ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

HALİT ORHAN AND EVRİM TOKLU

Abstract

The aim of this investigation is to give a new subclass of analytic functions defined by Sălăgean differential operator and find upper bound of Zalcman functional $\left|a_{n}^{2}-a_{2 n-1}\right|$ for functions belonging to this subclass for $n=3$.

1. Introduction

Let \mathcal{A} denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n \geq 2} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ and satisfy the normalization conditions $f(0)=f^{\prime}(0)-1=0$.

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U} (for details, see [3]). We say that f is starlike on the open unit disk \mathbb{U} with respect to origin, denoted by $f \in \mathcal{S}^{\star}$ if f is univalent on \mathbb{U} and the image $f(\mathbb{U})$ is a starlike domain with respect to origin. Also, we say that f is convex on \mathbb{U}, denoted by $f \in \mathcal{C}$ if f is univalent on \mathbb{U} and the image $f(\mathbb{U})$ is a convex domain in \mathbb{C}. A function $f \in \mathcal{S}$ is called starlike function of order $\alpha(0 \leq \alpha<1)$, denoted by $f \in \mathcal{S}^{\star}(\alpha)$, if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \mathbb{U} \tag{1.2}
\end{equation*}
$$

Moreover, we say that f is convex function of order $\alpha(0 \leq \alpha<1)$, denoted by $f \in \mathcal{C}(\alpha)$, if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{U} .
$$

Nishiwaki and Owa [6] investigated the class $\mathcal{M}(\alpha)(\alpha>1)$ which is the subclass of \mathcal{A} consisting of functions $f(z)$ which satisfy the inequality

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\alpha, \quad z \in \mathbb{U} \tag{1.3}
\end{equation*}
$$

and let $\mathcal{N}(\alpha)(\alpha>1)$ be the subclass of \mathcal{A} consisting of functions $f(z)$ which satisfy the inequality

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\alpha, \quad z \in \mathbb{U} \tag{1.4}
\end{equation*}
$$

Then, we observe that $f(z) \in \mathcal{N}(\alpha)$ if and only if $z f^{\prime} \in \mathcal{M}(\alpha)$.
For convenience, we set $\mathcal{M}(3 / 2)=\mathcal{M}$ and $\mathcal{N}(3 / 2)=\mathcal{N}$. For $1<\alpha \leq 4 / 3$, the classes of $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were studied Uralegaddi et al. [12]. Singh and Singh [11, Theorem

[^0]6] proved that function in \mathcal{N} are starlike in \mathbb{U}. Saitoh et al. 9] and Nunokawa [7] have improved the result of Singh and Singh [11, Theorem 6].

At the end of 1960 's, Lawrence Zalcman posed a conjecture that the coefficients of \mathcal{S} satisfy the sharp inequality

$$
\left|a_{n}^{2}-a_{2 n-1}\right| \leq(n-1)^{2}
$$

with equality only for the Koebe function and its rotations. This important conjecture implies the Bieberbach conjecture, scrutinized by many mathematicians, and still remains a very difficult open problem for all $n>3$; it was proved only in certain special subclasses of S in [2, 5]. The case $n=2$ is the elementary best-known Fekete-Szegö inequality. The more recently Bansal and Sokól [1] investigated the validity of Zalcman conjecture for $n=3$ for the functions belonging to the classes \mathcal{M} and \mathcal{N} defined above.

For a function $f(z)$ belonging to \mathcal{A}, Sălăgean [10] has introduced the following differential operator called Sălăgean operator:

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =D f(z)=z f^{\prime}(z) \\
\quad & \\
D^{k} f(z) & =D\left(D^{k-1} f(z)\right) \quad\left(k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \text { where } \mathbb{N}=\{1,2,3, \ldots\}\right)
\end{aligned}
$$

We can easily observe that $D^{k} f(z)=z+\sum_{n \geq 2} n^{k} a_{n} z^{n}$.
Definition 1.1. A function $f \in \mathcal{A}$ is said to be in the class $M_{k}(\alpha)$, if the following condition is satisfied:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}\right)<\alpha ; \quad \alpha>1, z \in U . \tag{1.5}
\end{equation*}
$$

For convenience, we put $M_{k}(3 / 2)=M_{k}$. Taking $k=0$ and $k=1$ in Definition 1.1, we obtain that $M_{0} \equiv \mathcal{M}$ and $M_{1} \equiv \mathcal{N}$.

It is worth mentioning that the following lemma play a basic role in building our main result.

Lemma 1.1. (see [8]) If a function $p \in \mathcal{P}$ is given by

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \quad(z \in \mathbb{U}), \tag{1.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|c_{i}\right| \leq 2 \quad \text { and } \quad\left|p_{i}-p_{s} p_{i-s}\right| \leq 2 \quad(i, s \in \mathbb{N}) \tag{1.7}
\end{equation*}
$$

where \mathcal{P} is the family of all functions p, analytic in \mathbb{U} for which $p(0)=1$ and $\operatorname{Re}(p(z))>$ $0, z \in \mathbb{U}$. Moreover, these inequalities are sharp for all i and for all s, equality being attained for each i and for each s by the function $p(z)=(1+z) /(1-z)$.

The second inequality in Lemma 1.1 was given by Livingston [4].

2. Main Results

Our main result is contained in the following theorem:
Theorem 2.1. Let the function $f(z)$ given by (1.1) be in the class M_{k}. Then

$$
\begin{equation*}
\left|a_{3}^{2}-a_{5}\right| \leq \frac{1}{96.5^{k} 3^{2 k}}\left(2\left|6.5^{k}-3^{2 k}\right|+\left|6.2 .5^{k}-10.3^{2 k}\right|+24.3^{2 k}\right) . \tag{2.1}
\end{equation*}
$$

Proof. Let the function $f(z) \in M_{k}$ be given by (1.1), then there exists a function $p \in \mathcal{P}$ of the form (1.6), such that

$$
\frac{D^{k+1} f(z)}{D^{k} f(z)}=\frac{1}{2}(3-p(z)),
$$

which in terms of power series is equivalent to

$$
2 D^{k+1} f(z)=\left(D^{k} f(z)\right)\left(2-\sum_{n \geq 1} p_{n} z^{n}\right)
$$

or

$$
2\left(z+\sum_{n \geq 2} n^{k+1} a_{n} z^{n}\right)=\left(z+\sum_{n \geq 2} n^{k} a_{n} z^{n}\right)\left(2-\sum_{n \geq 1} p_{n} z^{n}\right) .
$$

After some elementary calculations, we arrive at

$$
\begin{align*}
& a_{2}=-\frac{1}{2.2^{k}} p_{1} \tag{2.2}\\
& a_{3}=\frac{1}{8.3^{k}}\left(p_{1}^{2}-2 p_{2}\right) \tag{2.3}\\
& a_{4}=\frac{1}{48.4^{k}}\left(6 p_{1} p_{2}-8 p_{3}-p_{1}^{3}\right) \tag{2.4}\\
& a_{5}=\frac{1}{384.5^{k}}\left(p_{1}^{4}+12 p_{2}^{2}+32 p_{1} p_{3}-48 p_{4}-12 p_{1}^{2} p_{2}\right) . \tag{2.5}
\end{align*}
$$

By using (2.3), (2.5) and Lemma 1.1, we arrive at

$$
\begin{aligned}
\left|a_{3}^{2}-a_{5}\right| & =\frac{1}{384}\left(\frac{6}{3^{2 k}}\left(p_{1}^{2}-2 p_{2}\right)^{2}-\frac{1}{5^{k}}\left(p_{1}^{4}+12 p_{2}^{2}+32 p_{1} p_{3}-48 p_{4}-12 p_{1}^{2} p_{2}\right)\right) \\
& =\frac{1}{384.5^{k} \cdot 3^{2 k}}\left(6.5^{k}\left(p_{1}^{4}-4 p_{1}^{2} p_{2}+4 p_{2}^{2}\right)-3^{2 k}\left(p_{1}^{4}+12 p_{2}^{2}+32 p_{1} p_{3}-48 p_{4}-12 p_{1}^{2} p_{2}\right)\right) \\
& =\frac{1}{384.5^{k} \cdot 3^{2 k}}\left(\left(6.5^{k}-3^{2 k}\right)\left(p_{2}-p_{1}^{2}\right)^{2}+\left(6.2 .5^{k}-10.3^{2 k}\right) p_{2}\left(p_{2}-p_{1}^{2}\right)\right. \\
& \left.+\left(6.5^{k}-3^{2 k}\right) p_{2}^{2}+3^{2 k} .32\left(p_{4}-p_{1} p_{3}\right)+3^{2 k} p_{4}\right) \\
& \leq \frac{1}{96.5^{k} \cdot 3^{2 k}}\left(2\left|6.5^{k}-3^{2 k}\right|+\left|6.2 .5^{k}-10.3^{2 k}\right|+24.3^{2 k}\right) .
\end{aligned}
$$

Thus, the proof of Theorem 2.1 is completed.
Now, we would like to draw attention to some remarkable results which are obtained for some values of k in Theorem 2.1.

Taking $k=0$ in Theorem 2.1 we obtain the following result.
Corollary 2.1 (see [1]). Let the function $f \in \mathcal{M}$ be defined by (1.1), then

$$
\left|a_{3}^{2}-a_{5}\right| \leq \frac{3}{8} .
$$

The result is sharp.
Setting $k=1$ in Theorem 2.1 we get the following result.
Corollary 2.2 (see [1]). Let the function $f \in \mathcal{N}$ be defined by (1.1), then

$$
\left|a_{3}^{2}-a_{5}\right| \leq \frac{1}{15}
$$

References

[1] D. Bansal and J. Sokól, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., Vol. 8(1) Jan. 2017, pp. 1-5.
[2] J.E. Brown and A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467474.
[3] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Springer:New York, NY,USA, 1983.
[4] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), 545552.
[5] W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741744.
[6] J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285290.
[7] M. Nunokawa,A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A., 65(1989) 163164.
[8] C. Pommerenke, Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
[9] H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege, 57(1988) 137141.
[10] G.S. SăLĂGEan, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362372, Springer, Berlin, Germany, 1983.
[11] R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness Collect. Math., 47(1982) 309314.
[12] B.A. Uralegaddi, M.D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients Tamkang J. Math., 25(1994) 225230.

Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey

Email address: horhan@atauni.edu.tr
Department of Mathematics, Faculty of Science, Ağri İbraḣ̇m Çeçen University, 04100 Ağri, Turkey

Email address: etoklu@agri.edu.tr

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Univalent function, bi-univalent function, Coefficient bounds.

