

SOME RESULTS ON SEVERAL NUMBERICAL P+53 SETS

Ö. ÇELİK^{*1}, M. EREN²

¹Department of Electric Electronic Engineering, Faculty of Engineering, Kırklareli, 39100, Turkey. ²Kırklareli University, Kırklareli, 39100, Turkey.

Abstract:

Diophantine set theory has an importence role in Mathematics. In this paper, we consider prime number p=+53 and give some Diophantine P₊₅₃ triples. Some of the such sets are extended but others not. We give several of them with proofs. Also, some types of elements of the Diophantine P₊₅₃ m-tubles are determined. One can be work on other Diophantine P₊₅₃ m tubles and discover extendibility of them.

Keywords: Diophantine P_s 3-Tuple, Number Theory, Pell Equations, Elements of Diophantine P_s m-tuples, Quadratic Reciprocity Law.

Introduction and Preliminaries

To obtain proofs of our main results we need following definitions, lemmas, theorems and so on... All of the following informations are found in the references [1-25].

1. Let *n* be an non-zero integer. A set of *m* positive integers

$$\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$$

such that $\alpha_i \alpha_j + n$ is a perfect square for all $1 \le i < j \le m$ is called α Diophantine *m*-tuple with the property D(n).

2. Let *p* be an odd prime and let *a* be an integer. The Legendre symbol of *a* with respect to *p* is defined by

$$\begin{pmatrix} \alpha \\ p \end{pmatrix} = \begin{cases} 1 & \text{if } \alpha \text{ is a quadratic residue modulo } p \text{ and } \alpha \not\equiv 0 \pmod{p} \\ -1 & \text{if } \alpha \text{ is a quadratic non} - residue \text{ modulo } p \\ 0 & \text{if } \alpha \equiv 0 \pmod{p}. \end{cases}$$

(a)
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$
, so it is 1 if and only if $p \equiv 1 \mod 4$.
(b) $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$ for an odd prime p , so it is 1 if and only if $p \equiv \pm 1 \mod 8$.

3. Law of Quadratic Reciprocity is given by

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = \left(-1\right)^{\frac{p-1}{2}\frac{q-1}{2}},$$

where p and q are odd prime numbers, and $\left(\frac{p}{q}\right)$ denotes the Legendre symbol.

Note: (Extension of the law of quadratic reciprocity) If *m* and *n* are coprime positive odd integers,

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}.$$

Main Results

Theorem 1. $P_{+53} = \{11, 13, 52\}$ Diophantine triple can not be extended to Diophantine P_{+53} quadruple.

Proof.

Assume that d is in the set of Diophantine P_{+53} set. So, we obtain following result from the definition of Diophantine P_{+53} set.

$$\{11, 13, 52, d\} \rightarrow (1) \ 11d + 53 = x^2$$

$$(2) \ 13d + 53 = y^2$$

$$(3) \ 52d + 53 = z^2 .$$

These (2) and (3) equations imply that $z^2 - 4y^2 = -159$. Table 1 gives us integer solutions of the equation as follow:

Table 1. $z^2 - 4y^2 = -159$

(<i>z</i> , <i>y</i>)	(z, y)
(±40,±79)	(±14,±25)

From the (1) and (2), we get,

$$13x^2 - 11y^2 = 2.53 \implies 13x^2 - 11y^2 = 106$$

And also integers solutions of the $13x^2 - 11y^2 = 106$ can be given as Table 2.

Table 2.	$13x^2$ –	$-11y^2$:	= 106
----------	-----------	------------	-------

(<i>x</i> , <i>y</i>)	(<i>x</i> , <i>y</i>)	(<i>x</i> , <i>y</i>)	(<i>x</i> , <i>y</i>)	(<i>x</i> , <i>y</i>)
(±1125,±1223)	(±597,±649)	(±47,±51)	(±25, ±27)	(±3,1)

If we compare Table 1 and Table 2, we obtain that there is no common integer solution for the system of pell equations. So, $\{11,13,52\}$ can not be extended to Diophantine P_{+53} Quadruple.

Theorem 2. Diophantine $P_{+53} = \{4, 119, 169\}$ Triple can not be extended to P_{+53} Quadruple.

Proof: Let us consider Diophantine $P_{+53} = \{4, 119, 169\}$. If d is an element of the such property set, then it is written by Diophantine $\{4, 119, 169, d\}$ 4- tuples. Then we obtain following results

$$(1) 4d + 53 = A^{2}$$

$$(2) 119 + 53 = B^{2}$$

$$(3) 169d + 53 = C^{2}$$

From (1) and (3), it is obtained that

$$169 / 4d + 53 = A^{2}$$

-4 / 169d + 53 = C²
$$\Rightarrow 169A^{2} - 4C^{2} = 165.53$$

Journal of Advanced Mathematics and Mathematics Education

$$\Rightarrow 169A^2 - 4C^2 = 8745 \tag{4}$$

Also, from (1) and (2), we get;

$$119A^2 - 4B^2 = 115.53 \implies 119A^2 - 4B^2 = 6095$$
(5)

For (4) and (5), we have Table 3 and Table 4 include integer solutions.

(<i>A</i> , <i>C</i>)	(<i>A</i> , <i>C</i>)
(±31,±196)	(±23, ±142)

Tablo 3. $169A^2 - 4C^2 = 8745$

Tablo 4. $119A^2 - 4B^2 = 6095$

(<i>A</i> , <i>B</i>)	(<i>A</i> , <i>B</i>)	(<i>A</i> , <i>B</i>)	(<i>A</i> , <i>B</i>)	(<i>A</i> , <i>B</i>)
(±1389,±7576)	(±531,±2896)	(±37,±198)	(±27, ±142)	(±19,±96)

From Tablo 3 and Tablo 4, we can not get common integer solutions for (3) and (4). So, {4,119,169} can not be extended.

Theorem 3. $P_{+53} = \{4, 169, 227\}$ can not be extendable to Diophantine P_{+53} quadruple.

Proof. It is proven like previous proofs of the theorems.

Theorem 4. There is no elements in the set of Diophantine P_{+53} m- tuples if they are written by three fold or five fold or thirtyone fold or fortyone fold or thirtynine fold, so on...

Proof.

(a) Assume that $3k \ (k \in Z^+)$ is in the set of Diophantine P_{+53} m- tuples. So, following equation have solution;

$$3k.s + 53 = x^2$$

for $s \in P_{+53}$ m- tuples. It implies that

$$x^2 = 2 \pmod{3}$$
.

This congruents can solvable if $\left(\frac{2}{3}\right) = +1$ but $\left(\frac{2}{3}\right) = (-1)^{\frac{9-1}{8}} = (-1)$.

This implies that $3 \notin$ Diophantine P_{+53} m- tuples.

(b) Suppose that $31r \ (r \in Z^+)$ is an element of the Diophantine P_{+53} m- tuples. Then, we obtain following equation from the definition of the Diophantine P_{+53} m- tuples.

$$31r.u + 53 = A^2 \quad \exists u \in \text{Diophantine } P_{+53} \text{ m} - \text{tuples.}$$

It implies that

$$A^2 \equiv 22 \pmod{31}$$
 solvable $\Leftrightarrow \left(\frac{22}{31}\right) = 1$ (?)

 $\begin{pmatrix} \frac{22}{31} \end{pmatrix} = \begin{pmatrix} \frac{2}{31} \end{pmatrix} \cdot \begin{pmatrix} \frac{11}{31} \end{pmatrix} \text{ and from Quadratic reciprocity;}$ $\begin{pmatrix} \frac{11}{31} \end{pmatrix} \cdot \begin{pmatrix} \frac{31}{11} \end{pmatrix} = (-1)^{\begin{pmatrix} \frac{11-1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{31-1}{2} \end{pmatrix}} \implies \begin{pmatrix} \frac{11}{31} \end{pmatrix} = -1$

 $\left(\frac{2}{31}\right) = (-1)^{\frac{31^2-1}{8}} = (-1)^{120} = +1$ then $31r \notin \text{Diophantine } P_{+53}$ m-tuples.

Acknowledgment

First of all we would like to thank Assoc. Prof. Dr. Özen Özer for her gentle guidance and strong support.

References

- 1. Cohen H. (2007). Number Theory vol.1. Tools and diophantine equations, Springer.
- Dudek A.W. (2016). On The number of divisors of n² -1 ,Bull. Aust. Math. Soc. 93 194-198.
- 3. Dujella A. (2002). On the size Diophantine m-tubles, Math. Proc. Cambridge Philos Soc.132,23-33
- 4. Dujella A. (2016). What is a Diophantine m-tuple?, Notices Amer. Math. Soc.63 , 772-774.
- 5. Dujella A., Petricevic, V. (2019). On the largest element in D(n)- quadruples, Indag. Math. (N.S.) 30 1079-1086.
- 6. Earp-Lynch S. (2019). Diophantine Triples and Linear Forms in Logarithms, Master Thesis, Brock University.
- 7. Filipin, A. and Jurasic A. (2016). On the size of diophantine m-tubles for linear polynomials, Miskolc Math.Notes 17, 861-876
- 8. Gopalan M.A., Vidhyalaksfmi S., Özer Ö., (2018). A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delh, INDIA.

- 9. Gopalan M.A., Thangam S.A., Özer Ö., (2020) On The Quinary Homogeneous Bi-Quadratic Equation, Journal of Fundamental and Applied Sciences (JFAS), 2020, 12(2), 516-524.
- Izadi F., Khoshnam F. (2014). On ellipticcurves via Heron Triangles and Diophantine triples, J.Math.Ext.8 17-26
- 11. Larson D. And CantuJ., (2015). Parts 1 and II of the Law of Quadratic Reciprocity, Texas A&M University, Lecture Notes.
- 12. Mollin R.A., (2008). Fundamental Number Theory with Applications, CRC Press.
- 13. Rihane E.A., Hernane M.O., Togbe, A. (2019). On Diophantine triples of Pell numbers, Collog. Math. 156,273-285.
- 14. Rihane A., Hernane M.O., Togbe, A. (2019). On Diophantine Triples of Pell numbers, Collog. Math. 156, 273-285.
- 15. Özer Ö., (2016). A Note On The Particular Sets With Size Three, Boundary Field Problems and Computer Simulation Journal, 55: 56-59.
- 16. Özer Ö., (2017). Some Properties of The Certain Pt Sets International Journal of Algebra and Statistics, 6 (1-29) ;117-130.
- 17. Özer Ö., (2018). On The Some Nonextandable Regular P -2 Sets, Malaysian Journal of Mathhematical Sciences, 12(2): 255-266.
- 18. Özer Ö., (2019). Some Results on Especial Diophantine Sets With Size-3 JAMAME Vol :2, No:1,1-11
- Özer Ö., (2019). A Certain Type of Regular Diophantine Triples and Their Non-Extendability, Turkish Journal of Analysis & Number Theory, 2019, 7(2),50-55. DOI:10.12691/Tjant-7-2-4
- 20. Özer Ö., Gopalan M.A., (2019). On the Homogeneous cone, Pioneer Journal of Mathematics and Mathematical Sciences (PJMMS) Volume 25, Issue 1, Pages 9-18.
- 21. Özer Ö., Sahin Z.C. (2018). On some particuler reguler Diophantine 3-truples , Math. Nat.Sci. 3, 29-38
- 22. Özer Ö. (2019). Some Results on espacial Diophantine sets with size 3, Journal of Advenced Mathematics and Mathematic Education 2, 1-11.
- 23. Silverman, J. H., (2013). A Friendly Introduction to number Theory. 4th Ed. Upper Saddle River: Pearson, 141-157.
- 24. Trudgian T.S. (2015). Bounds on the number of Diophantine quintubles, J. Number Theory 157 8, 233-249.
- 25. Vidhyalakshmi S., Gopalan M.A., Thangam S., Özer Ö., (2019) On the Ternary Biquadratic Diophantine Equation, Notes on Number Theory and Discrete Mathematics, Vol. 25, No.3, 65-71, DOI:10.7546/NNTDM.2019.25.3.65-71.