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Abstract. In this paper, we study on a relation between Maclaurin co-
efficients and Laplace transform as follows:

f (n) (0) =
1

(n+ 1)!
lim

r→+0

dn+1

drn+1
L {f}

(
1

r

)
,

where f is a complex valued function not necessarily analytic at point
0, L is the Laplace transform, r = 1

s
, s is the variable of the Laplace

transform and n ∈ N∪{0}. Then, we give some examples of the formula.
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1. Introduction

Laplace transform is one of the most important operator in physics, mathe-
matics etc (especially in differential equations theory) defined by the relation

L {f} =
∞∫
0

f (x) e−sxdx. It has some practical properties for complicated

problems. These properties can be summarized as,

• It turns a differential equation into an algebraic equation,
• It turns a partial differential equation into an ordinary differential equa-
tion,

• It connects functions and generalized functions,

...
The most famous property of the Laplace transform is the derivative rela-

tion L
{
f (n)

}
= snL {f} (s)−

n−1∑
k=0

sn−k−1f (k) (0). In this paper, we use that

relation and reveal the relation between Maclaurin coefficients and Laplace
transform.
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2. Preliminaries

Laplace operator is an invertible linear operator defined by

L {f} (s) =
∞∫
0

f (x) e−sxdx, (2.1)

where f ∈ C [0,+∞), f = O (eax), a ∈ R and Re (s) > a. For example, the
Laplace transform of the function f defined by f (x) = xkeax is k!

(s−a)k+1 , i.e.;

L {f} (s) = k!

(s− a)
k+1

, (2.2)

where k ∈ N ∪ {0}, a ∈ R.
The following relation is known as differentiation property of the Laplace

transform

L
{
f (n)

}
(s) = snL {f} (s)−

n−1∑
k=0

sn−k−1f (k) (0) , (2.3)

see [2], where f ∈ C(n) [0,+∞).
Now, we remember Maclaurin coefficients and power series. If a complex

valued function f is analytic at x0 = 0, there exists a positive number R such
that the power series expansion

f (x) =

∞∑
n=0

f (n) (0)

n!
xn (2.4)

is valid in the disk |x| < R on the plane C. The series in (2.4) is uniformly
convergent on the closed disk |x| ≤ r for each positive number r < R. In case
of R = ∞, uniformly convergence is provided in all bounded subset of the
plane C. Note that f is said to be entire function when R = ∞, see [1].

3. Some Auxiliary Equalities

When f is an entire function, i.e., f (x) =
∞∑

n=0

f(n)(0)
n! xn, the relation

f (n) (0) =
1

(n+ 1)!
lim

r→+0

dn+1

drn+1
L {f}

(
1

r

)
(3.1)

can be easily proved as follows:

L {f} (s) =
∞∫
0

( ∞∑
n=0

f (n) (0)

n!
xne−sx

)
dx =

∞∑
n=0

f (n) (0)

n!
L {xn} (s) =

∞∑
n=0

f (n) (0)

sn+1
.

By writing s =
1

r
, we have

L {f}
(
1

r

)
=

∞∑
n=0

f (n) (0) rn+1.
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Finally, we obtain (3.1) by differentiating both sides of the last equality n+1
times and taking r → +0.

Under the condition that the function f is entire is so heavy. We now
prove the validity of the relation (3.1) under light assumptions.

Lemma 3.1. The following relation

∂n

∂rn
{
rne−

x
r

}
= n!e−

x
r

n∑
k=0

xk

rkk!
(3.2)

is valid for n ∈ N, x ∈ [0,+∞) and r ∈ (0,+∞).

Proof. We use the induction method. For n = 1, the relation is obvious.
Assume that the relation (3.2) is provided for n − 1. We now prove the
relation (3.2) for n:

∂n

∂rn
{
rne−

x
r

}
=

∂n

∂rn
{
r.rn−1e−

x
r

}
=

n∑
k=0

(
n

k

)
∂kr

∂rk
.
∂n−k

∂rn−k

{
rn−1e−

x
r

}

= r
∂n

∂rn
{
rn−1e−

x
r

}
+ n

∂n−1

∂rn−1

{
rn−1e−

x
r

}
.

Now, we use the induction hypothesis and the formula ∂n

∂rn

{
rn−1e−

x
r

}
=

xne−
x
r

rn+1 in Lemma 11 in [3]. Then, we obtain

∂n

∂rn
{
rne−

x
r

}
= r

xne−
x
r

rn+1
+ n (n− 1!) e−

x
r

n−1∑
k=0

xk

rkk!
= n!e−

x
r

n∑
k=0

xk

rkk!
.

□

Lemma 3.2. The relation

lim
r→+0

dn

drn

{
rnL {f}

(
1

r

)}
= 0 (3.3)

is valid for each n ∈ N, a ∈ R, f = O (eax).

Proof. There exists a positive number M such that the inequality |f (x)| ≤
Meax is provided for x ∈ [0,+∞). Also, the Laplace improper integral is
uniformly convergent for s ∈ [b,+∞) with a < b, see [2]. Then, there exists
a positive number c such that the improper integral

L {f}
(
1

r

)
=

∞∫
0

f (x) e−
x
r dx
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is uniformly convergent for r ∈ (0, c]. By (2.2), we obtain

∣∣∣∣ dndrn

{
rnL {f}

(
1

r

)}∣∣∣∣ =
∣∣∣∣∣∣
∞∫
0

f (x)
∂n

∂rn
{
rne−

x
r

}
dx

∣∣∣∣∣∣
≤

∞∫
0

|f (x)| ∂n

∂rn
{
rne−

x
r

}
dx ≤ M

∞∫
0

eax

(
n!e−

x
r

n∑
k=0

xk

rkk!

)
dx

= Mn!

n∑
k=0

1

rkk!

∞∫
0

e(a−
1
r )xxkdx = Mn!

n∑
k=0

sk

k!

∞∫
0

e(a−s)xxkdx

= Mn!

n∑
k=0

sk

k!
L
{
eaxxk

}
(s) = Mn!

n∑
k=0

sk

(s− a)
k+1

.

Then

lim
r→+0

∣∣∣∣ dndrn

{
rnL {f}

(
1

r

)}∣∣∣∣ ≤ Mn! lim
s→+∞

n∑
k=0

sk

(s− a)
k+1

= 0,

where s = 1
r . □

4. Main Results

Theorem 4.1. Let m ∈ N, f ∈ C(m) [0,+∞) and f (m) = O (eax). Then, the
formula (3.1) is valid for 0 ≤ n < m, i.e.,

f (n) (0) =
1

(n+ 1)!
lim

r→+0

dn+1

drn+1
L {f}

(
1

r

)
Proof. We use the formula (2.3) by writing s = 1

r :

L
{
f (n+1)

}(1

r

)
=

L {f}
(
1
r

)
rn+1

−
n∑

k=0

f (k) (0)

rn−k
.

Then,

rn+1L
{
f (n+1)

}(1

r

)
= L {f}

(
1

r

)
−

n∑
k=0

f (k) (0) rk+1.

By applying the differential operator dn+1

drn+1 , we have

dn+1

drn+1

{
rn+1L

{
f (n+1)

}(1

r

)}
=

dn+1

drn+1

{
L {f}

(
1

r

)}
− (n+ 1)!f (n) (0) .

The formula (3.3) and the last relation complete the proof. □

We can use the formula (3.1) for the Maclaurin series expansion of an
entire function. See following.
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Example. Consider the function f (x) = ex. Then, L {f} (s) = 1
s−1 and so,

L {f}
(
1
r

)
= r

1−r . The relation

dn+1

drn+1

{
r

1− r

}
=

(n+ 1)!

(1− r)
n+2

can be easily obtained by induction. Then, we have

f (n) (0) =
1

(n+ 1)!
lim

r→+0

dn+1

drn+1
L {f}

(
1

r

)
=

1

(n+ 1)!
lim

r→+0

(n+ 1)!

(1− r)
n+2 = 1.

by the formula (3.1). Consequently, the Maclaurin series expansion is

ex =

∞∑
n=0

f (n) (0)

n!
xn =

∞∑
n=0

xn

n!
.

Example. We now show that there is no an entire function whose Laplace
transform is F (s) = eas. If a is not a negative real number, then F (s) does
not converge to zero, when s → +∞. Thus, F (s) has not inverse Laplace
transform when a is not a negative real number. Let a be a negative real
number. Assume that an entire function f is the inverse Laplace transform
of eas. Then, by (3.1),

f (n) (0) =
1

(n+ 1)!
lim

r→+0

dn+1

drn+1
L {f}

(
1

r

)
=

1

(n+ 1)!
lim

r→+0

dn+1

drn+1
e

a
r = 0

for each n ∈ N ∪ {0}. By the last relation, f is equal to the Maclaurin series
∞∑

n=0

f (n) (0)xn

n!
=

∞∑
n=0

0.xn

n!
= 0.

This is impossible because the Laplace transform of the zero function is zero.
Indeed, the inverse Laplace transform of the function F (s) = eas, a < 0, is
the Dirac delta function δ (x+ a) that is a generalized function.

5. Conclusions

In this paper, we investigate the connection between Laplace transform and
Maclaurin coefficients. Inspired by the differentiation property of the Laplace
transform, we obtain new formulas about Laplace transform and the deriva-
tives of a function at the point 0. Even though a function is not analytic
at zero, we obtain that the formulas we get is valid. Finally, we investigate
whether the exponential function F (s) = eas can be image of a regular func-
tion or not.
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