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Abstract. Analytical solution of highly nonlinear system of two dimensional Volterra
integral equations is studied by the reduced differential transform method [RDTM]. We
present a new property of RDTM to acquire the recursive relation which is used to get
analytical solution of the above mentioned two dimensional system. Results of the nu-
merical examples obtained by RDTM are compared with the existing results obtained
by TDDTM. Though solutions obtained by RDTM and TDDTM are same, RDTM has
significant advantage over TDDTM that is RDTM generates the solution of the nonlinear
problem by operating the multivariable function with respect to a desired variable only
not on all of their independent variables unlike in TDDTM so that RDTM reduces the
time consumption than TDDTM.
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1. Introduction and Preliminaries

Numerous science and engineering fields like electric circuit analysis, elasticity, electro-
magnetism and electrodynamics, heat and mass transfer, visco elasticity, chemical and
electrochemical process are modeled by the two dimensional highly nonlinear system of
integral equations [1] - [6]. Motivated by these applications, we consider the following
system of two dimensional nonlinear Volterra integral equations [7],

fi(x, t) +
n∑

j=0

∫ t

0

∫ x

0

ki,j(x, y, r, s, uj(r, s))drds = ui(x, t), i = 1, 2, 3 · · · · · · , n. (1.1)

where u(x, t) is unknown function, ki,j(x, y, r, s, uj(r, s)) and fi(x, t), i, j = 1, 2, · · · , n, are
given continuous functions on D = [0×X]∗ [0×T ] and E = (x, y, r, s, u) : 0 ≤ r ≤ x ≤ X,
0 ≤ s ≤ t ≤ T,−∞ ≤ u ≤ ∞ and it has the following degenerate form,

Ki,j(x, y, r, s) =

p∑
m=1

am(x, t)bm(r, s, uj(r, s)), i = 1, 2, · · ·n, j = 1, 2, · · ·n. (1.2)
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In [8], Pachpattei has discussed the existence, uniqueness and other properties of so-
lutions of Volterra integral and integro-differential equations in two variables. Han and
Zhang [9] studied the asymptotic error expansion of two-dimensional Volterra integral
equation by iterated collocation. Tari [7] presented the existence and uniqueness solution
of nonlinear volterra partial integral and integro-differential equations. In [10], Kwapisz
discussed the weighted norms and existence and uniqueness of Lp solutions for integral
equations in several variables. Also, some numerical approaches can be found out in the
literature for different two dimensional nonlinear volterra partial integral and integro-
differential equations (one can refer [11–15]).

In [16], authors have applied two dimensional differential transform method[TDDTM]
for solving (1.1). Though the TDDTM is a fine tool to acquire analytical solution of
higher dimensional problems, it also comes across some deficiencies like it operates the
multivariable function with respect to all of their independent variables which leads to
complicated computation and consuming more time. To avoid these kind of difficulties,
Keskin [17] introduced the reduced differential transform method[RDTM] and it operates
the multivariable function with respect to desired variable so that it reduces the compu-
tational size. Several works have been carried out by this method in the recent years for
various nonlinear problems (see [11,18–22] and references therein).

In this work, we use the RDTM to solve (1.1) by giving extension to the theorem which
was given by [7] and [11]. To show the proficiency of the proposed method, we compare
the results obtained by the RDTM and the existing results by TDDTM [16].

2. Reduced Differential Transform Method

As in reference [11] and [17], the basic definition of the RDTM is introduced as follows:
Consider a function of two variables w(x, t), and suppose that it can be represented as

a product of two single-variable function, that is, w(x, t) = f(x) g(t). Based on the prop-
erties of one dimensional differential transform, the function w(x, t) can be represented
as,

w(x, t) =
∞∑
i=0

F (i)xi
∞∑
j=0

G(j)xj =
∞∑
k=0

Uk(x)tk,

where Uk(x) is called t-dimensional spectrum function of u(x,t).
The reduced differential transform of an analytic function u(x, t) at t = 0 is defined as,

Uk(x) =
1

k!

[∂ku(x, t)

∂tk

]
t=0
, (2.1)

where u(x, t) is the original function and Uk(x) is the transformed function.
The reduced differential inverse transform of Uk(x) is defined as,

u(x, t) =
∞∑
k=0

Uk(x)tk, (2.2)

and from (2.1) and (2.2), we have,

u(x, t) =
∞∑
k=0

1

k!

[∂ku(x, t)

∂tk

]
t=0
tk. (2.3)
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The fundamental theorems that can be deduced from (2.1) and (2.2) are given in the
1, [11, 17]:

Table 1. Fundamental theorems of RDTM

S. No Original function Transformed function

1 w(x, t) = u(x, t)± v(x, t) Wk(x) = Uk(x)± Vk(x)

2 w(x, t) = αu(x, t) Wk(x) = αUk(x)

3 w(x, t) = xmtn Wk(x) = xmδ(k − n)

4 w(x, t) = xmtnu(x, t) Wk(x) = xmUk−n(x)

5 w(x, t) = ∂ru(x,t)
∂tr

Wk(x) = (k + 1)(k + 2)....(k + r)Uk+r(x) = (k+r)!
k!

Uk+r(x)

6 w(x, t) = ∂u(x,t)
∂x

Wk(x) = ∂
∂x

(Uk(x))

7 w(x, t) = u(x, t)v(x, t) Wk(x) =
∑k

r=0 Ur(x)Vk−r(x)

8 w(x, t) =
∫ x

0

∫ t

0
u(r, s)drds Wk(x) =

{
0, k = 0 ,∫ x

0

Uk−1(r)

k
dr, k ≥ 1.

3. New Property of RDTM

In this section, we give the extension of the theorem which was given by [7] and [11]
for solving (1.1).

Theorem 3.1. If w(x, t) =
∫ x

0

∫ t

0
u1(r, s)u2(r, s)u3(r, s) . . . . . . un−1(r, s)un(r, s)drds then

Wk(x) =
1

k

∫ x

0

[ k−1∑
k1=0

kn−2∑
kn−1=0

kn−3∑
kn−2=0

. . .

k2∑
k3=0

k1∑
k2=0

U1[kn−1]
(r)U2[kn−2−kn−1]

(r)U3[kn−3−kn−2]
(r) . . .

Un−2[k2−k3]
(r)Un−1[k1−k2]

(r)Un[k−k1−1]
(r)
]
dr

Proof. This theorem will be proved by Mathematical induction.
For n = 2,

w(x, t) =

∫ x

0

∫ t

0

u1(r, s)u2(r, s)drds.
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We write the above equation by Leibnitz rule as,

∂k

∂tk
[
w(x, t)

]
=

∂k

∂tk

[ ∫ x

0

∫ t

0

u1(r, s)u2(r, s)ds
]
,

=

∫ x

0

∂k−1

∂tk−1

[
u1(r, t)u2(r, t)

]
dr,

=

∫ x

0

[ k−1∑
k1=0

(k − 1)!

k1!(k − k1 − 1)!

∂k1

∂tk1
[u1(r, t)]

∂k−k1−1

∂tk−k1−1
[u2(r, t)]

]
dr,

k!Wk(x) =

∫ x

0

[ k−1∑
k1=0

(k − 1)!

k1!(k − k1 − 1)!
U1[k1]

(r)(k1)!(k − k1 − 1)!U2[k−k1−1]
(r)
]
dr,

Wk(x) =
1

k

∫ x

0

[ k−1∑
k1=0

U1[k1]
(r)U2[k−k1−1]

(r)
]
dr

Therefore, this theorem holds for n = 2.
For n = 3,

w(x, t) =

∫ x

0

∫ t

0

u1(r, s)u2(r, s)u3(r, s)drds,

By Leibnitz rule, we write the above equation as,

∂k

∂tk
[
w(x, t)

]
=

∂k

∂tk

[ ∫ x

0

∫ t

0

u1(r, s)u2(r, s)u3(r, s)drds
]

=

∫ x

0

[ ∂k−1
∂tk−1

u1(r, t)u2(r, t)u3(r, t)
]
dr

=

∫ x

0

[ k−1∑
k1=0

(k − 1)!

k1!(k − k1 − 1)!

∂k1

∂tk1
[g(r, t)]

∂k−k1−1

∂tk−k1−1
[u3(r, t)]

]
dr

where g(x, t) = u1(r, t)u2(r, t).

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

(k − 1)!

k1!(k − k1 − 1)!

(k1)!

k2!(k1 − k2)!
×

∂k2

∂tk2
[u1(r, t)]

∂k1−k2

∂tk1−k2
[u2(r, t)]

∂k−k1−1

∂tk−k1−1
[u3(r, t)]

]
dr.

Using (2.1) in the above equation, we get,

k!Wk(x) =

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

(k − 1)!(k1)!(k2)!(k1 − k2)!(k − k1 − 1)!

(k1)!(k − k1 − 1)!(k2)!(k1 − k2)!
×

U1[k2]
(r)U2[k1−k2]

(r)U3[k−k1−1](r)

]
dr

Wk(x) =
1

k

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

U1[k2]
(r)U2[k1−k2]

(r)U3[k−k1−1]
(r)
]
dr
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Therefore, theorem holds for n = 3.
For n = 4,

w(x, t) =

∫ x

0

∫ t

0

u1(r, s)u2(r, s)u3(r, s)u4(r, s)drds,

By Leibnitz rule, we write the above equation as,

∂k

∂tk
[
w(x, t)

]
=

∂k

∂tk

[ ∫ x

0

∫ t

0

u1(r, s)u2(r, s)u3(r, s)u4(r, s)drds
]

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

∂k−1

∂tk−1

[
u1(r, t)u2(r, t)u3(r, t)u4(r, t)

]
dr

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

[ k−1∑
k1=0

(k − 1)!

k1!(k − k1 − 1)!

∂k1

∂tk1
[g1(r, t)]

∂k−k1−1

∂tk−k1−1
[u4(r, t)]

]
dr

where g1(r, t) = u1(r, t)u2(r, t)u3(r, t).

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

(k − 1)!

k1!(k − k1 − 1)!

(k1)!

(k2)!(k1 − k2)!
×

∂k2

∂tk2
[g2(r, t)]

∂k1−k2

∂tk1−k2
[u3(r, t)]

∂k−k1−1

∂tk−k1−1
[u4(r, t)]

]
dr

where g2(r, t) = u1(r, t)u2(r, t).

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

k2∑
k3=0

(k − 1)!

k1!(k − k1 − 1)!

(k1)!

k2!(k1 − k2)!
(k2)!

(k3)!(k2 − k3)!
×

∂k3

∂tk3
[u1(r, t)]

∂k2−k3

∂tk2−k3
[u2(r, t)]

∂k1−k2

∂tk1−k2
[u3(r, t)]

∂k−k1−1

∂tk−k1−1
[u4(r, t)]

]
dr

∂k

∂tk
[
w(x, t)

]
=

∫ x

0

[ 1

k!

k−1∑
k1=0

k1∑
k2=0

k2∑
k3=0

(k − 1)!(k1)!(k2)!(k3)!(k2 − k3)!(k1 − k2)!(k − k1 − 1)!

k1!(k − k1 − 1)!k2!(k1 − k2)!k3!(k2 − k3)!
×

U1(k3)
(r)U2(k2−k3)

(r)U3(k1−k2)
(r)U4(k−k1−1)

(r)
]
dr

Wk(x) =
1

k

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

k2∑
k3=0

U1(k3)
(r)U2(k2−k3)

(r)U3(k1−k2)
(r)U4(k−k1−1)

(r)
]
dr

...

In general,

Wk(x) =
1

k

∫ x

0

[ k−1∑
k1=0

kn−2∑
kn−1=0

kn−3∑
kn−2=0

. . . . . .

k2∑
k3=0

k1∑
k2=0

U1[kn−1]
(r)U2[kn−2−kn−1]

(r)U3[kn−3−kn−2]
(r)

. . . . . . Un−2[k2−k3]
(r)Un−1[k1−k2]

(r)Un[k−k1−1]
(r)
]
dr
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which completes the proof. �

4. Description of the method

In this section, we present the RDTM for solving (1.1).
By taking reduced differential transform on both sides of (1.1) , we have,

RDT
[
fi(x, t) +

n∑
j=0

∫ t

0

∫ x

0

ki,j(x, y, r, s, uj(r, s))drds = ui(x, t)
]
, i = 1, 2, 3, · · · , n. (4.1)

Applying the fundamental theorems into (4.1), we obtain the following recurrence relation,

Fn(k)
(x) +

1

k
Gn(k)

(x) = Un(k)
(x), (4.2)

where Fn(k)
(x), Gn(k)

(x) and Un(k)
(x) are the transformed functions of

fn(x, t),

∫ t

0

∫ x

0

ki,j(x, y, r, s, uj(r, s))drds

and ui(x, t) respectively.
By iterative calculations on (4.2), we obtain the values of U1(k)(x) . . . Un(k)

(x) as,

U1(0)(x) = η0(x), U1(1)(x) = η1(x), U1(2)(x) = η2(x), U1(3)(x) = η3(x), . . . . . .

U2(0)(x) = α0(x), U2(1)(x) = α1(x), U2(2)(x) = α2(x), . . . . . .

...

Un(0)
(x) = β0(x), Un(1)

(x) = β1(x), Un(2)
(x) = β2(x), . . . . . . . (4.3)

One can get the solution of (1.1) by substituting (4.3) into (2.2).

5. Illustrative Examples

Two different test examples are considered in this section to illustrate the effectiveness
of the RDTM.

Example 5.1. Consider the nonlinear system of Volterra integral equations,

u(x, t) = x2t− x5t3

15
− x10t7

70
+

∫ x

0

∫ t

0

[
u(r, s)

]2
+
[
v(r, s)

]3
drds,

v(x, t) = x3t2 +
x7t5

35
− x7t4

28
+

∫ x

0

∫ t

0

[
u(r, s)

]3 − [v(r, s)
]2
drds, (5.1)

whose exact solution was found to be [16]:

u(x, t) = x2t; v(x, t) = x3t2. (5.2)

By taking the reduced differential transform on both sides of (5.1), the following recurrence
relation is obtained.

Uk(x) = x2δ(k − 1)− x15

15
δ(k − 3)− x10

70
δ(k − 7) +

1

k

∫ x

0

[ k−1∑
k1=0

Uk1(r)Uk−k1−1(r)
]
dr+
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1

k

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

Vk2(r)Vk1−k2(r)Vk−k1−1(r)
]
dr, (5.3)

Vk(x) = x3δ(k−2)+
x7

35
δ(k−5)−x

7

28
δ(k−4)+

1

k

∫ x

0

[ k−1∑
k1=0

k1∑
k2=0

Uk2(r)Uk1−k2(r)Uk−k1−1(r)
]
dr−

1

k

∫ x

0

[ k−1∑
k1=0

Vk1(r)Vk−k1−1(r)
]
dr. (5.4)

By iterative calculations on (5.3) and (5.4), we have,

Uk(x) =

{
x2, k = 1 ,

0, otherwise.
Vk(x) =

{
x3, k = 2,

0, otherwise.
(5.5)

Substituting (5.5) into (2.2), we have,

u(x, t) = x2t; v(x, t) = x3t2 (5.6)

which is the exact solution of the problem.

(a) Plot of the surface u(x, t) = x2t (b) Plot of the surface v(x, t) = x3t2

Figure 1. Graphical representation of the solutions u(x, t) = x2t and
v(x, t) = x3t2

.

Example 5.2. Consider the nonlinear system of Volterra integral equations,

u(x, t) = ext+
x2

2
− t3

6
+
e2xt3

6
− x2et

2
+

∫ t

0

∫ x

0

[
v(r, s)− [u(r, s)]2

]
drds,

v(x, t) = xet − x2

2
+
t2

2
− ext2

2
+
x2et

2
+

∫ t

0

∫ x

0

[
u(r, s)− v(r, s)

]
drds, (5.7)
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whose exact solution was found to be [16]:

u(x, t) = ext; v(x, t) = xet. (5.8)

By taking the reduced differential transform on both sides of (5.7), the following recurrence
relation is obtained.

Uk(x) = exδ(k − 1) +
x2

2
δ(k − 0)− δ(k − 3)

6
+
e2xδ(k − 3)

6
− x2

2k!

− 1

k

∫ x

0

[ k−1∑
k1=0

Uk1(r)Uk−k1−1(r)
]
dr +

∫ x

0

Vk−1(r)

k
dr. (5.9)

Vk(x) = −x
2δ(k − 0)

2
+
δ(k − 2)

2
− exδ(k − 2)

2
+
x2

2k!
+

1

k

∫ x

0

Uk−1(r)dr

+
x

k!
−
∫ x

0

Vk−1(r)

k
dr. (5.10)

By iterative calculations on (5.9) and (5.10), we have,

Uk(x) =

{
ex, k = 1,

0, otherwise.

V0(x) = x, V1(x) = x, V2(x) =
x

2!
, V3(x) =

x

3!
. . . . . . . . . . (5.11)

Substituting (5.11) into (2.2), we have,

u(x, t) = ext, v(x, t) = xet, (5.12)

which is the exact solution of the problem.

(a) Plot of the surface u(x, t) = ext (b) Plot of the surface v(x, t) = xet

Figure 2. Graphical representation of the solutions u(x, t) = ext and
v(x, t) = xet

.
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6. Conclusion

We presented a new property of RDTM and it was successfully applied to solve the
system of two dimensional highly nonlinear Volterra integral equations. From the solution
of examples, we can see that RDTM and TDDTM have given the same exact solution.
Although solutions obtained by RDTM and TDDTM are same, RDTM has significant
advantage over TDDTM that is RDTM generates the solution of the nonlinear problem
by operating the multivariable function with respect to a desired variable only not on all
of their independent variables unlike in TDDTM. Due to this reason RDTM reduces the
time consumption than TDDTM.
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