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Abstract

In this paper, We consider that the curvature conditions of AW(k)-type(1 ≤k≤ 3) quaternionic
curves in Euclidean space E3 and investigates quaternionic Bertrand curves α : I → Q with k 6= 0
and r 6= 0. Besides, we show that quaternionic Bertrand curves to be AW(2)-type and AW(3)-type
quaternionic curves in E3. But it is shown that there is no such a quaternionic Bertrand curve of
AW(1)-type.
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1 Introduction

The quaternion was introduced by Hamilton. His initial attempt to generalize the complex numbers by
introducing a three-dimensional object failed in the sense that the algebra he constructed for these three-
dimensional object did not have the desired properties. On the 16th October 1843 Hamilton discovered
that the appropriate generalization is one in which the scalar(real) axis is left unchanged whereas the
vector(imaginary) axis is supplemented by adding two further vector axis. Besides, there are three
different types of quaternions, namely real, complex and dual quaternions. A real quaternion is defined
as q = q0 + q1e1 + q2e2 + q3e3 is composed of four units (1, e1, e2, e3) where e1, e2, e3 are orthogonal
unit spatial vectors, qi (i = 0, 1, 2, 3) are real numbers and this quaternion may be written as a linear
combination of a real part(scalar) and vectorial part(a spatial vector). Quaternions find uses in both
theoretical and applied mathematics, in particular for calculations involving three-dimensional rotations
such as in three-dimensional computer graphics and computer vision. They can be used alongside other
methods, such as Euler angles and matrices, or as an alternative to them depending on the application.
Furthermore, Baharathi and Nagaraj represented the curves by unit quaternions in E3 and E4 and
called these curves as quaternionic curves[9]. They studied the differential geometry of space curves and
introduced Frenet frames and formulae by using quaternions. After them, many mathematicians have
studied on quaternionic curves. Karadag and Sivridag have defined and studied quaternionic inclined
curves[10]. Çöken and Tuna have studied the same curves in semi-Euclidean space E4

2 [1]. Ata and Yaylı
studied split quaternions[5]. Many interesting results on curves of AW(k)-type have been obtained by
many mathematicians (see[2,8,11,15]). For example, in[2], Özgür and Gezgin studied a Bertrand curve
of AW(k)-type and furthermore, they showed that there was no such Bertrand curve of AW(1)-type and
was of AW(3)-type if and only if it was a right circular helix. In addition they studied weak AW(2)-type
and AW(3)-type conical geodesic curves in E3. Kızıltuğ and Yaylı[15,16] studies curves of AW(k)-type
in three Galilean 3-space and given some interesting results. Besides, In 3-dimensional null cone and
Lorentz space, the curves of AW(k)- type was investigated by Külahçi, Bektaş, Ergüt and Külahçi, Ergüt,
respectively[11,12]. The purpose of the present paper is to provide AW(k)-type quaternionic curves in
Euclidean 3-space and provides the properties of quaternionic Bertrand curves in Euclidean space.
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Our paper is organized as follows. In Section 2, the basic notions and properties of a quaternionic
curve are reviewed. In Section 3, we study quaternionic curves of AW(k)-type. We also study quaternionic
Bertrand curves of AW(k)-type in Section 4.

2 Preliminaries

In this section, we give the basic elements of the theory of quaternions and quaternionic curves. A
more complete elementary treatment of quaternions and quaternionic curves can be found in [9] and [10],
respectively.

A real quaternion q is an expression of the form

q = a1e1 + a2e2 + a3e3 + a4e4 (1)

where ai, (1 ≤ i ≤ 4) are real numbers, and ei, (1 ≤ i ≤ 4) are quaternionic units which satisfy the
non-commutative multiplication rules

ei × ei = −e4, (1 ≤ i ≤ 3) (2)

ei × ej = ek = −ej × ei, (1 ≤ i, j ≤ 3)

where (i, j, k) is an even permutation of (123) in the Euclidean space. The algebra of the quaternions
is denoted by Q and its natural basis is given by (e1, e2, e3, e4). A real quaternion can be given by the
form

q = sq + vq (3)

where sq = a4 is scalar part and vq = a1e1 + a2e2 + a3e3 is vector part of q.
The conjugate of q = sq + vq is defined by

q̄ = sq − vq. (4)

This defines the symmetric real-valued, non-degenerate, bilinear form as follows:

h : Q ×Q → R, (p, q)→ h (p, q) =
1

2
(q × p̄+ p× q̄) (5)

which is called the quaternion inner product [9]. Then the norm of q is given by

‖q‖2 = h (q, q) = q × q̄ = q̄ × q = a21 + a22 + a23 + a24. (6)

If ‖q‖ = 1, then q is called unit quaternion. Then, inverse of the quaternion q is given by

q−1 q̄

‖q‖
. (7)

Let q = sq+vq = a1e1 +a2e2 +a3e3 +a4e4 and p = sp+vp = b1e1 +b2e2 +b3e3 +b4e4 two quaternions
in Q . Then the quaternion product of q and p is given by

q × p = sqsp − 〈vq, vp〉+ sqvp + spvq + vq ∧ vp (8)

where 〈, 〉 and ∧ denote the inner product and vector product in Euclidean 3-space E3.
q is called a spatial quaternion whenever q + q̄ = 0 and called a temporal quaternion whenever q −

q̄ = 0.Then a general quaternion q can be given as
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q =
1

2
(q + q̄) +

1

2
(q − q̄) .

The quaternion 1
2 (q − q̄) is a spatial quaternion and called spatial part of q and the quaternion

1
2 (q + q̄) is a temporal quaternion and called temporal part of q[9].

The three-dimensional Euclidean space E3 is identified with the space of spatial quaternions {q ∈ Q : q + q̄ = 0}
in an obvious manner. Let I = [0, 1] be an interval in real line R and s ∈ I be parameter along the regular
curve

α : I ⊂ R→ Q , s→ α (s) =

3∑
i=1

αi (s) ei (9)

chosen such that the tangent αp(s) = t is unit, i.e., ‖t‖ = 1 for all s. Then α (s) is called spatial
quaternionic curve[9]. Since ‖t‖ = 1, t́ × t̄ + t × t̄́ = 0 holds and it means that tp is orthogonal to t,
and moreover tp × t̄ is a spatial quaternion. Since tp is itself a spatial quaternion we define a spatial
quaternion n1 and non-negative scalar function k = k(s) is called principal curvature. n1 is orthogonal
to t. Then by considering that tp × t̄ is a spatial quaternion, there exists a unit spatial quaternion
n2(s) = t(s) × n1(s) = −n1(s) × t(s). Then the set {t(s), n1(s), n2(s)} is called Frenet frame along
the quaternionic curve α(s), where t(s) is unit tangent, n1(s) is unit principal normal and n2(s) is unit
binormal of the curve α(s). The Frenet formulae of the quaternionic curve α(s) are tp(s)

np1(s)
np2(s)

 =

 0 k(s) 0
−k(s) 0 r(s)

0 −r(s) 0

 t(s)
n1(s)
n2(s)

 (10)

where k = k (s) is principal curvature and r = r (s) is torsion of α (s). (For Details[9]).

Theorem 1 [9]Let α : I → Q be a real spatial quaternionic curve with arc length parameter s and
nonzero curvatures {k(s), r(s)}. If α is general helix if and only if

r(s)

k(s)
is constant. (11)

3 Quaternionic curves of AW(k)-type

Let α : I → Q be an arc-lenght parametrized unit speed real spatial quaternionic curve in Euclidean 3-
space. The curve α is called a Frenet curve of osculating order 3 if its derivatives α

′
(s), α

′′
(s), α

′′′
(s), α

′′′′
(s)

are linearly dependent and α
′
(s), α

′′
(s), α

′′′
(s), α

′′′′
(s) are no longer linearly independent for all s ∈ I. To

each Frenet curve of order 3 one can associate an orthonormal 3−frame t(s), n1(s), n2(s) along α such
that (αp (s)) = t called the Frenet frame and functions k, r : I → R called the Frenet curvatures.

Proposition 2 α : I → Q be an arc-lenght parametrized unit speed real spatial quaternionic curve in
Euclidean 3-space, then we have

α
′
(s) = t(s)

α
′′

(s) = k(s)n1(s)

α
′′′

(s) = −k2(s)t(s) + kp(s)n1(s) + k(s)r(s)n2(s)

α
′′′′

(s) = (−3k(s)k
′
(s))t(s) + (k

′′
(s)− k3(s)− k(s)r2(s))n1(s) + (2k

′
(s)r(s) + k(s)r

′
(s))n2(s).
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Notation 3 Let us write

N1(s) = k(s)n1(s) (12)

N2(s) = k
′
(s)n1(s) + k(s)r(s)n2(s) (13)

N3(s) = (k
′′
(s)− k3(s)− k(s)r2(s))n1(s) + (2k

′
(s)r(s) + k(s)r

′
(s))n2(s) (14)

Remark 4 α
′
(s), α

′′
(s), α

′′′
(s), α

′′′′
(s) are linearly dependent if and only if N1(s), N2(s), N3(s) are lin-

early dependent.

As the definition of Aw(k) type curves in[8], we have

Definition 5 Real spatial quaternionic curves (of osculating order3) in Euclidean space are (see[8])
(i) of type weak Aw(2) if they satisfy

N3(s) = h(N3(s), N∗
2 (s))N∗

2 (s), (15)

(ii) of type weak Aw(3) if they satisfy

N3(s) = h(N3(s), N∗
1 (s))N∗

1 (s) (16)

where

N∗
1 (s) =

N1(s)

‖N1(s)‖
, N∗

2 (s) =
N2(s)− h(N2(s), N∗

1 (s))N∗
1 (s)

‖N2(s)− h(N2(s), N∗
1 (s))N∗

1 (s)‖
.

Proposition 6 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. If
α is of type weak Aw(2) then

k3(s)− k
′′
(s) + k(s)r2(s) = 0 (17)

Proposition 7 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. If
α is of type weak Aw(3) then

2k
′
(s)r(s) + k(s)r(s) = 0 (18)

Definition 8 Real spatial quaternionic curves (of osculating order3) in Euclidean space are
(i)of type Aw(1) if they satisfy N3 (s) = 0,
(ii) of type Aw(2) if they satisfy

‖N2(s)‖2N3(s) = h(N3(s), N2(s))N2(s), (19)

(iii) of type Aw(3) if they satisfy

‖N1(s)‖2N3(s) = h(N3(s), N1(s))N1(s). (20)

Theorem 9 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. Then
α is of type Aw(1) if and only if

k3(s)− k
′′
(s) + k(s)r2(s) = 0 (21)

and
2k
′
(s)r(s) + k(s)r(s) = 0 (22)

Proof. Since α is a curve of type Aw(1), we have N3(s) = 0. Then from Eq.(14), we have

(k3(s)− k
′′
(s) + k(s)r2(s))n1(s) + ((2k

′
(s)r(s) + k(s)r(s))n2(s) = 0.

Furthermore, since n1(s) and n2(s) are linearly independent, we get

k3(s)− k
′′
(s) + k(s)r2(s) = 0 and k

′
(s)r(s) + k(s)r(s) = 0.

The converse statement is trivial. Hence our theorem is proved.
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Theorem 10 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. Then
α is of type Aw(2) if and only if

2(k
′
(s))2r(s) + k

′
(s)k(s)r

′
(s)− k

′′
(s)k(s)r(s) + k4(s)r(s) + k2(s)r3(s) = 0. (23)

Proof. Suppose that α is a Frenet curve of order 3, then from (13) and (14), we can write

N2(s) = γ(s)n1(s) + β(s)n2(s), (24)

N3(s) = η(s)n1(s) + δ(s)n2(s), (25)

where γ, β, η and δ are differentiable functions. Since N2(s) and N3(s) are linearly dependent, coefficients
determinant is equal to zero and hence one can write∣∣∣∣ γ(s) β(s)

η(s) δ(s)

∣∣∣∣ = 0. (26)

Here,
γ(s) = k

′
(s), β(s) = k(s)r(s)

and

η(s) = k
′′
(s)− k3(s)− k(s)r2(s),

δ(s) = 2k
′
(s)r(s) + k(s)r

′
(s).

Substituting these into (26), we obtain (23).
Conversely if the equation (23) holds it is easy to show that α is of type Aw(2). This completes the

proof.

Corollary 11 Let a real spatial quaternionic curve (of osculating order3). If it is quaternionic cylindrical
helix and α is of type Aw(2) then

3(k
′
(s))2 − k

′′
(s)k(s) + k4(s)

(
1 + c2

)
= 0 (27)

where c = r(s)
k(s) is constant.

Theorem 12 Let α be a quaternionic general helix in Euclidean 3−space. If α is of type Aw(2), then

κ(s) =
1√

−As2 +Bs+ C
and r(s) =

√
A− 1κ(s) (28)

where A = 1 + c2, B and C are real constants.

Proof. Suppose that α is a general helix of type Aw(2). Then Eq.(27) holds. If we substitute κ(s) = x
in (27), we get

x
d2x

ds2
− 3

(
dx

ds

)2

= Ax4, A = 1 + c2. (29)

Let us take x = yp and differentiating it twice we obtain

dx

ds
= pyp−1 dy

ds
, (30)

d2x

ds2
= p(p− 1)yp−2

(
dy

ds

)2

+ pyp−1 d
2y

ds2
. (31)
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Now, the substitution of (30) and (31) into (29), we get

yp

[
pyp−1 d

2y

ds2
+ p(p− 1)yp−2

(
dy

ds

)2
]
− 3p2y2p−2

(
dy

ds

)2

= Ay4p,

py2p−1 d
2y

ds2
+ p(p− 1)y2p−2

(
dy

ds

)2

− 3p2y2p−2

(
dy

ds

)2

= Ay4p.

Putting p(p− 1) = 3p2 (i.e. p = − 1
2 ) into the last equation we get

py2p−1 d
2y

ds2
= Ay4p.

So,
d2y

ds2
= −2A.

Now, we solve this last equation. Since dy
ds = −2As+B, we get

y = −As2 +Bs+ C.

Furthermore, use of x = y
−1
2 we obtain

x = (−As2 +Bs+ C)
1
2 .

Since c = r(s)
k(s) , we have the result.

Corollary 13 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. If α
is of type Aw(2), then α can not be a circular helix.

Theorem 14 Let α be a real spatial quaternionic curve (of osculating order3) in Euclidean space. Then
α is of type Aw(3) if and only if

r(s) =
c

k2(s)
(32)

Proof. Since α is a curve of type Aw(3), then (20) holds on α. Substituting (12) and (14) into (20), we
get

2k
′
(s)r(s) + k(s)r(s) = 0.

If we solve above differential equation, we get

r(s) =
c

k2(s)
.

The converse statement is trivial. Hence our theorem is proved.

Corollary 15 Let α be a general helix of osculating order 3.Then α is of type Aw(3) if and only if α is
a circular helix.

Proof. Suppose that α is a general helix of type Aw(3). Combining (11) and (32) we find k(s) and r(s)
are nonzero constants. Thus, α is circular helix. The converse statements is trivial.
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4 AW(k)-type quaternionic Bertrand curves in E3

This section characteries the curvatures of AW(k)-type real spatial quaternionic Bertrand curves in E3.
We provided some theorems and conclusion to show that there are Aw(k)-type(k = 1, 2, 3) real spatial
quaternionic Bertrand Curves in E3.

Definition 16 A curve α : I → Q with k(s) 6= 0 is called a Bertrand curve if there exist a curve
α̃ : I → Q such that the principal normal lines of α and α̃ at s ∈ I are equal. In this case α̃ is called a
Bertrand mate of α.

The curve α̃ is called a Bertrand mate of α and vice versa. A Frenet framed curve is said to be a
Bertrand curve if it admits a Bertrand mate.

By definition, for a Bertrand mate (α̃, α), there exists a functional relation s̃ = s̃(s) such that

λ̃(s̃(s)) = λ(s).

Let (α̃, α) be Bertrand mate. Then we can write

α̃(s) = α(s) + λ(s)n1(s), s ∈ I (33)

where λ is a smooth function on I and n1 is the principal normal vector field of α.

Theorem 17 Let α : I → Q and α̃ : I → Q be a Bertrand curve couple with arc-length parameter s and
s̃, respectively. Then corresponding points are a fixed distance apart for all s ∈ I.

Proof. Let (α̃, α) be Bertrand mate. From Definition (16) we can write

α̃(s) = α(s) + λ(s)n1(s), s ∈ I (34)

By taking the derivative of Eq.(34) with respect to s and using Eq.(10), we obtain

t̃(s)
ds̃

ds
= (1− λk(s))t(s) + λ̇(s)n1(s) + (λr(s))n2(s) (35)

Since ñ1(s) and n1(s) are linearly dependent, we have
〈
t̃(s), n1(s)

〉
= 0. Then, we get

λ̇(s) = 0.

This means that λ is a nonzero constant. On the other hand, from the distance function between two
points, we have

d(α̃(s), α(s)) = ‖α(s)− α̃(s)‖ = ‖λ(s)n1(s)‖ = |λ| .

Namely, d(α̃(s), α(s)) = constant. This completes the proof.

Theorem 18 Let α : I → Q be unit speed real spatial quaternionic curve. If α̃ is a Bertrand mate of α,
then angle measurement of this curve between tangent vectors at corresponding points is constant.

Proof. If h(t̃(s), t(s))
′

= 0, then the proof is complete.

h(t̃(s), t(s))
′

= h(
(
t̃(s)

)′
, t(s)) + h(t̃(s), (t(s))

′
)

= h(k̃(s)ñ1(s), t(s)) + h(t̃(s), k(s)n1(s))

= k̃(s)h(ñ1(s), t(s)) + k(s)h(t̃(s), n1(s)) (36)
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Since ñ1(s)is parallel to n1(s) and n1(s)⊥t(s), then

h(ñ1(s), t (s)) = 0. (37)

Since ñ1(s) is parallel to n1(s) and t̃(s)⊥ñ1(s), then

h(t̃(s), n1(s)) = 0. (38)

Substituting (37) and (38) in (36), we have

h(t̃(s), t(s))
′

= 0.

Hence, the proof is completed.

Proposition 19 Let α : I → Q be unit speed real spatial quaternionic curve. For k(s) 6= 0. α is a
Bertrand curve if and only if there exists a linear relation

λk(s) + µr(s) = 1 (39)

where λ, µ are non-zero constants and k(s) and r(s) are the curvature functions of α.

Proof. Denote the Darboux frames of α(s) and α̃(s) by {t(s), n1(s), n2(s)} and
{
t̃(s), ñ1(s), ñ2(s)

}
,

respectively. Let angle between t(s) and t̃(s), which is tangent vector of α̃(s) be θ. As (ñ1(s), n1(s)) is a
linearly dependent set, we can write

t̃(s̃) = cos θt(s) + sin θn2(s). (40)

If we differentiate the Eq.(40) and consider (ñ1(s), n1(s)) is a linearly dependent set we can easily see
that is θ a constant function.

Since α(s) and α̃(s) are Bertrand curve mate we have

α̃(s) = α(s) + λn1(s) (41)

If Differentiating (41) with respect to s , we get

t̃(s̃)
ds̃

ds
= (1− λk(s))t(s) + (λr(s))n2(s) (42)

Thus, from (40) and (42) we have
(1− λk(s))

cos θ
=
λr(s)

sin θ
(43)

From Above equation, we obtain
λk(s) + cot θλr(s) = 1

If take cot θλ = µ, we get
λk(s) + µr(s) = 1

Corollary 20 Suppose that k(s) 6= 0 and r(s) 6= 0. Then α is a real spatial quaternionic Bertrand curve
if and only if there exist a nonzero real number λ such that

λ(k(s)r
′
(s)− k

′
(s)r(s))− r

′
(s) = 0 (44)
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Proof. By the proposition (19), α is a Bertrand curve if and only if there exist real numbers λ 6= 0 and
µ such that λk(s) + µr(s) = 1. This is equivalent to the condition that there exists a real number λ 6= 0

such that 1−λk(s)
r(s) is constant. Differentiating both sides of the last equality, we get

λ(k(s)r
′
(s)− k

′
(s)r(s))− r

′
(s) = 0.

Proposition 21 Let α : I → Q be a real spatial quaternionic Bertrand curve with k(s) 6= 0 and r(s) 6= 0.
Then α is of type Aw(2) if and only if there is a non zero rael number λ such that

k
′′
(s)k2(s)r2(s)− k5(s)r2(s)− k3(s)r4(s)− λ(k

′
(s))2k2(s)r

′
(s)− (k

′
(s))3r(s)(λ+ 2) = 0. (45)

Proof. Since α is of type Aw(2), Eq.(23) holds and since α is a real spatial quaternionic Bertrand curve,
Eq.(44) holds. If both of these equations are considered, (45) is obtained.

Theorem 22 Let α : I → Q be a real spatial quaternionic Bertrand curve with k(s) 6= 0 and r(s) 6= 0.
Then α is of type Aw(3) if and only if α is a right circular helix.

Proof. Now suppose that α : I → Q is a quaternionic Bertrand curve of Aw(3)−type with k(s) 6= 0 and
r(s) 6= 0. Then the Eqs.(32) and (44) hold on α. Differentiaitng (32), we have

r
′
(s) =

−2ck
′
(s)

k3(s)
(46)

Substituting (32) and (46) in (44), we get

k(s) =
2

3λ
= const. (47)

If substituting (47) in (32), the following equation is obtained

r(s) =
9λ2c

4
= const.

Since k (s) and r (s) are nonzero constants, α is a right circular helix.

Theorem 23 Let α : I → Q be a real spatial quaternionic Bertrand curves with k(s) 6= 0 and r(s) 6= 0.
If α is of weak type Aw(2), then following equation hold

λk(s)r(s)
(
k2(s) + r2(s)

)
− λr

′′
(s) (λk(s)− 1) = 0 (48)

Proof. Since α is of type weak AW(2), Eq.(17) holds and since α is a quaternionic Bertrand curve,
Eq.(44) holds. Arranging Eq.(17), we have

k
′′
(s) = k3(s) + k(s)r2(s) (49)

Differentiating (44), we get

λ(k(s)r
′′
(s)− k

′′
(s)r(s))− r

′′
(s) = 0. (50)

If Eq.(44) is substituted in (50), then (48) is obtained. This completes the proof.

Theorem 24 There is not a real spatial quaternionic Bertrand curve α : I → Q with k(s) 6= 0 and
r(s) 6= 0 of type AW(1).
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Proof. Since α is of type AW(1), Eq.(21) and (22) holds and since α is a quaternionic Bertrand curve,
Eq.(44) holds. If we solve this differential equation (22), we get

r(s) =
c

k2(s)
. (51)

Differentiating (51), we get

r
′
(s) =

−2ck
′
(s)

k3(s)
. (52)

So substituting (51) and (52) in (44) and making necessary arrangements, we get

λ2 =
−2c2

72
(53)

whic given us λ2 < 0.Since λ is real number, this isnt possible. So α : I → Q isnt a AW(1)−type
Bertrand curve. This completes proof.
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