustment factor has 

lower effect on holding cost and higher effect on outbound premium freight ratio than the other parameters. 

Therefore, to reduce outbound premium freight ratio, demand forecast adjustment factor can be increased. 

Moreover, to reduce holding cost supplier flexibility can be reduced by considering its significant relationship 

with demand forecast adjustment factor in terms of outbound premium freight ratio. Furthermore, we can infer 

from the figure that safety stock has relatively low effect on outbound premium freight ratio. Accordingly, the 

proposed framework ensures better supply chain performance in three objectives by increasing demand 

forecast adjustment factor and decreasing safety stock and supplier flexibility levels (Table 8).  
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Figure 5. Main effects of parameter levels on supply chain performance in material-level risk management 

case 

In both cases, the framework suggests lower supplier flexibility levels than the current levels. In material-level 

risk management case, safety stock levels are increased. In the product-level risk management case, demand 

forecast adjustment factor is increased. Consequently, redundancy strategies are preferred rather than 

flexibility strategy in this application. Therefore, the managers of the focal supply chain should put more 

emphasis on redundancy strategies (high demand forecast adjustment factor and safety stock levels). 

 

  

   

Figure 6. Main effects of parameter levels on supply chain performance in product-level risk management case 

Supply chain managers can use the proposed framework in cases of any changes in supply chain environment, 

competition strategy, and new supplier contracts. Although the objectives have equal importance in this 

application, the proposed framework provides the flexibility in evaluating risk mitigation plans by considering 

different weights for the objectives. In a stable supply chain environment, the manager can give more 

importance to holding costs. In turbulent supply chain environment, the manager will mainly focus on supply 

chain risks and reduce premium freights. Moreover, in case of a change in competition strategy, the manager 
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may consider reducing holding costs to gain cost advantage, or focus on supply chain risks to ensure customer 

satisfaction. Furthermore, the proposed framework will be beneficial in making new supplier contracts, since 

it considers both cost and resilience objectives.  

The proposed framework provides a comprehensive decision support since it involves both material and 

product-level risk analyses through the preference of the decision maker. Additionally, it considers redundancy 

and flexibility strategies in combined manner to improve supply chain risk performance efficiently and 

effectively. Moreover, it measures the supply chain vulnerability by premium freight ratio. Furthermore, due 

to its flexible and convenient structure, it can be applied to various supply chain structures. 

6. Conclusion 

This study proposes an integrated risk management framework for global supply chains. In the risk 

identification phase of the proposed framework, global supply chain is decomposed into material-level or 

product-level critical sub-networks according to preference of the manager. Consequently, the proposed 

framework is applicable for both material and product-level risk analyses. This provides the flexibility in 

choosing the focus of SCRM through the manager’s performance objectives. Additionally, the proposed 

framework enables managers in combining redundancy and flexibility strategies to ensure both effectiveness 

and efficiency objectives in SCRM. In this study, an application of the proposed framework to an automobile 

supply chain is presented. The results of both material and product level analyses show that the proposed 

framework improves the supply chain performance.  

A limitation of this study is the assumption of the identical safety stock and supplier flexibility levels 

throughout the supply chain. These parameters may take different values for each material and supplier. 

However, this increases the complexity of the problem. Consequently, finding the best parameter levels by 

using an experimental design approach become challenging. Furthermore, analysis of supply chain risk drivers, 

and considering rare and severe adverse events in the proposed framework are possible future research 

directions.  
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