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Abstract 

Breast cancer is the second most common cancer among women after lung cancer. Early diagnosis of cancer 

can positively affect the recovery process from disease. Several machine learning-based approaches have been 

studied for cancer detection on histopathological images. In this study, identification of cancer type has been 

made using Gradient Boosting Machine (GBM), eXtreme Gradient Boost (XGBoost), and Light Gradient 

Boosting Machine (LightGBM) algorithms. The performances of these techniques have been measured on the 

Breast Cancer Wisconsin (Diagnostic) dataset. According to the results obtained, Gradient Boosting Machine 

(GBM) got the highest accuracy rate with 97.02% success. Although there is no pathological prior knowledge 

about the disease, high success has been achieved in diagnosing with the deep learning architectures used. 

Keywords: Breast cancer; eXtreme gradient boost;  gradient boosting machine;  light gradient boosting 

machine. 

1. Introduction 

Breast cancer is a widespread kind of cancer that is a dangerous type that affects women the most. The World 

Health Organization (WHO) reported that approximately two million women die from this disease cancer every 

year. Approximately 627,000 women died of breast cancer in 2018 [1]. Therefore, early detection studies are 

critical. 

Histopathological images of breast cancer are automatically categorized as benign or malignant cancer with 

the help of computer-aided diagnosis systems, and early treatment must be initiated as soon as possible. While 

detection of breast cancer, mammography can be applied by techniques like Magnetic Resonance Imaging (MRI), 

ultrasound, tomography, and a biopsy of the breast tissue are required for the definitive diagnosis [2][3]. By 

examining histological samples of cells or tissues taken from the body using the biopsy method under a 

microscope, pathologists try to make a definite diagnosis about the change in the breast [4]. They try to classify 

as benign, malignant, or normal according to diagnosis results. These samples are analyzed with different 

microscopic magnification rates. Since the examination of histopathological images is a troublesome duration, 

evaluation of these images with computer-aided methods will make a serious contribution to the correct diagnosis. 

The experience and attention of pathologists during the analysis of these images are essential for the correct 

diagnosis and diagnosis. Computer-based systems can minimize the wrong diagnoses decisions by being affected 

by negative factors such as fatigue and distraction that may occur in the daily lives of pathologists. Thus, it can 

enable experts to focalize on crucial cases to diagnose [5]. 

Many important studies have been carried out in this field using digital image processing techniques. 

Automatic classification of benign and malignant breast cancer types has become especially important. Various 

shallow machine learning algorithms such as Artificial Neural Networks (ANN), Random Forest (RF), Support 

Vector Machines SVM and Principal Component Analysis (PCA) have been used primarily for the diagnosis of 

breast cancer. 

Spanhol et al. published an open-source BreakHis data set containing 7,909 images obtained from 82 patients 

[6]. The authors proposed LeNet and AlexNet models for the classification of breast cancer images. In this study, 

the success of the AlexNet model in classifying histopathological images was reported to be better than the LeNet 

model. The dimensions of the images submitted to AlexNet are defined as 32 × 32 or 64 × 64 pixels. Simple 

fusion rules such as maximum, product, and some are used in the proposed models for comparison. The authors 

achieved the highest classification success of %85.6 ± 4.8 with the AlexNet model they proposed for dual breast 

cancer image classification. In 2017, Han et al. used the Class Structure-based Deep Convolutional Neural 

Network (CSDCNN) model [7]. Dimensions of the images given as an introduction to the CSDCNN model have 

been resized to be 256 × 256. Filters of 3 × 3, 5 × 5, or 7 × 7 are applied in the convolution layers. Two different 

ways have been tried in the training process. First, training of model on the BreakHis data set was made from 

scratch, but when it was seen that the poor result was obtained, the weights of the model trained on ImageNet 

with the transfer learning method were used as the second way. The proposed model has reached the highest 

performance of %96.9 ± 1.9 in the binary classification of images. In 2018, Wang et al. used an ensemble 
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algorithm based on a support vector machine (SVM) on images at different magnifications [8]. The recommended  

Weighted Area Under the Receiver Operating Characteristic Curve Ensemble (WAUCE) model decreased the 

variance by %97.89, whereas accuracy is increased by %33.34. Wang et al. won first place in the competition in 

Symposium on Biomedical Imaging (ISBI) challenge [9]. They achieved 0.925 area under the curve (AUC) for 

the goal of image categorization and a 0.7051 score for evaluating biopsy images. Bejnordi et al. applied machine 

learning solutions to get exceptional achievement than 11 participant pathologists in a general pathology 

simulation demo [10]. Yala et al. proposed several models like risk factor-based logistic regression model (RF-

LR), deep learning model (image only DL), and a hybrid DL model that used both traditional risk factors and 

mammograms [11]. In another study, Khan et al. proposed a fully connected dense architecture using pre-trained 

convolutional neural network frameworks for cancer type categorization with average pooling [12]. Filipczuk et 

al. achieved a performance of  %98 by applying four distinct classifiers trained with a 25-dimensional feature 

space to distinguish 737 breast cancer images as benign or malignant [13]. In 2016, Albarqouni et al. present an 

innovative conception as learning from crowds which uses data aggregation straightly in training operation of the 

convolutional neural networks by added crowdsourcing layer (AggNet) [14]. In a study done in 2019, three 

different convolutional neural networks (CNNs) of Inception V3, Inception-ResNet V2, and ResNet-101 

architectures were successfully achieved by Zhou et al. [15]. Terasa et al. made their categorization at the patient 

level using a model similar to AlexNet for classifying breast cancer images [16]. In this study, the maximum 

fusion method using different fusion techniques with an average recognition accuracy of %90 and %85.6 has been 

reported. In another study, %83.25 classification success was achieved at the patient level using CNN and 

multitasking CNN (MultiTask Cascaded Convolutional Networks, MTCNN) models [17]. In 2018, Alom et al. 

performed dual and multiple classifications at the patient and image level by the Inception Recurrent Residual 

Convolutional Neural Network (IRRCNN) model [18]. The proposed model has an architecture consisting of the 

combination of Inception-v4, ResNet, and Recurrent Convolutional Neural Network models. 128, 256, 512, and 

1024 feature maps were used in the blocks used for the construction of the model, respectively. The model includes 

approximately 9.3 million parameters. Images submitted to the model were considered as randomly cropped or 

non-overlapping patches. With the model used in this study, an average performance of %97 was achieved [19]. 

2. Dataset 

The Breast Cancer (Wisconsin) Diagnosis dataset [20] contains the diagnosis and a set of 30 features defining 

the specifics of the cell nucleus that exist in the digital appearance of a fine needle aspirate (FNA) of a breast 

mass. FNA is a distinguishing process utilize to examine lumps or tumors. In this approach, a slim (23–25 scale) 

perforated needle is injected into the subject for exemplification under a microscope (biopsy). FNA operations 

are harmless and riskless light surgical protocols.  

There are 569 samples, of which 212 of them are malignant, and 357 of them are benign. The percent of the 

malignant tumor is %37.3. The percent is curiously big. The dataset does not specify a general medical 

anatomization distribution. Instead, ten substantial features are measured for every cell: radius, texture, perimeter, 

area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension. 

Pearson Correlation or Pearson Moment Correlation (PPMC), or bivariate correlation, is the standard measure 

of correlation in statistics. It represents the linear conjunction among two samples. As the correlation coefficient 

approaches 1, it implies that for each positive increment in a parameter, there will be a positive increment in the 

other related parameter at a fixed rate. Zero means there is no positive or negative increase with any increase. 

These two are not related. The correlation coefficient -1 implies that for each positive increment in a parameter, 

there will be a positive decrement at a specified rate in the other variable. The correlation coefficient in absolute 

value gives us the strength of the relationship. The larger the number, the stronger the partnership. With Pearson 

correlation, only a linear relationship between two continuous variables can be tested (A relationship is linear only 

when a change in one variable is associated with a proportional change in the other variable). Pearson correlation 

The highest correlations are between perimeter_mean and radius_worst,  area_worst and radius_worst, 

perimeter_worst and radius_worst, perimeter_mean, area_worst, area_mean, radius_mean, texture_mean, and 

texture_worst. Pearson Correlation of features is shown in Figure 1. 
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Figure 1. Pearson correlation of features. 

 

 

These highly correlated features are represented in Figure 2 with the usage of boxplot2g, showing the scatter 

plot (in the two dimensions given by the selected features) for the clustered data (grouped by diagnosis), over 

which are superposed the elliptical-shaped boxes in an equivalent (but still enhanced) way a boxplot will visualize 

the same information for a single dimension. It is observed that some of the correlated pairs are showing a good 

separation as well between data with diagnosis B and data with diagnosis M. 

 

 
Figure 2. Highly correlated pairs. 
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Boxplots for some inverse correlated and low correlated pairs of features are shown in Figure 3 and Figure 4. 

It is observed that low correlated features that have in the same time a considerable overlap for the two  'M' and 

'B' groups (ex: 'fractal\_dimension\_worst' and 'area\_se') as well as low correlated features that have in the same 

time a good selectivity for 'M' and 'B' groups (ex: 'perimeter\_worst'and  'fractal\_dimension\_se'). 

 

Figure 

3. Inverse correlated pairs. 
 

 
Figure 4. Low correlated pairs. 
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3. Method 

3.1. Principal Components Analysis (PCA) transform 

Principal component analysis (PCA) is a numerical method that converts mutually related variables group into 

another group of variables that are not mutually related. These new variables, made up of eigenvectors, represent 

the original data differently. It is the mere of true eigenvector-based multivariate analysis. Most of the time, this 

work is seen as disclosing the inner composition of the data by revealing the variances in the data in the best way. 

If a multivariable dataset is considered as a coordinate system with one variable per axis, the principal component 

analysis provides the user with a low-dimensional shadow picture that contains the most informative view of the 

data at hand. PCA  moves data to a new coordinate system with a linear orthogonal transformation. Thus, the 

largest variance obtained from the initial data is the first coordinate and is considered the first fundamental 

component. It can be defined as the oldest statistical tool used to analyze multivariate databases and reduce large 

data to lower dimensions. 

PCA was first proposed by Pearson in 1901 [21], and the development of the theory was made by Hotelling in 

1933 [22]. It can be used to show the relationship, similarity, or differences of information in a multidimensional 

database. The biggest advantage of PCA is that once the model of the information in the database is defined, the 

data size is reduced and compressed, and data loss is minimized. This feature of PCA is also used in compressing 

pictures. In this way, the same picture can be obtained again without losing much information. Out of these 

specialties, PCA also has other advantages such as low sensitivity to noise, reduced memory and capacity needs, 

and more efficient operation in small-sized spaces. It is one of the most preferred methods in the field due to its 

ease of application based on Karhunen-Loeve (K-L) or Hotelling Transformation. In addition, PCA is a linear 

method that can be used to reduce redundancies based on the least mean square error rate with the linear 

transformation of the coordinates of the data. 

In this study, the data is projected in the plane of the two principal components. The direction of the features 

is represented in the same plane. Two ellipses are showing the 0.68 probability boundary for the distribution of 

the two groups of diagnosis, B (benign) and M (malignant). A circle superposed over the scatter plot data helps 

evaluate the relative ratio between the features in the most important principal components plane. The attributes 

with the most magnitudes or aligned with the governing principle component have the maximum variance. 

 

 
Figure 5. Principle component analysis weights. 

 

 

The first two Principal Components explain together a %63.3 from the variance as shown in Figure 6. 
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Figure 6. Data distribution in the plan of PC1 and PC2. 

 

The projection of the data in the {PC3, PC4} and {PC5, PC6} principal components planes is shown in Figure 

7.  Principal components PC3-PC6 are explaining together %25.5 variations. It is also observed that not only there 

is no significant alignment of a certain feature with one of the PC3:PC6 principal components but also in the 

planes {PC3, PC4} and {PC5, PC6} the B and M points are not separated in distinct clusters like it is the case in 

the {PC1, PC2} plane. 

 

 
Figure 7. Data distribution in the plan of PC3-PC4-PC5 and PC6. 
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3.2. Gradient Boosting Machine (GBM) 

Gradient Boosting Machine (GBM) was presented by Jerome Friedman in 2001 [23]. Other than this name, 

GBM is also referred to as MART (Multiple Additive Regression Trees) or GBRT (Gradient Boosting Regression 

Trees) in the literature. It constructs a forward stage-wise additive model by implementing gradient descent in 

function space. Cross-validation with five folds is used in the study. To find the best number of trees to use for 

the prediction for the test data, ‘gbm.perf` function is used  [24].  Mathematical implementation of boosting in 

gbm is explained below [25]:   

 

Initialize 𝑓(x) to be a constant with sampling rate p, 𝑓(x) = arg minρ ∑ 𝛹(𝑦𝑖, 𝑝)𝑁
𝑖=1                                  (1) 

For t in 1,..., T number of iterations do 

 

1. Compute the negative gradient as the working response 

 

𝑧𝑖 =  − 
δ

δf(𝑥𝑖)
 𝛹 (𝑦𝑖 , 𝑓(𝑥𝑖)) |  𝑓(𝑥𝑖) = �̂� (𝑥𝑖)                                            (2) 

 

2. Randomly select p × N cases from the dataset. 

3. Fit a regression tree with the depth of each tree K terminal nodes, g(x) = E(z|x). This tree is fit using 

only those randomly selected observations. 

4. Compute the optimal terminal node predictions, ρ1, . . . , ρk, as 

 

𝑝𝑘 = arg 𝑚𝑖𝑛𝜌 ∑ 𝛹(𝑦𝑖, 𝑓(𝑥𝑖) + 𝑝)𝑥𝑖∈𝑆𝑘
                                           (3) 

 

where Sk is the set of xs that define terminal node k. Again this step uses only the randomly selected 

observations. 

5. Update 𝑓(x)  with learning rate λ as 

                                                         𝑓(x) ← 𝑓(𝑥) +  λ𝑝𝑘(𝑥)
                                                            (4) 

where k(x) indicates the index of the terminal node into which an observation with features x would 

fall.  This function is used because it returns the optimal number of trees for prediction. 

 

GBM parameters used in the study are given in Table 1 and Figure 8. 

 
Table 1. Gradient Boosting Machine parameters. 

distribution bernoulli 

n.trees 500 

shrinkage 0.1 

n.minobsinnode 15 

cv.folds 5 

n.cores 1 

 

 
Figure 8. The number of trees in GBM. 
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3.3. eXtreme Gradient Boost (XGBoost) 

Extreme Gradient Boosting (XGBoost) is a machine learning algorithm that has become increasingly popular 

in both the data science and remote sensing field with its high classification performance and works based on 

gradient boosted decision trees [26]. XGBoost, one of the new generation community learning algorithms, 

increases the general accuracy (performance) of the model by preventing the problem of overfitting during the 

training process of the algorithm. The main reason underlying the success of this method is the purpose function 

it uses in the learning process. The objective function consists of the loss/loss function and the term regularization. 

The loss/loss function calculates the difference of each predicted value made by the model from its (predicted 

class) real value. The term regularization, on the other hand, controls the complexity of the model, and this 

eliminates the overfitting problem in the model [27][28]. The parameters determined within the scope of the study 

are given in Table 2. 
Table 2. XGBoost parameters. 

objective binary:logistic 

eval_metric AUC 

eta 0.012 

subsample 0.8 

max_depth 8 

colsample_bytree 

min_child_weight 

nfold 

nrounds 

nthread 

early_stopping_round 

0.9 

5 

5 

5000 

1 

100 

 

The most suitable parameter values (for the number of leaves and learning rate parameters) were found by the 

grid search algorithm. The most suitable parameters were searched between [100-1000] for the number of leaves 

and [0.1-1] for the learning rate. The grid search algorithm trains all combinations for the parameter pair (number 

of leaves and learning rate parameters) and calculates the model accuracy with the cross-validation technique. 

The parameter pair that gives the highest model accuracy is accepted as the most suitable parameter value. The 

binary logistic objective function is used for the process. The evaluation metric is chosen as AUC (area under the 

curve). Initial start is given by n = 0.012, subsample=0.8, max_depth=8, colsample_bytree=0.9 and 

min_child_weight=5. Model is trained using cross-validation with five folds. The number of rounds equal to 5000, 

with early stopping criteria for 100 steps, are used. Also, the frequency of printing partial is set for results every 

100 steps. The area under curve values in Figure 9. 

 

 
Figure 9. The area under curve values for XGBoost. 

3.4. Light Gradient Boosting Machines (LightGBM) 

Light gradient enhancement machines (LightGBM) are one of the next-generation community learning 

algorithms based on decision trees operating under the framework of gradient enhancement [29]. Developed by 

Microsoft in 2017, LightGBM has attracted the attention of researchers in both data science and remote sensing, 

especially with its outstanding achievements in machine learning competitions in recent years. As the method's 
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name suggests, it takes the prefix "Light" because it is an algorithm with high processing speed. A feature that 

distinguishes this method from other gradient enhancement algorithms is the growth strategy used in the training 

of decision trees. While LightGBM uses the vertical growth strategy (leaf growth), other gradient enhancement 

methods use the level-wise growth strategy. Another important detail that makes LightGBM exclusive and unique 

is the two new algorithms it contains and enables it to increase processing speed. These algorithms are gradient-

based one-sided sampling (Gradient-based One-Side Sampling, GOSS) and exclusive feature bundling (EFB) 

methods[30]. It uses the subsampled dataset that it generates from the data instead of using the entire data with 

gradient-based one-sided sampling. It also reduces transaction complexity by converting sparse features to more 

frequent/dense features with exclusive feature support. The parameters used in the classification process are 

shown in Table3. The selection of the parameters has been chosen in consideration of the suggestions on the 

"parameter setting" page on the main page of LightGBM. Light GBM grows trees vertically while another 

algorithm grows trees horizontally, meaning that Light GBM grows tree leaf-wise while another algorithm grows 

level-wise. LightGBM parameters are given in Table 3. 

 
Table 3. LightGBM parameters. 

params lightGBM.grid 

learning_rate AUC 

num_leaves 0.012 

num_threads 0.8 

nrounds 8 

early_stopping_rounds 

eval_freq 

eval 

nfold 

stratified 

0.9 

5 

 

5 

5000 

4. Results 

The confusion matrix table was used for performance measurements in this study, as is done in most studies. 

The data set is randomly divided into train (%70 of data = 398) and test parts (%30 of data = 171) at random. The 

train set is used for finding the optimal model parameters by cross-validation whereas the test set is used only to 

measure the performance of the model. Accuracy success is measured by the percentage of correctly classified 

data specimens. Table 4 shows the confusion matrix values for algorithms with indicating true and predicted 

values. 

 
Table 4. Confuison matrix values. 

 

 

Malignant 

 

GBM = 1 

XGBoost = 4 

LightGBM = 1 

 

 

GBM = 62  

XGBoost = 60 

 LightGBM = 56 

 

Benign 

GBM = 105 

XGBoost = 102 

LightGBM = 111 

GBM = 3 

XGBoost = 5 

LightGBM = 3 

  

Benign 

 

Malignant 

 

 

 

Receiver Operating Characteristic (ROC) is the ratio of True Positive Rate (TPR) and False Positive Rate 

(FPR) that is a metric by which we understand whether the models established to solve classification problems 

are working well. The Roc Curve (Curve) is the curve showing the values that FPR will take if TPR increases, ie 

1 convergence. Here, it is desired that the TPR converges to 1, but it is desired that the FPR remain low in addition 

to the situation where this TPR converges to 1. Area Under the Curve(AUC) is the area under the ROC curves. 

As this area approaches 1, the performance of the model increases. As shown in Table 5, GBM provided the most 

successful solution with 0.972. LightGBM had 0.970 and XGBoost had 0.963 AUC values. 
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Table 5. Area under curve (AUC) values. 

algorithm value 

Gradient Boosting Machine (GBM) 0.972 

eXtreme Gradient Boost (XGBoost) 0.963 

Light Gradient Boosting Machine (LightGBM) 0.970 

5. Conclusion 

In this study, the evaluation of pathology images with deep learning architectures is presented. Gradient 

Boosting Machine (GBM), eXtreme Gradient Boost (XGBoost), and Light Gradient Boosting Machine 

(LightGBM) have been used because of their minimum classification error. With these architectures, it is possible 

to detect cancer cells without manually extracting any feature. A success rate of %97 ± 1 was determined. It has 

been observed that each deep learning model gives different success results. The highest success is obtained from  

GBM architecture. The hybrid boosting models can improve the classification performance, but training times 

and degrees of complexity will increase. Microscopic images of breast tissue must be interpreted in the diagnosis 

of breast cancer among women. A digital medical photography technique is used by doctors to detect breast 

cancer. However, for accurate detection, it should be sufficient in the field and spend more time. Computer-aided 

systems recommended assisting experts are extremely important. Various techniques have been developed for 

these systems to detect cancer and accurately display cancer cells on the monitor. Advances in digital imaging 

techniques have automated the diagnostic methods recommended in the pathology workflow. This situation 

accelerates the diagnosis of the disease. The superior success of deep learning on classification and feature 

extraction has also shown itself in this area. Comparison of classification methods for diagnosis has been 

proposed, which can be used in addition to the success of breast cancer diagnosis and the competence of the 

histopathologist. Continuation of such studies is of great importance and essential in the medical field. 
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