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ON SOME DISTINGUISHED SUBSPACES AND RELATIONSHIP
BETWEEN DUALS
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ABSTRACT. In this paper, we observe some new spaces to obtain new (- and ~-
type duality of a sequence space A, related to the some sequence spaces. Before
this we give some new distinguished subspaces of an F'K space obtained by an
operator of Aydin and Basar [2], which is stronger than common C1- Cesdaro oper-
ator. We also give some structural theorems and inclusions for these distinguished
subspaces. Finally we prove some theorems related to the f-, a%- and a;- duality of
a sequence space A like Goes [14] and Buntinas [8]. These theorems are important
to decade the duality of a sequence space in summability theory and topological
sequence spaces theory.

1. PRELIMINARIES, BACKGROUND AND NOTATION

The space of all complex- (or real-) valued sequences is given by w = CY (or
RY) and any linear subspace A C w is called a sequence space, (usually we assume
that A\ D ¢ where ¢ is the space of finitely non-zero sequences spanned by (6%), the
sequence of kth position is 1 and all the others are 0).

Let (b,) C A be a sequence in a normed sequence space (A, [|.|[x). Vz € X if
there exists a unique sequence (o) C K such that lim,, || z — >"}_, auby |[|= 0 then
(b,) is called the Schauder base of \. Zeller introduced a notion -which is called
AK property for a sequence space- is the special case of (b,) = ((0"))nen in this
definition. Tt is clear example that the set {(6%)}ren is a Schauder base for the space
co and £, (1 < p < o00), which are the spaces of null sequences and p-absolutely
convergent series, respectively.

A K space X is a subspace of w on which coordinate functionals my(z) = xy
are continuous. A complete linear metric K space is an F'K space. It is named BK
if it is also normable.

Let each of \;|"_; be an F'K space whose topologies are generated by paranorms
pW (i =1,2,...,n), respectively. Then, A =>""\; = {> " 2@ : 20 € \;} is an FK
space with the unrestricted inductive limit topology. The paranorm of A is given by
q(z) = inf {37 pW(@) |z € N,z = 372 € X} Let {\,}52, be a sequence of
FK spaces, each p, the paranorm of A, and (g,x)r be the seminorms of \,,. Then
A=A, is an FK space with paranorm ¢ = W and seminorms (G )k,
[10],[5]. These properties are also satisfied in BK spaces.

Coordinate-wise product of z, y € w is given by xy = {xkyk}keN. fzrew

and A C w then x\ = {xy ty € )\}. For sequence spaces A, u C w, this product is
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given by Ay = { XYy 1 TEN YE ,u}. Smilarly, we notates the coordinate-wise sum
of zeX yemarty={tu},yand A\ pCw A\+pu={z+y|lzel yenu}

The f— and y— duality of the sequence space A C w, also known as production
A and A can be generalised as \* = { Yy € wlzy € u, Vo € )\} for all sequence
spaces A\, u C w, where cs and bs are the spaces of convergent and bounded series,
respectively [11]. We notates as (\)* = A\ for any J—, ¢— duals. Tt is easy to
see that both of these spaces are sequence spaces and there exists the inclusions
¢ C M C XN.If A C pthen u¢ C ), and for every sequence space A\ we have
AS = XS¢ and A C X%, where ( is one of the duals f— or y—. If A% = X then \ is
called (— space [11]. A sequence space A is solid iff {(y) € w| I(xx) € \,Vk € N :
lyk| < |zx|} C A, that is, sequence space A is solid provided that yz € A whenever
y € I, and x € A\, where £, is the space of all bounded complex sequences.

Let A D ¢ be a K space then f- (or sequential) dual of ) is given by A/ =
{(f(6%))ken| for some f € X'}.

Let A\ D ¢ be an FK space. n'section of a sequence x = (x;) € \ is given
by zl" = 37 2,0%. A sequence x in this space; if the set {z["}, oy is bounded in A

k=1
then has AB, if 2" — x( or 2" — x(weakly)) then has AK (or SAK), Vf € X,
if the series Y xyf(6%) converges in A then has FAK properties. One can give
k

the SAK property as, Vf € N, f(x) = > 2 f(6%). The spaces of the sequences

k
which have these properties in A\, shown by B,, S\, W) and F), respectively. If
A = B, (or F\,W, and S)) then we say A is AB (or FAK, SAK and AK) space.
FY = MP and BY = M7, wesay Ay = AT N\, for A = F, B. It is true for every
AD ¢, ¢ C Sy CWyCF\C Byand Wy C ¢, where ¢ is closure of ¢ in A [18].

If \ = ¢ then X is called AD space. Via Hahn-Banach theorem, A = af. Each A
which has AK then has AD, that is, Sy = A = X\ = ¢, if we want to see "<" in
place of "=", the space A = ¢ must also be AB.

Let X and 4 be any sequence spaces and A = (a,;) be an infinite matrix of real
numbers a,y, where n, k € N. Then, the matrix A defines a mapping from \ into
u, if for every sequence z = (xj) € A the sequence Az = ((Azx),), the A-transform
of x, exists and is in y; where (Ax), = >, auri. For simplicity in notation, here
and in what follows, the summation without limits runs from 0 to co. By (A : p),
we shall denote the class of all such matrices. The matriz domain A4 is given by
Ag = {x = (z) € w: Ax € )\}, in sequel a convergence domain of an infinite
matrix A is cq = {x = () € w: Az € c}, which also an F'K space, where c is
the space of convergent sequences. A triangular (special name of triangle matrix) is
T = (t,x) such that, t,, = { 7&00 : Z;Z
can get diagonal matrix, although this is the general version. The transformation 7'
is one to one and the inverse of 1" is again a triangular which has unique inverse .S,
that is, v = T'(S(z)) = S(T'(z)).

These spaces are BK spaces with the norm, || z || =|| A"7 ||, i.e.,

} ., (n,k € N). In this definition one

n

1
- 1 k

I [lag, = sup
n
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Now we shall define some spaces which may be used in §— and ~- type duality
of a sequence space. These are,

a;’ = {x:(xj)Ew nh_>n010n+122 1—|—r x] ex1sts}

Jj=0 k=j

Il
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|
8

<
m
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—
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m
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——

and

which are BK

ie.,

Hx||agzsup ZZ (1+7%)

JOk’J

Parallelly to these spaces let us define a}— and aj— duality of a sequence space
A as following,

= {(xﬂew ,}g{;nHZZ (1+7")zjy; exists, V<%>6A}

J=0 k=j
{me:xyEag, Vye)\}

and

T

A% = {(ZL‘])GIU sup

+1ZZ 1—1—7“ )2y,

7=0 k=3
— {xew:xyéag, VyGA},

< o0, Y(y;) € A}

respectively. One can see that, ¢ C A% C \% and p” C A\, when A\ C p and for
every sequence space A we have A7 = X" and A C A", where 7 is one of the duals
al or ay. If A" = X then A is called n— space.

Now, we introduce a new section for a sequence x which is thought with A"
method, then n'” section with A" of x is

n

r’ nlar 1
A" g = gltlar = n+1Z(1+Tk)Pk:C
k=0

n

1 kY ,.[K]
B n+12(1+7’ Jz

k=0
where, (PFr = Zj 02j07) and A = —= 370 (14 7F)P* is the A™" section oper-

ator. The set {A™ -z} = {247} of z is called set of A" sections and shown by
A"
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A sequence x in any K space A D ¢ has A" K property if n+r1 Zzzo(l—i-rk)x[k] —
xin X and we say A is an A" K- space if all elements of A have this property. Similarly
we can define the properties, SA"K, FA"K and A"B. We shall use {x : X} for the

set of elements x possessing the property X. So,

' 1 n n ]
A™S, = {x €Mz = h£n —] ZZ(l + r’f)xjdﬂ}

=0 k=j

n

AWy = Z(l + M)z —~ 2 in /\}("4" means weakly)

x € /\|f(x) = lirrlnnil jz%kz:;(l + M)z f(07), Vf € /\/}

ATFF =

1 n
T € w| ( E (14 rk)x[k]> weakly Cauchy in A }
neN

8
m
£
—~
8
3
=
(o9
S
=
3
m
Z
M
S
w3
<C
~
m
>
——

n

ATBf =

(1+ rk)m[k]> is bounded in A }

neN

= {x € w|(zaf(6")),cn € ab, Vf € X}.

One should keep in mind that, A”By = A"B N\ and A"F) = A"F,;" N\ which
are the space of the sequences having A”B and F A" K properties, respectively. Now
for example, if A is an A" B space (respectively A”K space) then,

sup || 247 |\ < oo, (respectively lim || 24" — 2 ||,= 0).

2. SOME GENERAL PROPERTIES OF NEW SUBSPACES

We shall give some theorems related to these new distinguished subspaces of
an F'K space.

Theorem 2.1. Let X D ¢ be an FK space. Then following is true,
¢ CA'S, C AW, CAF\CA™ByC\and ¢ C A™Sy C A"W, C ¢.
Proof. We know for every A D ¢,
pCSyCW,CF\,CB,CA

So first inclusion can be omitted. Let us show A"W, C é. In ([18],3.0.1) by the
Hahn - Banach theorem, f = 0 on ¢ that leads f(z) = 0 is also on A"W) by the

definition of A"W,. So x € A"W, then x € ¢. O
4
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Theorem 2.2. Distinguished subspaces of an FK space are monotone, i.e, let A =
A"S, ATW, A'F, A'B, ATF*, A"B", then A C p= A\ C A,.
Proof. We know inclusion map is continuous. So, if A C u, then for every z € A"S),

1
n+1

n

Z(l +rF)2l

k=0

is same for A"S,,. Similarly, we can have same discussion for A"W. Now, let us take
x € ATF* (or A"BY). Then, for every f € X, (2, f(6")) € al (or aj). And if g € 1/,
then for g[y € X' we can have (z,9(6")) € al (or aj) ([18], 4.2.4). Similarly, we can
have same discussion for A"F, A" B. O

Theorem 2.3. Let N[, D ¢ be FK spaces with paranorms p¥ (i = 1,2,...,m)
and A=Y "N If A=A"S,A"W, A"F, A" B, then > " Ay, C A,.

Proof. Let A = A”S and 2 € A"Sy, (i = 1,2,...,m). We have
pM (@O =20y 50, (M gy 50, (n — o0),

ie., p® (x(i)[n]Ar — @) — 0|:.il, then

(3o = (0] = al(limimg D50 3 ) - (D)
) 7 J=0 k=j % )
[n]ar
= i {pOEUT = W)+
+ M@ = g} (=1, m)
< pM(EM™MAT g0y 44
o pm) (AT _ ptm))
— 0.

SO7 Zzn x; € A”S,.
Let A = AW, 20 € AW, (i = 1,2,....,m) and f € X. We have f|, €
A (i=1,2,...,m). Since f is linear and continuous, then

FOZa) = 3 s

%

= hrrlnn_i_1 (L+r%)x; " f(67) +
J=0 k=j

+ .+

+ 11£Hn+1ZZ(1+T)xj f(67)
J=0 k=j

= i 23 @)
7=0 k=j i

SO @ € A"W,. One can prove this theorem similarly for A = A"F, A"B. O
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Theorem 2.4. Let {\,}22, be a sequence of FK spaces and X\ = (), A\n. If A =
ATS, ATI/V, ATF, A"B then A)\ = ﬂn A/\n.

Proof. With Theorem 2.2, Vn € N, Ay C A, and so for A = A"S, A"W, A"F, A" B
we have Ay C (), Ay,. Conversely, we shall show (1), Ay, € A, .

A= A"S; Let z € N, A"S,,. Then, Vn, k € N, g (24" —2) — 0 and g, are
also seminorms for A\ and so z!™M4" — z is satisfied in A which implies x € A" S,.

A=A"W; Let x € ), AW, and f € X. For each i = 1,2, ..., m there exists
fi € (\;) such that f =" f; and |f;| < p;, ([16], 4.4 (problem 30), 11.3 (problem
26)). Since fi(zlMar) — fi(z) for i = 1,2,...,m, f(xMa") — f(z) is also satisfied for
A. Hence x € A"W,.

A=A"F; Let x € (), A"F), and f € X. Therefore, there exists a; € \; such
that fi(zla7) — a; for i = 1,2,...,m. This also satisfied on ), i.e., there exists a
b € A such that f(z[M47) — b. Hence, z € A"F).

A = A"B; Let ¢ € (), A"By,. Then, for any fixed j, k, there exists positives
My, such that qjk(a:[”]“) < M. Hence z € A"B,.

So proof has been completed. Il

3. aj- AND aj- DUALITY

In this section we will determine some relationship between the f-, a- and aj-
duality of a sequence space A, with its distinguished subspaces.

Theorem 3.1. Let A\ D ¢ be an FK space. Then
A™Bf = N% and ATF) = M9,

Proof. We know that z € A"BY iff (z,f(6")) € aj. And for all f € X we have
f(6™) € M, from the definition of aj we can have z € A%,
We can similarly show A"Fy = A% So we omit it. O

Corollary 3.2. Let A D ¢ be an FK space. Then the distinguished subspaces A" By
and A"Fy are aj- and al- spaces, respectively.

Theorem 3.3. Let A D ¢ be an FK space and ¢ is the closure of ¢ in . If any u
FK space which has ¢ C u C X then A"BY = A'Bf and A"F\ = A"F}.

Proof. Since (¢)7 = M for every K- space D ¢, we can have (¢)f C u/ c M = (¢)/
and by apply a;- dual to the every side, we have desired result with Theorem 3.1. U

Theorem 3.4. Let A D ¢ be an FK space. Then, X is an A"B (resp. FA"K) space
iff M C A% (resp. \%).

Proof. {=}: One should keep in mind Theorem 3.1 and the properties of a; —(resp. a’,—)
duality of a sequence space with hypothesis of the theorem. So we have
Mo M%% A% (resp. M C M%% C \%)
from A C A"Bf = M (resp. A C A"F = M%),
{<}: Suppose that A C A% (resp. A/ C A\%). From properties of aj— (resp. a’—)
duality, we have

A C A% C A% = A"BY (resp. A C A% C M = ATFY)
6
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by applying aj — (resp. al—) duality to both side of inclusion. Hence, A is an A"B
(resp. FA"K) space. O

One can prove the necessity of this theorem by different way. That is, let A D ¢
be an FA"K space and y € M. Since ) is an FA"K space, for all z € X and for all
e N, limy, =5 370 (S0 (14 7%)z; f(67) exists so we have

j=0 k=j

by taking f(d;) = y;. Therefore y € \%.

Corollary 3.5. Let A\ D ¢ be a BK — A" B space, then \% is closed in N, since \%
is closed in \%.

Theorem 3.6. For an FK space A D ¢, the following are true.

(i) If X is an AD space, then \% = \%.

(i) N° C N7 C A% C % C N, where X7 is given in [13] as, A7 = {(z;) € w :
lim,, n+r1 Y oreo Z?:o xjy; ewists, Yy € A}.

Proof. (i) Let us take y € A and for all z € ),
1 n n
fulz) = > D (+ray,

n—+1 i

then {f,} is point-wise bounded and so equicontinuous, [18].
Now, for m < n,

lim f,(6™) = ym

and so ¢ C {z : lim, f,(z) exists } . Therefore, via Convergence lemma, ([18], 1.0.5,
7.0.3) {z : lim, f,(x) exists } is closed subspace of A. Since A is an AD space,

A= {z:lim f,(z) exists } = ¢

and then for all z € X lim,, f,(7) exists. So y € \%.
Anymore, \% = \% since for all z, if € A% then x € \% .

(4) From hypothesis ¢ C . Since ¢ is an A" K space so is an AD and FA"K
space, therefore
A% C(9)% = (9)™ = (9) = N
by (|18], 7.2.4), (i) and Teorem 3.4.
So proof has been completed. O

We can have following result by reading Theorem 3.4 and 3.6

Corollary 3.7. Let A D ¢ be an FK space. Then, X is an A"B (resp. FA"K) space
iff M= X% (resp. M = \%).

Theorem 3.8. Let A D ¢ be an FK space and ¢ C A"By. Then, ¢ is an A"K space
and the

ATSy = AW, = 6.
7
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Proof. Let X\ be an A" B space and define f,, : A — A by

1 n
1 (1+ T‘k)l’[k].
n 4+ o

fn(x) =T —

Then {f.} is point-wise bounded and so equicontinuous by ([18], 7.0.2). Since
fn — 0 on ¢ then also f, — 0 on ¢ by (|18], 7.0.3). So ¢ C A"S) and therefore

ATSy =AWy = ¢
by also keeping in mind Theorem 2.1. Il
Lemma 3.9. A D ¢ be an FK space such that ¢ has FA'K. Then
ATFF — G el
Proof. We know from Theorem 3.1 A"F)" = M. And we know M\ = (¢)7 by ([18],

7.2.4). Now, with a’- duality of both side then we have A% = (¢)/% by Corollary
3.7. ]

Corollary 3.10. Let A D ¢ be an FK space. Then X has FA"K iff ¢ has ATK
and X\ C ¢ %%,

Theorem 3.11. A\ D ¢ be an FK space. Then the following statements are equiva-
lent.

(i) X is an FA"K space , (1) A C ATF’/\‘“:“:7 (iii) A C ATWAGZG‘Z,
(iv) A C ATS,\ % () \% = ATF0 = AT, ™ = A7S, .

Proof. Tt is spontaneously seen that (iv) = (ii7) = (ii) holds by definition of each
space.
(1) = (i): Suppose that A C A"F,"*“. Then,

Mo Moas = ATEFS C ATFR A%

by applying f- duality to every side. Hence, we have desired result by Theorem 3.4.
(i) = (iv): Suppose that X is an F'A"K space, then ¢ = A"S) by Corollary 3.10.
(1v) = (v): For every A D ¢,

A"Sy, C AW, Cc A"F\, C A
holds by Theorem 2.1. We have
A C ATFS C ATWE C ATSS:
by applying a}- duality to every side. Finally,
A C AT
by hypothesis, so we have A”S}* C A% by applying a- duality to everyside.
(v) = (iv): Suppose that (v). One can easily have
ATSf\l‘:a: — A% 5 )

by applying a’, duality.
So proof has been completed. Il



Journal of Advanced Mathematics and Mathematics Education

Theorem 3.12. X\ D ¢ be an F'K space. Then the following statements are equiva-
lent.

(i) X is an SA'K, (i1) X is an ATK, (13) X=X, (f — f(6%))

Proof. Clearly (i) = (i). (i) = (i1): Since A has SA"K, it has also A”B and from
Theorem 2.1 we have AW, C ¢ so it has to have AD. So with Theorem 3.8, A has
A'K.

(4i) = (i4i): Since X is an A"K space, A”Sy = ) is an AD space and so A = X (5],
(7.2.11)). Also M = \% by Corollary 3.7.

(4ii) = (i): Suppose that (iii) holds. Then, there is u € A% such that

f(z) =lim L : ZZ(l + r*Vu

"Rt j=0 k=j
for all f € X and z € A\. So f(8?) = u; by Theorem 3.6, hence x € A"W,. d
Theorem 3.13. Let A\ D ¢ be an FK space. Then the following statements are

equivalent.
(1) A"W, is closed in A, (13) ¢ C A"By, (iii) ¢ C AFy,
(v) o = AW, (v) ¢p=A"S\, (vi) A"S) is closed in .

Proof. (iv) = (i) and (v) = (vi) are clear. (v) = (iv), (iv) = (ii7), (v) = (ii) and
(43i) = (i1) are by Theorem 2.1. Since ¢ is an A”K space we have ¢ C A"S) and so
(i4) = (v). In the other hand, (i) = (iv) and (vi) = (v) from

Qb C ATSA C ATW)\ - 5
So proof has been completed. O

REFERENCES

[1] B. Altay and F. Bagar, Certain topological properties and duals of the matriz domain of a
triangle matriz in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632—645.
[2] C. Aydin and F. Basar, On the new sequence spaces which include the spaces ¢y and ¢, Hokkaido
Math. J. 33(1)(2004), 1-16.
[3] F. Basar, A note on the triangle limitation methods, Firat Univ. Fen Miih. Bil. Dergisi, 5 (1)
(1993), 113-117.
[4] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul,
2012.
[5] J. Boos, Classical and Modern Methods in Summability, Oxford University Press. New York,
Oxford, 2000.
[6] M. Buntinas, Convergent and bounded Cesaro sections in FK-spaces, Math. Zeitschr., 121
(1971), 191-200.
[7] M. Buntinas, On sectionally dense summability fields, Math. Zeitschr., 132 (1973), 141-149.
[8] M. Buntinas, On Toeplitz sections in sequence spaces, Math. Proc. Camb. Phil. Soc., 78 (1975),
451-460.
[9] 1. Dagadur, On Some subspaces of an FK space, Mathematical Communications, 7 (2002),
15-20.
[10] R. Devos, Combinations of distinguished subsets and conullity, Math. Zeitschr., 192 (1986),
447-451.
[11] D. J. H. Garling, The - and ~y-duality of sequence spaces, Proc. Camb. Phil. Soc., 63 (Jan.
1967), 963-981.
[12] D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phil. Soc., 63 (1967), 997-1019.
9



Journal of Advanced Mathematics and Mathematics Education

[13] G. Goes and S. Goes, Sequences of bounded variation and sequences of fourier coefficients. I,
Math. Zeitschr.,118(1970), 93-102.
[14] G. Goes, Summan von FK-rdumen funktionale abschnittskonvergenz und umkehrsatz, Tohoku.
Math. J., 26(1974), 487-504.
[15] E. Malkowsky, Recent results in the theory of matriz transformations in sequence spaces, Mat.
Vesnik 49(1997), 187-196.
[16] A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
[17] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill, New York, 1978.
[18] A. Wilansky, Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.
[19] K. Zeller, Allgemeine eigenschaften von limitierungsverfahren, Math. Zeitschr., 53 (1951),
463-487.
Current address: *Yiiziinciiyll Universitesi, Egitim Fakiiltesi, Matematik Boliimii, 65080/ Van,
Tiirkiye, **Yiiziinciiyll Universitesi, Fen Fakiiltesi, Matematik Boliimii, 65080/Van. E- mail :
*tbilgin@yyu.edu.tr, **matfonks@gmail.com

10



