ON SOME DISTINGUISHED SUBSPACES AND RELATIONSHIP BETWEEN DUALS

TUNAY BİLGİN*, MAHMUT KARAKUŞ**

ABSTRACT. In this paper, we observe some new spaces to obtain new β - and γ -type duality of a sequence space λ , related to the some sequence spaces. Before this we give some new distinguished subspaces of an FK space obtained by an operator of Aydın and Başar [2], which is stronger than common C_1 - Cesàro operator. We also give some structural theorems and inclusions for these distinguished subspaces. Finally we prove some theorems related to the f-, a_s^r - and a_b^r - duality of a sequence space λ like Goes [14] and Buntinas [8]. These theorems are important to decade the duality of a sequence space in summability theory and topological sequence spaces theory.

1. Preliminaries, Background and Notation

The space of all complex- (or real-) valued sequences is given by $\omega = \mathbb{C}^{\mathbb{N}}$ (or $\mathbb{R}^{\mathbb{N}}$) and any linear subspace $\lambda \subset \omega$ is called a sequence space, (usually we assume that $\lambda \supset \phi$ where ϕ is the space of finitely non-zero sequences spanned by (δ^k) , the sequence of kth position is 1 and all the others are 0).

Let $(b_n) \subset \lambda$ be a sequence in a normed sequence space $(\lambda, ||.||_{\lambda})$. $\forall x \in \lambda$ if there exists a unique sequence $(\alpha_n) \subset \mathbb{K}$ such that $\lim_n \|x - \sum_{k=0}^n \alpha_k b_k\| = 0$ then (b_n) is called the Schauder base of λ . Zeller introduced a notion -which is called AK property for a sequence space- is the special case of $(b_n) = ((\delta^n))_{n \in \mathbb{N}}$ in this definition. It is clear example that the set $\{(\delta^k)\}_{k \in \mathbb{N}}$ is a Schauder base for the space c_0 and ℓ_p $(1 \leq p < \infty)$, which are the spaces of null sequences and p-absolutely convergent series, respectively.

A K space λ is a subspace of ω on which coordinate functionals $\pi_k(x) = x_k$ are continuous. A complete linear metric K space is an FK space. It is named BK if it is also normable.

Let each of $\lambda_i|_{i=1}^n$ be an FK space whose topologies are generated by paranorms $p^{(i)}$ (i=1,2,...,n), respectively. Then, $\lambda = \sum_i^n \lambda_i = \{\sum_i^n x^{(i)} : x^{(i)} \in \lambda_i\}$ is an FK space with the unrestricted inductive limit topology. The paranorm of λ is given by $q(z) = \inf\{\sum_i^n p^{(i)}(x^{(i)}) | x^{(i)} \in \lambda_i, z = \sum_i^n x^{(i)} \in X\}$. Let $\{\lambda_n\}_{n=1}^\infty$ be a sequence of FK spaces, each p_n the paranorm of λ_n and $(q_{nk})_k$ be the seminorms of λ_n . Then $\lambda = \bigcap_n^\infty \lambda_n$ is an FK space with paranorm $q = \sum_n \frac{p_n}{2^n(1+p_n)}$ and seminorms $(q_{nk})_k$, [10],[5]. These properties are also satisfied in BK spaces.

Coordinate-wise product of $x, y \in \omega$ is given by $xy = \{x_k y_k\}_{k \in \mathbb{N}}$. If $x \in \omega$ and $\lambda \subset \omega$ then $x\lambda = \{xy : y \in \lambda\}$. For sequence spaces $\lambda, \mu \subset \omega$, this product is

²⁰⁰⁰ Mathematics Subject Classification. Primary: 40H05, 46A45 Secondary: 40G99, 40C05. Key words and phrases. FK spaces, Matrix methods, β -, γ -, f- duality.

given by $\lambda \mu = \{ xy : x \in \lambda, y \in \mu \}$. Smilarly, we notates the coordinate-wise sum of $x \in \lambda, y \in \mu, x+y = \{x_k + y_k\}_{k \in \mathbb{N}}$ and $\lambda, \mu \subset \omega, \lambda + \mu = \{x+y \mid x \in \lambda, y \in \mu \}$.

The β - and γ - duality of the sequence space $\lambda \subset \omega$, also known as production λ^{cs} and λ^{bs} can be generalised as $\lambda^{\mu} = \{ y \in \omega | xy \in \mu, \forall x \in \lambda \}$ for all sequence spaces $\lambda, \mu \subset \omega$, where cs and bs are the spaces of convergent and bounded series, respectively [11]. We notates as $(\lambda^{\vartheta})^{\varsigma} = \lambda^{\vartheta\varsigma}$ for any ϑ -, ς - duals. It is easy to see that both of these spaces are sequence spaces and there exists the inclusions $\phi \subset \lambda^{\beta} \subset \lambda^{\gamma}$. If $\lambda \subset \mu$ then $\mu^{\zeta} \subset \lambda^{\zeta}$, and for every sequence space λ we have $\lambda^{\zeta} = \lambda^{\zeta\zeta\zeta}$ and $\lambda \subset \lambda^{\zeta\zeta}$, where ζ is one of the duals β - or γ -. If $\lambda^{\zeta\zeta} = \lambda$ then λ is called ζ - space [11]. A sequence space λ is solid iff $\{(y_k) \in \omega | \exists (x_k) \in \lambda, \forall k \in \mathbb{N} : |y_k| \leq |x_k|\} \subset \lambda$, that is, sequence space λ is solid provided that $yx \in \lambda$ whenever $y \in \ell_{\infty}$ and $x \in \lambda$, where ℓ_{∞} is the space of all bounded complex sequences.

Let $\lambda \supset \phi$ be a K space then f- (or sequential) dual of λ is given by $\lambda^f = \{(f(\delta^k))_{k \in \mathbb{N}} | \text{ for some } f \in \lambda'\}$.

Let $\lambda \supset \phi$ be an FK space. n^{th} section of a sequence $x = (x_k) \in \lambda$ is given by $x^{[n]} = \sum_{k=1}^n x_k \delta^k$. A sequence x in this space; if the set $\{x^{[n]}\}_{n \in \mathbb{N}}$ is bounded in λ then has AB, if $x^{[n]} \to x$ (or $x^{[n]} \to x$ (weakly)) then has AK (or SAK), $\forall f \in \lambda'$, if the series $\sum_k x_k f(\delta^k)$ converges in λ then has FAK properties. One can give the SAK property as, $\forall f \in \lambda'$, $f(x) = \sum_k x_k f(\delta^k)$. The spaces of the sequences which have these properties in λ , shown by $B_{\lambda}, S_{\lambda}, W_{\lambda}$ and F_{λ} , respectively. If $\lambda = B_{\lambda}$ (or F_{λ}, W_{λ} and S_{λ}) then we say λ is AB (or FAK, SAK and AK) space. $F_{\lambda}^+ = \lambda^{f\beta}$ and $B_{\lambda}^+ = \lambda^{f\gamma}$, we say $A_{\lambda} = A_{\lambda}^+ \cap \lambda$, for A = F, B. It is true for every $\lambda \supset \phi$, $\phi \subset S_{\lambda} \subset W_{\lambda} \subset F_{\lambda} \subset B_{\lambda}$ and $W_{\lambda} \subset \overline{\phi}$, where $\overline{\phi}$ is closure of ϕ in λ [18]. If $\lambda = \overline{\phi}$ then λ is called AD space. Via Hahn-Banach theorem, $\lambda^f = \overline{\phi}^f$. Each λ which has AK then has AD, that is, $S_{\lambda} = \lambda \Rightarrow \lambda = \overline{\phi}$, if we want to see " \Leftrightarrow " in place of " \Rightarrow ", the space $\lambda = \overline{\phi}$ must also be AB.

Let λ and μ be any sequence spaces and $A=(a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, the matrix A defines a mapping from λ into μ , if for every sequence $x=(x_k)\in \lambda$ the sequence $Ax=((Ax)_n)$, the A-transform of x, exists and is in μ ; where $(Ax)_n=\sum_k a_{nk}x_k$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By $(\lambda:\mu)$, we shall denote the class of all such matrices. The matrix domain λ_A is given by $\lambda_A=\left\{x=(x_k)\in w: Ax\in\lambda\right\}$, in sequel a convergence domain of an infinite matrix A is $c_A=\left\{x=(x_k)\in w: Ax\in c\right\}$, which also an FK space, where c is the space of convergent sequences. A triangular (special name of triangle matrix) is $T=(t_{nk})$ such that, $t_{nk}=\left\{ \begin{array}{c} \neq 0 \\ 0 \\ , k>n \end{array} \right\}$., $(n,k\in\mathbb{N})$. In this definition one can get diagonal matrix, although this is the general version. The transformation T is one to one and the inverse of T is again a triangular which has unique inverse S, that is, x=T(S(x))=S(T(x)).

These spaces are BK spaces with the norm, $||x||_{a_{\infty}^r} = ||A^r x||_{\infty}$, i.e.,

$$\|x\|_{a_{\infty}^{r}} = \sup_{n} \left| \frac{1}{n+1} \sum_{k=0}^{n} (1+r^{k}) x_{k} \right|.$$

Now we shall define some spaces which may be used in $\beta-$ and $\gamma-$ type duality of a sequence space. These are,

$$a_s^r = \left\{ x = (x_j) \in w : \lim_{n \to \infty} \frac{1}{n+1} \sum_{j=0}^n \sum_{k=j}^n (1+r^k) x_j \text{ exists} \right\}$$

$$= \left\{ x = (x_j) \in w : \left(\sum_{j=0}^k x_j \right)_{k \in \mathbb{N}} \in a_c^r \right\}$$

and

$$a_b^r = \left\{ x = (x_j) \in w : \sup_n \left| \frac{1}{n+1} \sum_{j=0}^n \sum_{k=j}^n (1+r^k) x_j \right| < \infty \right\}$$

$$= \left\{ x = (x_j) \in w : \left(\sum_{j=0}^k x_j \right)_{k \in \mathbb{N}} \in a_\infty^r \right\}$$

which are BK spaces with the norm, $||x||_{a_b^r} = ||x||_{a_s^r} = ||A^r x||_{bs}$, i.e.,

$$\|x\|_{a_b^r} = \sup_n \left| \frac{1}{n+1} \sum_{j=0}^n \sum_{k=j}^n (1+r^k) x_j \right|.$$

Parallelly to these spaces let us define a_s^r and a_b^r duality of a sequence space λ as following,

$$\lambda^{a_s^r} = \left\{ (x_j) \in w : \lim_{n \to \infty} \frac{1}{n+1} \sum_{j=0}^n \sum_{k=j}^n (1+r^k) x_j y_j \text{ exists, } \forall (y_j) \in \lambda \right\}$$
$$= \left\{ x \in w : xy \in a_s^r, \ \forall y \in \lambda \right\}$$

and

$$\lambda^{a_b^r} = \left\{ (x_j) \in w : \sup_n \left| \frac{1}{n+1} \sum_{j=0}^n \sum_{k=j}^n (1+r^k) x_j y_j \right| < \infty, \ \forall (y_j) \in \lambda \right\}$$
$$= \left\{ x \in w : xy \in a_b^r, \ \forall y \in \lambda \right\},$$

respectively. One can see that, $\phi \subset \lambda^{a_s^r} \subset \lambda^{a_b^r}$ and $\mu^{\eta} \subset \lambda^{\eta}$, when $\lambda \subset \mu$ and for every sequence space λ we have $\lambda^{\eta} = \lambda^{\eta\eta\eta}$ and $\lambda \subset \lambda^{\eta\eta}$, where η is one of the duals a_s^r or a_b^r . If $\lambda^{\eta\eta} = \lambda$ then λ is called η —space.

Now, we introduce a new section for a sequence x which is thought with A^r method, then n^{th} section with A^r of x is

$$A^{r^n} \cdot x = x^{[n]_{A^r}} = \frac{1}{n+1} \sum_{k=0}^n (1+r^k) P^k x$$
$$= \frac{1}{n+1} \sum_{k=0}^n (1+r^k) x^{[k]}$$

where, $(P^k x = \sum_{j=0}^k x_j \delta^j)$ and $A^{r^n} = \frac{1}{n+1} \sum_{k=0}^n (1+r^k) P^k$ is the A^{r^n} section operator. The set $\{A^{r^n} \cdot x\} = \{x^{[n]_{A^r}}\}$ of x is called set of A^r sections and shown by $A^r \cdot x$.

A sequence x in any K space $\lambda \supset \phi$ has A^rK property if $\frac{1}{n+1} \sum_{k=0}^n (1+r^k) x^{[k]} \to x$ in λ and we say λ is an A^rK - space if all elements of λ have this property. Similarly we can define the properties, SA^rK , FA^rK and A^rB . We shall use $\{x:X\}$ for the set of elements x possessing the property X. So,

$$A^{r}S_{\lambda} = \left\{ x \in \lambda \middle| x = \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) x_{j} \delta^{j} \right\}$$

$$= \left\{ x \in \lambda \middle| A^{r}K \right\},$$

$$A^{r}W_{\lambda} = \left\{ x \in \lambda \middle| \frac{1}{n+1} \sum_{k=0}^{n} (1+r^{k}) x^{[k]} \rightharpoonup x \text{ in } \lambda \right\} (\text{"} \rightharpoonup \text{" means } weakly)$$

$$= \left\{ x \in \lambda \middle| f(x) = \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) x_{j} f(\delta^{j}), \ \forall f \in \lambda' \right\}$$

$$= \left\{ x \in \lambda \middle| SA^{r}K \right\},$$

$$A^{r}F_{\lambda}^{+} = \left\{ x \in \omega \middle| \left(\frac{1}{n+1} \sum_{k=0}^{n} (1+r^{k}) x^{[k]} \right)_{n \in \mathbb{N}} \text{ weakly Cauchy in } \lambda \right\}$$

$$= \left\{ x \in \omega \middle| \left(x_{n} f(\delta^{n}) \right)_{n \in \mathbb{N}} \in a_{s}^{r}, \ \forall f \in \lambda' \right\},$$

$$A^{r}B_{\lambda}^{+} = \left\{ x \in \omega \middle| \left(\frac{1}{n+1} \sum_{k=0}^{n} (1+r^{k}) x^{[k]} \right)_{n \in \mathbb{N}} \text{ is bounded in } \lambda \right\}$$

$$= \left\{ x \in \omega \middle| \left(x_{n} f(\delta^{n}) \right)_{n \in \mathbb{N}} \in a_{b}^{r}, \ \forall f \in \lambda' \right\}.$$

One should keep in mind that, $A^rB_{\lambda} = A^rB_{\lambda}^+ \cap \lambda$ and $A^rF_{\lambda} = A^rF_{\lambda}^+ \cap \lambda$ which are the space of the sequences having A^rB and FA^rK properties, respectively. Now for example, if λ is an A^rB space (respectively A^rK space) then,

$$\sup_{n} \parallel x^{[n]_{A^r}} \parallel_{\lambda} < \infty, \text{ (respectively } \lim_{n} \parallel x^{[n]_{A^r}} - x \parallel_{\lambda} = 0).$$

2. Some General Properties of New Subspaces

We shall give some theorems related to these new distinguished subspaces of an FK space.

Theorem 2.1. Let $\lambda \supset \phi$ be an FK space. Then following is true,

$$\phi \subset A^r S_\lambda \subset A^r W_\lambda \subset A^r F_\lambda \subset A^r B_\lambda \subset \lambda \ and \ \phi \subset A^r S_\lambda \subset A^r W_\lambda \subset \overline{\phi}.$$

Proof. We know for every $\lambda \supset \phi$,

$$\phi \subset S_{\lambda} \subset W_{\lambda} \subset F_{\lambda} \subset B_{\lambda} \subset \lambda$$
.

So first inclusion can be omitted. Let us show $A^rW_{\lambda} \subset \overline{\phi}$. In ([18],3.0.1) by the Hahn - Banach theorem, f = 0 on ϕ that leads f(x) = 0 is also on A^rW_{λ} by the definition of A^rW_{λ} . So $x \in A^rW_{\lambda}$ then $x \in \overline{\phi}$.

Theorem 2.2. Distinguished subspaces of an FK space are monotone, i.e, let $\Lambda = A^rS$, A^rW , A^rF , A^rB , A^rF^+ , A^rB^+ , then $\lambda \subset \mu \Rightarrow \Lambda_\lambda \subset \Lambda_\mu$.

Proof. We know inclusion map is continuous. So, if $\lambda \subset \mu$, then for every $x \in A^r S_{\lambda}$,

$$\frac{1}{n+1} \sum_{k=0}^{n} (1+r^k) x^{[k]} \to x$$

is same for A^rS_{μ} . Similarly, we can have same discussion for A^rW . Now, let us take $x \in A^rF^+$ (or A^rB^+). Then, for every $f \in \lambda'$, $(x_nf(\delta^n)) \in a_s^r$ (or a_b^r). And if $g \in \mu'$, then for $g|_{\lambda} \in \lambda'$ we can have $(x_ng(\delta^n)) \in a_s^r$ (or a_b^r) ([18], 4.2.4). Similarly, we can have same discussion for A^rF , A^rB .

Theorem 2.3. Let $\lambda_i|_{i=1}^m \supset \phi$ be FK spaces with paranorms $p^{(i)}$ (i=1,2,...,m) and $\lambda = \sum_i^m \lambda_i$. If $\Lambda = A^r S, A^r W, A^r F, A^r B$, then $\sum_i^m \Lambda_{\lambda_i} \subseteq \Lambda_{\lambda}$.

Proof. Let $\Lambda = A^r S$ and $x^{(i)} \in A^r S_{\lambda_i}$ (i = 1, 2, ..., m). We have

$$p^{(1)}(x^{(1)^{[n]}A^r} - x^{(1)}) \to 0, ..., p^{(m)}(x^{(m)^{[n]}A^r} - x^{(m)}) \to 0, (n \to \infty),$$

i.e., $p^{(i)}(x^{(i)^{[n]}A^r} - x^{(i)}) \to 0|_{i=1}^m$, then

$$q\left[\left(\sum_{i}^{m} x^{(i)^{[n]_{A^{r}}}}\right) - \left(\sum_{i}^{m} x^{(i)}\right)\right] = q\left[\left(\lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) \sum_{i}^{m} x_{j}^{(i)} \delta^{j}\right) - \left(\sum_{i}^{m} x^{(i)}\right)\right]$$

$$= \inf_{x^{(i)} \in \lambda_{i}} \left\{p^{(1)} \left(x^{(1)^{[n]_{A^{r}}}} - x^{(1)}\right) + \dots + \right.$$

$$+ p^{(m)} \left(x^{(m)^{[n]_{A^{r}}}} - x^{(m)}\right)\right\} (i = 1, \dots, m)$$

$$\leq p^{(1)} \left(x^{(1)^{[n]_{A^{r}}}} - x^{(1)}\right) + \dots +$$

$$+ p^{(m)} \left(x^{(m)^{[n]_{A^{r}}}} - x^{(m)}\right)$$

$$\to 0$$

So, $\sum_{i=1}^{m} x_i \in A^r S_{\lambda}$.

Let $\Lambda = A^r W$, $x^{(i)} \in A^r W_{\lambda_i}$ (i = 1, 2, ..., m) and $f \in \lambda'$. We have $f|_{\lambda_i} \in \lambda'_i$ (i = 1, 2, ..., m). Since f is linear and continuous, then

$$f(\sum_{i}^{m} x^{(i)}) = \sum_{i}^{m} f(x^{(i)})$$

$$= \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) x_{j}^{(1)} f(\delta^{j}) + \dots + \dots +$$

$$+ \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) x_{j}^{(m)} f(\delta^{j})$$

$$= \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) (\sum_{i}^{m} x_{j}^{(i)}) f(\delta^{j}).$$

So, $\sum_{i=1}^{m} x^{(i)} \in A^r W_{\lambda}$. One can prove this theorem similarly for $\Lambda = A^r F, A^r B$. \square

Theorem 2.4. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of FK spaces and $\lambda = \bigcap_n \lambda_n$. If $\Lambda =$ $A^r S, A^r W, A^r F, A^r B$ then $\Lambda_{\lambda} = \bigcap_n \Lambda_{\lambda_n}$.

Proof. With Theorem 2.2, $\forall n \in \mathbb{N}, \Lambda_{\lambda} \subseteq \Lambda_{\lambda_n}$ and so for $\Lambda = A^r S, A^r W, A^r F, A^r B$ we have $\Lambda_{\lambda} \subseteq \bigcap_n \Lambda_{\lambda_n}$. Conversely, we shall show $\bigcap_n \Lambda_{\lambda_n} \subseteq \Lambda_{\lambda}$.

 $\Lambda = A^r S$; Let $x \in \bigcap_n A^r S_{\lambda_n}$. Then, $\forall n, k \in \mathbb{N}$, $q_{nk}(x^{[n]_{A^r}} - x) \to 0$ and q_{nk} are also seminorms for λ and so $x^{[n]_{A^r}} \to x$ is satisfied in λ which implies $x \in A^r S_{\lambda}$.

 $\Lambda = A^r W$; Let $x \in \bigcap_n A^r W_{\lambda_n}$ and $f \in \lambda'$. For each i = 1, 2, ..., m there exists $f_i \in (\lambda_i)'$ such that $f = \sum_i^m f_i$ and $|f_i| \le p_i$, ([16], 4.4 (problem 30), 11.3 (problem 26)). Since $f_i(x^{[n]_{A^r}}) \to \overline{f_i}(x)$ for $i = 1, 2, ..., m, f(x^{[n]_{A^r}}) \to f(x)$ is also satisfied for λ . Hence $x \in A^r W_{\lambda}$.

 $\Lambda = A^r F$; Let $x \in \bigcap_n A^r F_{\lambda_n}$ and $f \in \lambda'$. Therefore, there exists $a_i \in \lambda_i$ such that $f_i(x^{[n]_{A^r}}) \to a_i$ for i = 1, 2, ..., m. This also satisfied on λ , i.e., there exists a $b \in \lambda$ such that $f(x^{[n]_{A^r}}) \to b$. Hence, $x \in A^r F_{\lambda}$.

 $\Lambda = A^r B$; Let $x \in \bigcap_n A^r B_{\lambda_n}$. Then, for any fixed j, k, there exists positives M_{jk} such that $q_{jk}(x^{[n]_{A^r}}) \leq M_{jk}$. Hence $x \in A^r B_{\lambda}$.

So proof has been completed.

3.
$$a_s^r$$
- And a_b^r - Duality

In this section we will determine some relationship between the f-, a_s^r - and a_b^r duality of a sequence space λ , with its distinguished subspaces.

Theorem 3.1. Let $\lambda \supset \phi$ be an FK space. Then

$$A^r B_{\lambda}^+ = \lambda^{f a_b^r}$$
 and $A^r F_{\lambda}^+ = \lambda^{f a_s^r}$.

Proof. We know that $z \in A^r B_{\lambda}^+$ iff $(z_n f(\delta^n)) \in a_b^r$. And for all $f \in \lambda'$ we have $f(\delta^n) \in \lambda^f$, from the definition of a_b^r we can have $z \in \lambda^{fa_b^r}$.

We can similarly show $A^r F_{\lambda}^+ = \lambda^{fa_s^r}$. So we omit it.

Corollary 3.2. Let $\lambda \supset \phi$ be an FK space. Then the distinguished subspaces $A^r B_{\lambda}^+$ and $A^r F_{\lambda}^+$ are a_b^r - and a_s^r - spaces, respectively.

Theorem 3.3. Let $\lambda \supset \phi$ be an FK space and $\overline{\phi}$ is the closure of ϕ in λ . If any μ FK space which has $\overline{\phi} \subset \mu \subset \lambda$ then $A^r B_{\lambda}^+ = A^r B_{\mu}^+$ and $A^r F_{\lambda}^+ = A^r F_{\mu}^+$.

Proof. Since $(\overline{\phi})^f = \lambda^f$ for every K-space $\supset \phi$, we can have $(\overline{\phi})^f \subset \mu^f \subset \lambda^f = (\overline{\phi})^f$ and by apply a_b^r dual to the every side, we have desired result with Theorem 3.1. \square

Theorem 3.4. Let $\lambda \supset \phi$ be an FK space. Then, λ is an A^rB (resp. FA^rK) space iff $\lambda^f \subset \lambda^{a_b^r}$ (resp. $\lambda^{a_s^r}$).

Proof. $\{\Rightarrow\}$: One should keep in mind Theorem 3.1 and the properties of a_b^r —(resp. a_s^r —) duality of a sequence space with hypothesis of the theorem. So we have

$$\lambda^f \subset \lambda^{fa_b^r a_b^r} \subset \lambda^{a_b^r} \text{ (resp. } \lambda^f \subset \lambda^{fa_s^r a_s^r} \subset \lambda^{a_s^r})$$

from $\lambda \subset A^r B_{\lambda}^+ = \lambda^{f a_b^r}$ (resp. $\lambda \subset A^r F_{\lambda}^+ = \lambda^{f a_s^r}$).

 $\{\Leftarrow\}$: Suppose that $\lambda^f \subset \lambda^{a_b^r}$ (resp. $\lambda^f \subset \lambda^{a_s^r}$). From properties of $a_b^r - (resp. \ a_s^r -)$ duality, we have

$$\lambda \subset \lambda^{a_b^r a_b^r} \subset \lambda^{f a_b^r} = A^r B_{\lambda}^+ \text{ (resp. } \lambda \subset \lambda^{a_s^r a_s^r} \subset \lambda^{f a_s^r} = A^r F_{\lambda}^+ \text{)}$$

by applying $a_b^r - (resp. a_s^r)$ duality to both side of inclusion. Hence, λ is an A^rB (resp. FA^rK) space.

One can prove the necessity of this theorem by different way. That is, let $\lambda \supset \phi$ be an FA^rK space and $y \in \lambda^f$. Since λ is an FA^rK space, for all $x \in \lambda$ and for all $f \in \lambda'$, $\lim_{n \to 1} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^k) x_j f(\delta^j)$ exists so we have

$$\lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) x_{j} y_{j}$$

by taking $f(\delta_i) = y_i$. Therefore $y \in \lambda^{a_s^r}$.

Corollary 3.5. Let $\lambda \supset \phi$ be a $BK - A^rB$ space, then $\lambda^{a_s^r}$ is closed in λ^f , since $\lambda^{a_s^r}$ is closed in $\lambda^{a_b^r}$.

Theorem 3.6. For an FK space $\lambda \supset \phi$, the following are true.

(i) If λ is an AD space, then $\lambda^{a_s^r} = \lambda^{a_b^r}$.

(ii) $\lambda^{\beta} \subset \lambda^{\sigma} \subset \lambda^{a_s^r} \subset \lambda^{a_b^r} \subset \lambda^f$, where λ^{σ} is given in [13] as, $\lambda^{\sigma} = \{(x_j) \in w : \}$ $\lim_{n \to 1} \sum_{k=0}^{n} \sum_{j=0}^{k} x_j y_j \quad exists, \ \forall y \in \lambda \}.$

Proof. (i) Let us take $y \in \lambda^{a_b^r}$ and for all $x \in \lambda$,

$$f_n(x) = \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^k)x_j y_j$$

then $\{f_n\}$ is point-wise bounded and so equicontinuous, [18].

Now, for $m \leq n$,

$$\lim_{n} f_n(\delta^m) = y_m$$

and so $\phi \subset \{x : \lim_n f_n(x) \text{ exists }\}$. Therefore, via Convergence lemma, ([18], 1.0.5, 7.0.3) $\{x : \lim_n f_n(x) \text{ exists }\}$ is closed subspace of λ . Since λ is an AD space,

$$\lambda = \{x : \lim_{n} f_n(x) \text{ exists }\} = \overline{\phi}$$

and then for all $x \in \lambda \lim_n f_n(x)$ exists. So $y \in \lambda^{a_s^r}$. Anymore, $\lambda^{a_s^r} = \lambda^{a_b^r}$ since for all x, if $x \in \lambda^{a_s^r}$ then $x \in \lambda^{a_b^r}$.

(ii) From hypothesis $\overline{\phi} \subset \lambda$. Since $\overline{\phi}$ is an A^rK space so is an AD and FA^rK space, therefore

$$\lambda^{a_b^r} \subset (\overline{\phi})^{a_b^r} = (\overline{\phi})^{a_s^r} = (\overline{\phi})^f = \lambda^f$$

by ([18], 7.2.4), (i) and Teorem 3.4.

So proof has been completed.

We can have following result by reading Theorem 3.4 and 3.6

Corollary 3.7. Let $\lambda \supset \phi$ be an FK space. Then, λ is an A^rB (resp. FA^rK) space iff $\lambda^f = \lambda^{a_b^r}$ (resp. $\lambda^f = \lambda^{a_s^r}$).

Theorem 3.8. Let $\lambda \supset \phi$ be an FK space and $\overline{\phi} \subset A^r B_{\lambda}$. Then, $\overline{\phi}$ is an $A^r K$ space and the

$$A^r S_{\lambda} = A^r W_{\lambda} = \overline{\phi}.$$

Proof. Let λ be an A^rB space and define $f_n: \lambda \to \lambda$ by

$$f_n(x) = x - \frac{1}{n+1} \sum_{k=0}^{n} (1+r^k) x^{[k]}.$$

Then $\{f_n\}$ is point-wise bounded and so equicontinuous by ([18], 7.0.2). Since $f_n \to 0$ on ϕ then also $f_n \to 0$ on $\overline{\phi}$ by ([18], 7.0.3). So $\overline{\phi} \subset A^r S_{\lambda}$ and therefore

$$A^r S_{\lambda} = A^r W_{\lambda} = \overline{\phi}$$

by also keeping in mind Theorem 2.1.

Lemma 3.9. $\lambda \supset \phi$ be an FK space such that $\overline{\phi}$ has FA^rK . Then

$$A^r F_{\lambda}^+ = \overline{\phi}^{a_s^r a_s^r}.$$

Proof. We know from Theorem 3.1 $A^r F_{\lambda}^+ = \lambda^{f a_s^r}$. And we know $\lambda^f = (\overline{\phi})^f$ by ([18], 7.2.4). Now, with a_s^r - duality of both side then we have $\lambda^{f a_s^r} = (\overline{\phi})^{f a_s^r}$ by Corollary 3.7.

Corollary 3.10. Let $\lambda \supset \phi$ be an FK space. Then λ has FA^rK iff $\overline{\phi}$ has A^rK and $\lambda \subset \overline{\phi}$ $a_s^r a_s^r$.

Theorem 3.11. $\lambda \supset \phi$ be an FK space. Then the following statements are equivalent.

(i)
$$\lambda$$
 is an FA^rK space, (ii) $\lambda \subset A^rF_{\lambda}^{a_s^ra_s^r}$, (iii) $\lambda \subset A^rW_{\lambda}^{a_s^ra_s^r}$, (iv) $\lambda \subset A^rS_{\lambda}^{a_s^ra_s^r}$, (v) $\lambda^{a_s^r} = A^rF_{\lambda}^{a_s^r} = A^rW_{\lambda}^{a_s^r} = A^rS_{\lambda}^{a_s^r}$.

Proof. It is spontaneously seen that $(iv) \Rightarrow (iii) \Rightarrow (ii)$ holds by definition of each space.

 $(ii) \Rightarrow (i)$: Suppose that $\lambda \subset A^r F_{\lambda}^{a_s^r a_s^r}$. Then,

$$\lambda^f \subset \lambda^{fa_s^ra_s^r} = A^r F_\lambda^{+a_s^r} \subset A^r F_\lambda^{a_s^r} \subset \lambda^{a_s^r}$$

by applying f- duality to every side. Hence, we have desired result by Theorem 3.4. $(i) \Rightarrow (iv)$: Suppose that λ is an FA^rK space, then $\overline{\phi} = A^rS_{\lambda}$ by Corollary 3.10. $(iv) \Rightarrow (v)$: For every $\lambda \supset \phi$,

$$A^r S_{\lambda} \subset A^r W_{\lambda} \subset A^r F_{\lambda} \subset \lambda$$

holds by Theorem 2.1. We have

$$\lambda^{a_s^r} \subset A^r F_{\lambda}^{a_s^r} \subset A^r W_{\lambda}^{a_s^r} \subset A^r S_{\lambda}^{a_s^r}$$

by applying a_s^r - duality to every side. Finally,

$$\lambda \subset A^r S_{\lambda}^{a_s^r a_s^r}$$

by hypothesis, so we have $A^r S_{\lambda}^{a_s^r} \subset \lambda^{a_s^r}$ by applying a_s^r - duality to everyside. $(v) \Rightarrow (iv)$: Suppose that (v). One can easily have

$$A^r S_{\lambda}^{a_s^r a_s^r} = \lambda^{a_s^r a_s^r} \supset \lambda$$

by applying a_s^r duality.

So proof has been completed.

Theorem 3.12. $\lambda \supset \phi$ be an FK space. Then the following statements are equivalent

(i)
$$\lambda$$
 is an SA^rK , (ii) λ is an A^rK , (iii) $\lambda^{a_s^r} = \lambda'$, $(f \to f(\delta^k))$

Proof. Clearly $(ii) \Rightarrow (i)$. $(i) \Rightarrow (ii)$: Since λ has SA^rK , it has also A^rB and from Theorem 2.1 we have $A^rW_{\lambda} \subset \overline{\phi}$ so it has to have AD. So with Theorem 3.8, λ has A^rK .

 $(ii) \Rightarrow (iii)$: Since λ is an A^rK space, $A^rS_{\lambda} = \lambda$ is an AD space and so $\lambda^f = \lambda'$ ([5], (7.2.11)). Also $\lambda^f = \lambda^{a_s^r}$ by Corollary 3.7.

 $(iii) \Rightarrow (i)$: Suppose that (iii) holds. Then, there is $u \in \lambda^{a_s^r}$ such that

$$f(x) = \lim_{n} \frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=j}^{n} (1+r^{k}) u_{j} x_{j}$$

for all $f \in \lambda'$ and $x \in \lambda$. So $f(\delta^j) = u_j$ by Theorem 3.6, hence $x \in A^r W_{\lambda}$.

Theorem 3.13. Let $\lambda \supset \phi$ be an FK space. Then the following statements are equivalent.

(i)
$$A^rW_{\lambda}$$
 is closed in λ , (ii) $\overline{\phi} \subset A^rB_{\lambda}$, (iii) $\overline{\phi} \subset A^rF_{\lambda}$, (iv) $\overline{\phi} = A^rW_{\lambda}$, (v) $\overline{\phi} = A^rS_{\lambda}$, (vi) A^rS_{λ} is closed in λ .

Proof. $(iv) \Rightarrow (i)$ and $(v) \Rightarrow (vi)$ are clear. $(v) \Rightarrow (iv)$, $(iv) \Rightarrow (iii)$, $(v) \Rightarrow (ii)$ and $(iii) \Rightarrow (ii)$ are by Theorem 2.1. Since $\overline{\phi}$ is an A^rK space we have $\overline{\phi} \subset A^rS_{\lambda}$ and so $(ii) \Rightarrow (v)$. In the other hand, $(i) \Rightarrow (iv)$ and $(vi) \Rightarrow (v)$ from

$$\phi \subset A^r S_{\lambda} \subset A^r W_{\lambda} \subset \overline{\phi}.$$

So proof has been completed.

References

- [1] B. Altay and F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632–645.
- [2] C. Aydın and F. Başar, On the new sequence spaces which include the spaces c_0 and c, Hokkaido Math. J. 33(1)(2004), 1–16.
- [3] F. Başar, A note on the triangle limitation methods, First Üniv. Fen Müh. Bil. Dergisi, 5 (1) (1993), 113-117.
- [4] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
- [5] J. Boos, Classical and Modern Methods in Summability, Oxford University Press. New York, Oxford, 2000.
- [6] M. Buntinas, Convergent and bounded Cesàro sections in FK-spaces, Math. Zeitschr., 121 (1971), 191-200.
- [7] M. Buntinas, On sectionally dense summability fields, Math. Zeitschr., 132 (1973), 141-149.
- [8] M. Buntinas, On Toeplitz sections in sequence spaces, Math. Proc. Camb. Phil. Soc., 78 (1975), 451-460.
- [9] İ. Dağadur, On Some subspaces of an FK space, Mathematical Communications, 7 (2002), 15-20.
- [10] R. Devos, Combinations of distinguished subsets and conullity, Math. Zeitschr., 192 (1986), 447-451.
- [11] D. J. H. Garling, The β and γ -duality of sequence spaces, Proc. Camb. Phil. Soc., 63 (Jan. 1967), 963-981.
- [12] D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phil. Soc., 63 (1967), 997-1019.

- [13] G. Goes and S. Goes, Sequences of bounded variation and sequences of fourier coefficients. I, Math. Zeitschr., 118(1970), 93-102.
- [14] G. Goes, Summan von FK-räumen funktionale abschnittskonvergenz und umkehrsatz, Tohoku. Math. J., 26(1974), 487-504.
- [15] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187–196.
- [16] A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
- [17] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill, New York, 1978.
- [18] A. Wilansky, Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.
- [19] K. Zeller, Allgemeine eigenschaften von limitierungsverfahren, Math. Zeitschr., 53 (1951), 463-487.

Current address: *Yüzüncüyıl Üniversitesi, Eğitim Fakültesi, Matematik Bölümü, 65080/Van, Türkiye, **Yüzüncüyıl Üniversitesi, Fen Fakültesi, Matematik Bölümü, 65080/Van. E- mail: *tbilgin@yyu.edu.tr, **matfonks@gmail.com