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Abstract. In this paper, we observe some new spaces to obtain new β- and γ-
type duality of a sequence space λ, related to the some sequence spaces. Before
this we give some new distinguished subspaces of an FK space obtained by an
operator of Ayd�n and Ba³ar [2], which is stronger than common C1- Cesàro oper-

ator. We also give some structural theorems and inclusions for these distinguished
subspaces. Finally we prove some theorems related to the f -, ars- and a

r
b- duality of

a sequence space λ like Goes [14] and Buntinas [8]. These theorems are important
to decade the duality of a sequence space in summability theory and topological
sequence spaces theory.

1. Preliminaries, Background and Notation

The space of all complex- (or real-) valued sequences is given by ω = CN (or
RN) and any linear subspace λ ⊂ ω is called a sequence space, (usually we assume
that λ ⊃ φ where φ is the space of �nitely non-zero sequences spanned by (δk), the
sequence of kth position is 1 and all the others are 0).

Let (bn) ⊂ λ be a sequence in a normed sequence space (λ, ||.||λ). ∀x ∈ λ if
there exists a unique sequence (αn) ⊂ K such that limn ‖ x−

∑n
k=0 αkbk ‖= 0 then

(bn) is called the Schauder base of λ. Zeller introduced a notion -which is called
AK property for a sequence space- is the special case of (bn) = ((δn))n∈N in this
de�nition. It is clear example that the set {(δk)}k∈N is a Schauder base for the space
c0 and `p (1 ≤ p < ∞), which are the spaces of null sequences and p-absolutely
convergent series, respectively.

A K space λ is a subspace of ω on which coordinate functionals πk(x) = xk
are continuous. A complete linear metric K space is an FK space. It is named BK
if it is also normable.

Let each of λi|ni=1 be an FK space whose topologies are generated by paranorms
p(i) (i = 1, 2, ..., n), respectively. Then, λ =

∑n
i λi = {

∑n
i x

(i) : x(i) ∈ λi} is an FK
space with the unrestricted inductive limit topology. The paranorm of λ is given by
q(z) = inf{

∑n
i p

(i)(x(i))
∣∣x(i) ∈ λi, z =

∑n
i x

(i) ∈ X}. Let {λn}∞n=1 be a sequence of
FK spaces, each pn the paranorm of λn and (qnk)k be the seminorms of λn. Then
λ =

⋂∞
n λn is an FK space with paranorm q =

∑
n

pn
2n(1+pn)

and seminorms (qnk)k,

[10],[5]. These properties are also satis�ed in BK spaces.
Coordinate-wise product of x, y ∈ ω is given by xy =

{
xkyk

}
k∈N. If x ∈ ω

and λ ⊂ ω then xλ =
{
xy : y ∈ λ

}
. For sequence spaces λ, µ ⊂ ω, this product is
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given by λµ =
{
xy : x ∈ λ, y ∈ µ

}
. Smilarly, we notates the coordinate-wise sum

of x ∈ λ, y ∈ µ, x+y =
{
xk +yk

}
k∈N and λ, µ ⊂ ω, λ+µ =

{
x+y

∣∣ x ∈ λ, y ∈ µ}.
The β− and γ− duality of the sequence space λ ⊂ ω, also known as production

λcs and λbs can be generalised as λµ =
{
y ∈ ω|xy ∈ µ,∀x ∈ λ

}
for all sequence

spaces λ, µ ⊂ ω, where cs and bs are the spaces of convergent and bounded series,
respectively [11]. We notates as (λϑ)ς = λϑς for any ϑ−, ς− duals. It is easy to
see that both of these spaces are sequence spaces and there exists the inclusions
φ ⊂ λβ ⊂ λγ. If λ ⊂ µ then µζ ⊂ λζ , and for every sequence space λ we have
λζ = λζζζ and λ ⊂ λζζ , where ζ is one of the duals β− or γ−. If λζζ = λ then λ is
called ζ− space [11]. A sequence space λ is solid i� {(yk) ∈ ω| ∃(xk) ∈ λ,∀k ∈ N :
|yk| ≤ |xk|} ⊂ λ, that is, sequence space λ is solid provided that yx ∈ λ whenever
y ∈ `∞ and x ∈ λ, where `∞ is the space of all bounded complex sequences.

Let λ ⊃ φ be a K space then f - (or sequential) dual of λ is given by λf ={
(f(δk))k∈N| for some f ∈ λ′

}
.

Let λ ⊃ φ be an FK space. nthsection of a sequence x = (xk) ∈ λ is given

by x[n] =
n∑
k=1

xkδ
k. A sequence x in this space; if the set {x[n]}n∈N is bounded in λ

then has AB, if x[n] → x( or x[n] → x(weakly)) then has AK (or SAK ), ∀f ∈ λ′,
if the series

∑
k

xkf(δk) converges in λ then has FAK properties. One can give

the SAK property as, ∀f ∈ λ′, f(x) =
∑
k

xkf(δk). The spaces of the sequences

which have these properties in λ, shown by Bλ, Sλ,Wλ and Fλ, respectively. If
λ = Bλ (or Fλ,Wλ and Sλ) then we say λ is AB (or FAK, SAK and AK) space.
F+
λ = λfβ and B+

λ = λfγ, we say Λλ = Λ+
λ ∩ λ, for Λ = F,B. It is true for every

λ ⊃ φ, φ ⊂ Sλ ⊂ Wλ ⊂ Fλ ⊂ Bλ and Wλ ⊂ φ, where φ is closure of φ in λ [18].

If λ = φ then λ is called AD space. Via Hahn-Banach theorem, λf = φ
f
. Each λ

which has AK then has AD, that is, Sλ = λ ⇒ λ = φ, if we want to see "⇔" in
place of "⇒", the space λ = φ must also be AB.

Let λ and µ be any sequence spaces and A = (ank) be an in�nite matrix of real
numbers ank, where n, k ∈ N. Then, the matrix A de�nes a mapping from λ into
µ, if for every sequence x = (xk) ∈ λ the sequence Ax = ((Ax)n), the A-transform
of x, exists and is in µ; where (Ax)n =

∑
k ankxk. For simplicity in notation, here

and in what follows, the summation without limits runs from 0 to ∞. By (λ : µ),
we shall denote the class of all such matrices. The matrix domain λA is given by
λA =

{
x = (xk) ∈ w : Ax ∈ λ

}
, in sequel a convergence domain of an in�nite

matrix A is cA =
{
x = (xk) ∈ w : Ax ∈ c

}
, which also an FK space, where c is

the space of convergent sequences. A triangular (special name of triangle matrix) is

T = (tnk) such that, tnk =

{
6= 0 , k = n
0 , k > n

}
., (n, k ∈ N). In this de�nition one

can get diagonal matrix, although this is the general version. The transformation T
is one to one and the inverse of T is again a triangular which has unique inverse S,
that is, x = T (S(x)) = S(T (x)).

These spaces are BK spaces with the norm, ‖ x ‖ar∞=‖ Arx ‖∞, i.e.,

‖ x ‖ar∞= sup
n

∣∣∣∣ 1

n+ 1

n∑
k=0

(1 + rk)xk

∣∣∣∣.
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Now we shall de�ne some spaces which may be used in β− and γ- type duality
of a sequence space. These are,

ars =

{
x = (xj) ∈ w : lim

n→∞

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xj exists

}

=

{
x = (xj) ∈ w :

( k∑
j=0

xj
)
k∈N ∈ a

r
c

}
and

arb =

{
x = (xj) ∈ w : sup

n

∣∣ 1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xj

∣∣∣∣ <∞}

=

{
x = (xj) ∈ w :

( k∑
j=0

xj
)
k∈N ∈ a

r
∞

}
which are BK spaces with the norm, ‖ x ‖arb=‖ x ‖ars=‖ A

rx ‖bs, i.e.,

‖ x ‖arb= sup
n

∣∣∣∣ 1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xj

∣∣∣∣.
Parallelly to these spaces let us de�ne ars− and arb− duality of a sequence space

λ as following,

λa
r
s =

{
(xj) ∈ w : lim

n→∞

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjyj exists, ∀(yj) ∈ λ
}

=
{
x ∈ w : xy ∈ ars, ∀y ∈ λ

}
and

λa
r
b =

{
(xj) ∈ w : sup

n

∣∣∣∣ 1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjyj

∣∣∣∣ <∞, ∀(yj) ∈ λ}
=

{
x ∈ w : xy ∈ arb, ∀y ∈ λ

}
,

respectively. One can see that, φ ⊂ λa
r
s ⊂ λa

r
b and µη ⊂ λη, when λ ⊂ µ and for

every sequence space λ we have λη = ληηη and λ ⊂ ληη, where η is one of the duals
ars or a

r
b. If λ

ηη = λ then λ is called η− space.
Now, we introduce a new section for a sequence x which is thought with Ar

method, then nth section with Ar of x is

Ar
n · x = x[n]Ar =

1

n+ 1

n∑
k=0

(1 + rk)P kx

=
1

n+ 1

n∑
k=0

(1 + rk)x[k]

where, (P kx =
∑k

j=0 xjδ
j) and Ar

n
= 1

n+1

∑n
k=0(1 + rk)P k is the Ar

n
section oper-

ator. The set {Arn · x} = {x[n]Ar} of x is called set of Ar sections and shown by
Ar · x.

3



A sequence x in anyK space λ ⊃ φ has ArK property if 1
n+1

∑n
k=0(1+rk)x[k] →

x in λ and we say λ is an ArK- space if all elements of λ have this property. Similarly
we can de�ne the properties, SArK, FArK and ArB. We shall use {x : X} for the
set of elements x possessing the property X. So,

ArSλ =

{
x ∈ λ

∣∣x = lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjδ
j

}
=

{
x ∈ λ

∣∣ArK},
ArWλ =

{
x ∈ λ

∣∣ 1

n+ 1

n∑
k=0

(1 + rk)x[k] ⇀ x in λ

}
("⇀" means weakly)

=

{
x ∈ λ

∣∣f(x) = lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjf(δj), ∀f ∈ λ′
}

=

{
x ∈ λ

∣∣SArK},
ArF+

λ =

{
x ∈ ω

∣∣( 1

n+ 1

n∑
k=0

(1 + rk)x[k]
)
n∈N

weakly Cauchy in λ

}
=

{
x ∈ ω

∣∣(xnf(δn)
)
n∈N ∈ a

r
s, ∀f ∈ λ′

}
,

ArB+
λ =

{
x ∈ ω

∣∣( 1

n+ 1

n∑
k=0

(1 + rk)x[k]
)
n∈N

is bounded in λ

}
=

{
x ∈ ω

∣∣(xnf(δn)
)
n∈N ∈ a

r
b, ∀f ∈ λ′

}
.

One should keep in mind that, ArBλ = ArB+
λ ∩λ and ArFλ = ArF+

λ ∩λ which
are the space of the sequences having ArB and FArK properties, respectively. Now
for example, if λ is an ArB space (respectively ArK space) then,

sup
n
‖ x[n]Ar ‖λ<∞, (respectively lim

n
‖ x[n]Ar − x ‖λ= 0).

2. Some General Properties of New Subspaces

We shall give some theorems related to these new distinguished subspaces of
an FK space.

Theorem 2.1. Let λ ⊃ φ be an FK space. Then following is true,

φ ⊂ ArSλ ⊂ ArWλ ⊂ ArFλ ⊂ ArBλ ⊂ λ and φ ⊂ ArSλ ⊂ ArWλ ⊂ φ.

Proof. We know for every λ ⊃ φ,

φ ⊂ Sλ ⊂ Wλ ⊂ Fλ ⊂ Bλ ⊂ λ.

So �rst inclusion can be omitted. Let us show ArWλ ⊂ φ. In ([18],3.0.1) by the
Hahn - Banach theorem, f = 0 on φ that leads f(x) = 0 is also on ArWλ by the
de�nition of ArWλ. So x ∈ ArWλ then x ∈ φ. �
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Theorem 2.2. Distinguished subspaces of an FK space are monotone, i.e, let Λ =
ArS, ArW, ArF, ArB, ArF+, ArB+, then λ ⊂ µ⇒ Λλ ⊂ Λµ.

Proof. We know inclusion map is continuous. So, if λ ⊂ µ, then for every x ∈ ArSλ,

1

n+ 1

n∑
k=0

(1 + rk)x[k] → x

is same for ArSµ. Similarly, we can have same discussion for ArW . Now, let us take
x ∈ ArF+ (or ArB+). Then, for every f ∈ λ′,

(
xnf(δn)

)
∈ ars (or arb). And if g ∈ µ′,

then for g|λ ∈ λ′ we can have
(
xng(δn)

)
∈ ars (or arb) ([18], 4.2.4). Similarly, we can

have same discussion for ArF, ArB. �

Theorem 2.3. Let λi|mi=1 ⊃ φ be FK spaces with paranorms p(i) (i = 1, 2, ...,m)
and λ =

∑m
i λi. If Λ = ArS,ArW,ArF,ArB, then

∑m
i Λλi ⊆ Λλ.

Proof. Let Λ = ArS and x(i) ∈ ArSλi (i = 1, 2, ...,m). We have

p(1)(x(1)
[n]Ar − x(1))→ 0, ..., p(m)(x(m)[n]Ar − x(m))→ 0, (n→∞),

i.e., p(i)(x(i)
[n]Ar − x(i))→ 0

∣∣m
i=1

, then

q
[
(
m∑
i

x(i)
[n]Ar

)− (
m∑
i

x(i))
]

= q
[(

lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)
m∑
i

x
(i)
j δ

j
)
− (

m∑
i

x(i))
]

= inf
x(i)∈λi

{
p(1)(x(1)

[n]Ar − x(1)) + ...+

+ p(m)(x(m)[n]Ar − x(m))
}

(i = 1, ...,m)

≤ p(1)(x(1)
[n]Ar − x(1)) + ...+

+ p(m)(x(m)[n]Ar − x(m))

→ 0.

So,
∑m

i xi ∈ ArSλ.
Let Λ = ArW , x(i) ∈ ArWλi (i = 1, 2, ...,m) and f ∈ λ′. We have f |λi ∈

λ′i (i = 1, 2, ...,m). Since f is linear and continuous, then

f(
m∑
i

x(i)) =
m∑
i

f(x(i))

= lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)x
(1)
j f(δj) +

+ ...+

+ lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)x
(m)
j f(δj)

= lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)(
m∑
i

x
(i)
j )f(δj).

So,
∑m

i x
(i) ∈ ArWλ. One can prove this theorem similarly for Λ = ArF,ArB. �

5



Theorem 2.4. Let {λn}∞n=1 be a sequence of FK spaces and λ =
⋂
n λn. If Λ =

ArS,ArW,ArF,ArB then Λλ =
⋂
n Λλn.

Proof. With Theorem 2.2, ∀n ∈ N, Λλ ⊆ Λλn and so for Λ = ArS,ArW,ArF,ArB
we have Λλ ⊆

⋂
n Λλn . Conversely, we shall show

⋂
n Λλn ⊆ Λλ .

Λ = ArS; Let x ∈
⋂
nA

rSλn . Then, ∀n, k ∈ N, qnk(x[n]Ar − x)→ 0 and qnk are
also seminorms for λ and so x[n]Ar → x is satis�ed in λ which implies x ∈ ArSλ.

Λ = ArW ; Let x ∈
⋂
nA

rWλn and f ∈ λ′. For each i = 1, 2, ...,m there exists
fi ∈ (λi)

′ such that f =
∑m

i fi and |fi| ≤ pi, ([16], 4.4 (problem 30), 11.3 (problem
26)). Since fi(x

[n]Ar )→ fi(x) for i = 1, 2, ...,m, f(x[n]Ar )→ f(x) is also satis�ed for
λ. Hence x ∈ ArWλ.

Λ = ArF ; Let x ∈
⋂
nA

rFλn and f ∈ λ′. Therefore, there exists ai ∈ λi such
that fi(x

[n]Ar ) → ai for i = 1, 2, ...,m. This also satis�ed on λ, i.e., there exists a
b ∈ λ such that f(x[n]Ar )→ b. Hence, x ∈ ArFλ.

Λ = ArB; Let x ∈
⋂
nA

rBλn . Then, for any �xed j, k, there exists positives
Mjk such that qjk(x

[n]Ar ) ≤Mjk. Hence x ∈ ArBλ.
So proof has been completed. �

3. ars- And arb- Duality

In this section we will determine some relationship between the f -, ars- and a
r
b-

duality of a sequence space λ, with its distinguished subspaces.

Theorem 3.1. Let λ ⊃ φ be an FK space. Then

ArB+
λ = λfa

r
b and ArF+

λ = λfa
r
s .

Proof. We know that z ∈ ArB+
λ i�

(
znf(δn)

)
∈ arb. And for all f ∈ λ′ we have

f(δn) ∈ λf , from the de�nition of arb we can have z ∈ λfarb .
We can similarly show ArF+

λ = λfa
r
s . So we omit it. �

Corollary 3.2. Let λ ⊃ φ be an FK space. Then the distinguished subspaces ArB+
λ

and ArF+
λ are arb- and a

r
s- spaces, respectively.

Theorem 3.3. Let λ ⊃ φ be an FK space and φ is the closure of φ in λ. If any µ
FK space which has φ ⊂ µ ⊂ λ then ArB+

λ = ArB+
µ and ArF+

λ = ArF+
µ .

Proof. Since (φ)f = λf for every K- space ⊃ φ, we can have (φ)f ⊂ µf ⊂ λf = (φ)f

and by apply arb- dual to the every side, we have desired result with Theorem 3.1. �

Theorem 3.4. Let λ ⊃ φ be an FK space. Then, λ is an ArB (resp. FArK) space
i� λf ⊂ λa

r
b (resp. λa

r
s).

Proof. {⇒}: One should keep in mind Theorem 3.1 and the properties of arb−(resp. ars−)
duality of a sequence space with hypothesis of the theorem. So we have

λf ⊂ λfa
r
ba

r
b ⊂ λa

r
b (resp. λf ⊂ λfa

r
sa

r
s ⊂ λa

r
s)

from λ ⊂ ArB+
λ = λfa

r
b (resp. λ ⊂ ArF+

λ = λfa
r
s).

{⇐}: Suppose that λf ⊂ λa
r
b (resp. λf ⊂ λa

r
s). From properties of arb− (resp. ars−)

duality, we have

λ ⊂ λa
r
ba

r
b ⊂ λfa

r
b = ArB+

λ ( resp. λ ⊂ λa
r
sa

r
s ⊂ λfa

r
s = ArF+

λ )
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by applying arb − (resp. ars−) duality to both side of inclusion. Hence, λ is an ArB
(resp. FArK) space. �

One can prove the necessity of this theorem by di�erent way. That is, let λ ⊃ φ
be an FArK space and y ∈ λf . Since λ is an FArK space, for all x ∈ λ and for all
f ∈ λ′, limn

1
n+1

∑n
j=0

∑n
k=j(1 + rk)xjf(δj) exists so we have

lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjyj

by taking f(δj) = yj. Therefore y ∈ λa
r
s .

Corollary 3.5. Let λ ⊃ φ be a BK−ArB space, then λa
r
s is closed in λf , since λa

r
s

is closed in λa
r
b .

Theorem 3.6. For an FK space λ ⊃ φ, the following are true.
(i) If λ is an AD space, then λa

r
s = λa

r
b .

(ii) λβ ⊂ λσ ⊂ λa
r
s ⊂ λa

r
b ⊂ λf , where λσ is given in [13] as, λσ =

{
(xj) ∈ w :

limn
1

n+1

∑n
k=0

∑k
j=0 xjyj exists, ∀y ∈ λ

}
.

Proof. (i) Let us take y ∈ λarb and for all x ∈ λ,

fn(x) =
1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)xjyj

then {fn} is point-wise bounded and so equicontinuous, [18].
Now, for m ≤ n,

lim
n
fn(δm) = ym

and so φ ⊂ {x : limn fn(x) exists } . Therefore, via Convergence lemma, ([18], 1.0.5,
7.0.3) {x : limn fn(x) exists } is closed subspace of λ. Since λ is an AD space,

λ = {x : lim
n
fn(x) exists } = φ

and then for all x ∈ λ limn fn(x) exists. So y ∈ λars .
Anymore, λa

r
s = λa

r
b since for all x, if x ∈ λars then x ∈ λarb .

(ii) From hypothesis φ ⊂ λ. Since φ is an ArK space so is an AD and FArK
space, therefore

λa
r
b ⊂ (φ)a

r
b = (φ)a

r
s = (φ)f = λf

by ([18], 7.2.4), (i) and Teorem 3.4.
So proof has been completed. �

We can have following result by reading Theorem 3.4 and 3.6

Corollary 3.7. Let λ ⊃ φ be an FK space. Then, λ is an ArB (resp. FArK) space
i� λf = λa

r
b (resp. λf = λa

r
s).

Theorem 3.8. Let λ ⊃ φ be an FK space and φ ⊂ ArBλ. Then, φ is an ArK space
and the

ArSλ = ArWλ = φ.
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Proof. Let λ be an ArB space and de�ne fn : λ→ λ by

fn(x) = x− 1

n+ 1

n∑
k=0

(1 + rk)x[k].

Then {fn} is point-wise bounded and so equicontinuous by ([18], 7.0.2). Since
fn → 0 on φ then also fn → 0 on φ by ([18], 7.0.3). So φ ⊂ ArSλ and therefore

ArSλ = ArWλ = φ

by also keeping in mind Theorem 2.1. �

Lemma 3.9. λ ⊃ φ be an FK space such that φ has FArK. Then

ArF+
λ = φ arsa

r
s .

Proof. We know from Theorem 3.1 ArF+
λ = λfa

r
s . And we know λf = (φ)f by ([18],

7.2.4). Now, with ars- duality of both side then we have λfa
r
s = (φ)fa

r
s by Corollary

3.7. �

Corollary 3.10. Let λ ⊃ φ be an FK space. Then λ has FArK i� φ has ArK
and λ ⊂ φ arsa

r
s .

Theorem 3.11. λ ⊃ φ be an FK space. Then the following statements are equiva-
lent.

(i) λ is an FArK space , (ii) λ ⊂ ArF
arsa

r
s

λ , (iii) λ ⊂ ArW
arsa

r
s

λ ,

(iv) λ ⊂ ArS
arsa

r
s

λ , (v) λa
r
s = ArF

ars
λ = ArW

ars
λ = ArS

ars
λ .

Proof. It is spontaneously seen that (iv) ⇒ (iii) ⇒ (ii) holds by de�nition of each
space.
(ii)⇒ (i): Suppose that λ ⊂ ArF

arsa
r
s

λ . Then,

λf ⊂ λfa
r
sa

r
s = ArF

+ars
λ ⊂ ArF

ars
λ ⊂ λa

r
s

by applying f - duality to every side. Hence, we have desired result by Theorem 3.4.
(i)⇒ (iv): Suppose that λ is an FArK space, then φ = ArSλ by Corollary 3.10.
(iv)⇒ (v): For every λ ⊃ φ,

ArSλ ⊂ ArWλ ⊂ ArFλ ⊂ λ

holds by Theorem 2.1. We have

λa
r
s ⊂ ArF

ars
λ ⊂ ArW

ars
λ ⊂ ArS

ars
λ

by applying ars- duality to every side. Finally,

λ ⊂ ArS
arsa

r
s

λ

by hypothesis, so we have ArS
ars
λ ⊂ λa

r
s by applying ars- duality to everyside.

(v)⇒ (iv): Suppose that (v). One can easily have

ArS
arsa

r
s

λ = λa
r
sa

r
s ⊃ λ

by applying ars duality.
So proof has been completed. �
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Theorem 3.12. λ ⊃ φ be an FK space. Then the following statements are equiva-
lent.

(i) λ is an SArK, (ii) λ is an ArK, (iii) λa
r
s=̂λ′, (f → f(δk))

Proof. Clearly (ii) ⇒ (i). (i) ⇒ (ii): Since λ has SArK, it has also ArB and from
Theorem 2.1 we have ArWλ ⊂ φ so it has to have AD. So with Theorem 3.8, λ has
ArK.
(ii)⇒ (iii): Since λ is an ArK space, ArSλ = λ is an AD space and so λf = λ′ ([5],
(7.2.11)). Also λf = λa

r
s by Corollary 3.7.

(iii)⇒ (i): Suppose that (iii) holds. Then, there is u ∈ λars such that

f(x) = lim
n

1

n+ 1

n∑
j=0

n∑
k=j

(1 + rk)ujxj

for all f ∈ λ′ and x ∈ λ. So f(δj) = uj by Theorem 3.6, hence x ∈ ArWλ. �

Theorem 3.13. Let λ ⊃ φ be an FK space. Then the following statements are
equivalent.

(i) ArWλ is closed in λ, (ii) φ ⊂ ArBλ, (iii) φ ⊂ ArFλ,
(iv) φ = ArWλ, (v) φ = ArSλ, (vi) ArSλ is closed in λ.

Proof. (iv)⇒ (i) and (v)⇒ (vi) are clear. (v)⇒ (iv), (iv)⇒ (iii), (v)⇒ (ii) and
(iii)⇒ (ii) are by Theorem 2.1. Since φ is an ArK space we have φ ⊂ ArSλ and so
(ii)⇒ (v). In the other hand, (i)⇒ (iv) and (vi)⇒ (v) from

φ ⊂ ArSλ ⊂ ArWλ ⊂ φ.

So proof has been completed. �
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