Fixed Points for Functions of Different Variables

Süheyla Elmas
Atatürk University Faculty of Humanitieand Social Sciences.Oltu-Erzurum/Turkey suheylaelmas@atauni.edu.tr

Abstract

The stady can be seen from this example that the conditions for the existence and uniqueness of a Fixed point are sufficient, but not necessary.

Key words : Fixed Point,Function, Several Variables

AMS Classification: 46N99

1.Intradaction

Previously, we know how to use fixed -point iteration to solve a single nonlinear equation of the for $f(x)=0$ by first transforming the equation into one of the form

$$
\mathrm{x}=\mathrm{g}(\mathrm{x})
$$

Then, after choosing an initial guess $x^{(0)}$, we compute a sequence of iterates by,

$$
x^{(k+1)}=\mathrm{g}\left(x^{k}\right) ; \mathrm{k}=0 ; 1 ; 2 ;::: ;
$$

that, hopefully, converges to a solution of the original equation.
We have also learned that if the function g is a continuous function that maps an interval D into
itself, then g has a fexed point (also called a stationary point) x_{*} in D , which is a point that satisfies
$x_{*}=\mathrm{g}\left(x_{*}\right)$ That is, a solution to $\mathrm{f}(\mathrm{x})=0$ exists within I. Furthermore, if there is a constant

$$
\begin{gathered}
\mathrm{q}<1 \text { such } \\
\left|g^{\prime}(x)\right|<\mathrm{q}, \mathrm{x} \in \mathrm{D} ;
\end{gathered}
$$

then this fixed point is unique.
It is worth noting that the constant q , which can be used to indicate the speed of convergence of fixed point iteration, corresponds to the spectral radius $\mathrm{q}(\mathrm{T})$ of the iteration matrix

$$
T=S^{-1} N
$$

used in a stationary iterative method of the form

$$
x^{(k+1)}=\mathrm{T} x^{k}+S^{-1} d
$$

for solving $\mathrm{Ax}=\mathrm{d}$, where $\mathrm{A}=S^{-1} \mathrm{~N}$.

We now generalize fixed-point iteration to the problem of solving a system of n nonlinear equations in n unknowns,

$$
\begin{gathered}
f_{1}\left(x_{1} x_{2} \ldots x_{n}\right)=0 \\
f_{2}\left(x_{1} x_{2} \ldots x_{n}\right)=0 \\
\ldots \\
f_{n}\left(x_{1} x_{2} \ldots x_{n}\right)=0
\end{gathered}
$$

For simplicity, we express this system of equations in vector form,

$$
F(x)=0,
$$

where
$\mathrm{F}: \mathrm{E} \subseteq R^{n} \rightarrow R^{n}$ is a vector-valued function of n variables represented by the vector
$\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $f_{1}, f_{2}, \ldots, f_{n}$ are the component functions, or coordinate functions of F .

The notions of limit and continuity generalize to vector-valued functions and functions of several
variables in a straightforward way. Given a function $\mathrm{f}: \mathrm{E} \subseteq R^{n} \rightarrow \mathrm{R}$ and a point $x_{0} \in \mathrm{E}$, we write

$$
\begin{gathered}
\lim _{X} \mathrm{f}(\mathrm{x})=\mathrm{L} \\
x_{0}
\end{gathered}
$$

if, for any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon
$$

whenever $\mathrm{x} \in \mathrm{E}$ and

$$
0<\left\|x-x_{0}\right\|<\delta
$$

In this definition, we can use any appropriate vector norm || \|. We also say that f is continuous at a
point $x_{0} \in \mathrm{E}$ if,

$$
\lim _{X \rightarrow x_{0}} \mathrm{f}(\mathrm{x})=\mathrm{f}\left(x_{0}\right)
$$

It can be shown f is continuous at x_{0} if its partial derviatives are bounded near x_{0}.
Having defined limits and continuity for scalar-valued functions of several variables, we can now
define these concepts for vector-valued functions. Given $\mathrm{F}: \mathrm{E} \subseteq R^{n} \rightarrow R^{n}$ and $x_{0} \in \mathrm{E}$, we say that

$$
\lim f(x)=L
$$

$$
X \rightarrow x_{0}
$$

if and only if

$$
\lim _{X \rightarrow x_{0}} f_{i}(\mathrm{x})=L_{i}, \quad \mathrm{i}=1,2,3, \ldots, \mathrm{n}
$$

Similarly, we say that F is continuous at x_{0} if and only if each coordinate function f_{i} is continuous at x_{0}. Equivalently, F is continuous at x_{0} if

$$
\lim _{X \rightarrow x_{0}} \mathrm{~F}(\mathrm{x})=\mathrm{F}\left(x_{0}\right)
$$

Now, we can define fixed-point iteration for solving a system of nonlinear equations

$$
F(x)=0
$$

First, we transform this system of equations into an equivalent system of the form

$$
x=\mathrm{G}(x)
$$

2. Displayed mathematical equations

One approach to doing this is to solve the ith equation in the original system for x_{i}. This is analogous to the derivation of the Jacobi method for solving systems of linear equations. Next, we choose an initial guess $x^{(0)}$. Then, we compute subsequent iterates by

$$
x^{(k+1)}=\mathrm{G}\left(x^{k}\right), \quad \mathrm{k}=0 ; 1 ; 2 ;::
$$

The existence and uniqueness of fixed points of vector-valued functions of several variables can
be described in an analogous manner to how it is described in the single-variable case. The function
G has a fixed point in a domain $\mathrm{E} \subseteq R^{n}$ if G maps E into E . Furthermore, if there exists a constant

$$
\mathrm{q}<1 \text { such that, in some natural matrix norm, }
$$

$$
\left\|J_{G}(x)\right\| \leq q, x \in \mathrm{E}
$$

where $\operatorname{JG}(\mathrm{x})$ is the Jacobian matrix of first partial derivatives of G evaluated at x , then G has a unique fixed point x^{*} in E , and fixed-point iteration is guaranteed to converge to x^{*} for any initial
guess chosen in E. This can be seen by computing a multivariable Taylor expansion of the

$$
\text { error } x^{(k+1)} \rightarrow x^{*} \text { around } x^{*}
$$

. The constant q measures the rate of convergence of fixed-point iteration, as the error approxi-
mately decreases by a factor of q at each iteration. It is interesting to note that the convergence
of fixed-point iteration for functions of several variables can be accelerated by using an approach
similar to how the Jacobi method for linear systems is modified to obtain the Gauss-Seidel method.

That is, when computing x_{i}^{k+1} by evaluating $f_{i}^{x^{k}}$, we replace x_{j}^{k}, for $\mathrm{j}<\mathrm{i}$, by x_{j}^{k+1}, since it has already been computed (assuming all components of $\mathrm{x}(\mathrm{k}+1)$ are computed in order). There fore, as in Gauss-Seidel, we are using the most up-to-date information available when computing each iterate.

For Example Consider the system of equations

$$
\begin{aligned}
x_{1} & =x_{2}^{2} \\
x_{1}^{2}+x_{2}^{2} & =1
\end{aligned}
$$

The first equation describes a parabola, while the second describes the unit circle. By graphing
both equations, it can easily be seen that this system has two solutions, one of which lies in the
first quadrant ($x_{1}>0$ and $x_{2}>0$).
To solve this system using fixed-point iteration, we solve the second equation for x_{2} and obtain the equivalent system

$$
x_{2}=\sqrt{1-x_{1}^{2}}, \quad x_{1}=x_{2}^{2}
$$

If we consider the rectangle

$$
\mathrm{E}=\left\{\left(x_{1}, x_{2}\right) ; 0 \leq x_{1} \leq 1 \text { and } 0 \leq x_{2} \leq 1\right\}
$$

we see that the function

$$
\mathrm{G}\left(x_{1}, x_{2}\right)=\left(x_{2}^{2}, \sqrt{1-x_{1}^{2}}\right)
$$

maps E into itself. Because G is also continuous on E , it follows that G has a fixed point in E . However, G has the Jacobian matrix

$$
J_{G}(x)=\left[\begin{array}{cc}
0 & 2 x_{2} \\
-x_{1} / \sqrt{1-x_{1}^{2}} & 0
\end{array}\right]
$$

which cannot satisfy $\left\|J_{G}(x)\right\|<1$ on E . Therefore, we cannot guarantee that fixed-point iteration
with this choice of G will converge, and, in fact, it can be shown that it does not converge. Instead,
the iterates tend to approach the corners of E , at which they remain. In an attempt to achieve convergence, we note that

$$
\frac{\partial g_{2}}{\partial x_{2}}=2 x_{2}>1
$$

near the fixed point. Therefore, we modify G as follows:

$$
\mathrm{G}\left(x_{1}, x_{2}\right)=\left(x_{2}^{2}, \sqrt{1-x_{1}^{2}}\right)
$$

For this choice of G, JG still has partial derivatives that are greater than 1 in magnitude near the fixed point. However, there is one crucial distinction: near the fixed point, $\mathrm{q}(\mathrm{JG})<1$, whereas with the original choice of $\mathrm{G}, \mathrm{q}(\mathrm{JG})>1$. Attempting fixed-point iteration with the new G we see that convergence is actually achieved, although it is slow.

3. Result

It can be seen from this example that the conditions for the existence and uniqueness of a fixed point are sufficient, but not necessary.

REFERENCES

[1]. CLEMENS,S.R.1973, Fixed point theorems in Euclidean Geometry, Mathematics Teacher, April 1973,324-330.
[2]. SOYKAN, Y. 2008. Fonksiyonel Analiz. Nobel Yayın Dağıtım Ankara. Turkey. 1.
[3]. S.Elmas,SABiT NOKTA İTERASYONLARININ YAKINSAMA HIZLARI,Atatürk Üniversitesi Fen Bilimleri Enstitüsü Erzurum-Türkiye. 2010 .
[4] .M.K. Azarian, "ON THE FIXED POINTS OF A FUNCTION AND THE FIXED POINTS OF ITS COMPOSITE FUNCTIONS". International Journal of Pure and Applied MathematicsVolume 46 No. 1 ,2008,
[5]. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
[6]. S. Ishikawa, Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59 (1976), 65-71.
[7]. K.K. Tan, H.K. Xu, Approximating .xed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
[8]. S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal. 65 (2006) 762-772.
[9]. Athanassopoulos,K. 2006. Pointwise recurrent homeomorphisms with stable fixed points. Topology
and its Applications. 153:1192-1201

