ANTIMICROBIAL AND ANTIVIRAL ACTIVITY OF SPIROINDOLINONES BEARING BENZOTHIAZOLE MOIETY

Ö. GÜZEL AKDEMİR¹, N. KARALI^{1*}, G. ERMUT¹, A. S. BİRTEKSÖZ TAN²

¹Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Beyazıt, Istanbul-TURKEY

²Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 34116, Beyazıt, Istanbul-TURKEY

SUMMARY

In this study, 5-chloro-1'-methyl-5'-nitro-3*H*-spiro[1,3-benzothiazole-2,3'-indole]-2'(1'*H*)-one (**3u**) was synthesized by the reaction of 1-methyl-5-nitro-1*H*-indole-2,3-dione (1m) with 2-amino-4-chlorothiophenol (2) in ethanol. The structure of **3u** was confirmed by the spectral (IR, ¹H NMR, HSOC-2D, LCMS-ESI) data and elemental analysis. The new spiroindolinone derivative **3u**, along with previously reported spiroindolinone derivatives 3a-t bearing benzothiazole or 5-chlorobenzothiazole moiety were tested for in vitro antimicrobial activity against selected strains. Among the tested compounds, 3i and 3l displayed the highest efficacy against Staphylococcus aureus and Candida albicans. Only 3b was found to be significantly active against Staphylococcus epidermidis. 3a-n were evaluated for in vitro antituberculosis activity against Mycobacterium tuberculosis H37Rv, but most of the tested compounds showed weakly antitubercular activity. All compounds were also evaluated against some DNA and RNA viruses in CRFK, HeLa and HEL cells. Cytotoxicities of the tested compounds were generally very high compared to standards.

*Correspondence: karalin@istanbul.edu.tr

ÖZET

Bu calismada 1-metil-5-nitro-1*H*-indol-2,3-dion (1m) ile 2-amino-4-klorotiyofenol (2)'ün etanollü ortamdaki reaksiyonundan 5-kloro-1'metil-5'-nitro-3*H*-spiro[1,3-benzotiyazol-2,3'-indol]-2'(1'*H*)-on (3u) bilesiği sentezlenmiştir. 3u nun yapısı spektral (IR, ¹H NMR, HSQC-2D. LCMS-ESI) bulgular ve elemental analiz ile kanıtlanmıştır. Yeni spiroindolinon türevi 3u, daha önce rapor edilen benzotiyazol ya da 5-klorobenzotivazol artığı tasıvan spiroindolinon türevleri **3a-t** ile birlikte secilen bakteri suslarına karsı in vitro antibakteriyel aktivite için test edilmiştir. Test edilen bilesikler içinde 3i ve 3l Staphylococcus aureus ve Candida albicans'a karşı en yüksek etkinlik göstermiştir. Yalnız 3b Staphylococcus epidermidis' e karsı önemli derecede etkili bulunmustur. 3a-n nin Mycobacterium tuberculosis H37Rv karşı in vitro antitüberküloz etkileri incelenmiştir; ama test edilen bileşiklerin çoğu zayıf antitüberküloz etki göstermistir. Tüm bilesikler CRFK, HeLa ve HEL hücrelerinde DNA ve RNA virüslerine karşı ayrıca test edilmiştir. Test edilen bileşiklerin sitotoksisiteleri standartlara kıyasla genellikle çok yüksektir.

Key words: Spiroindolinones, benzothiazole, antimicrobial activity, antituberculosis activity, antiviral activity.

INTRODUCTION

1*H*-Indole-2,3-dione (isatin) is a naturally occurring product found in several plant species, such as *Isatis tinctoria*, *Calanthe discolor* and *Couroupita guianensis*. In humans, it is found as a metabolic derivative of adrenaline (1). Isatin and its derivatives have wide usage in medicinal chemistry due to their easy availability and their usability as both electrophilic and nucleophilic agents. Ligands that are based on these scaffolds show a diverse spectrum of antimicrobial, antiviral and antitumor activities (2,3). Spiroindolinones are also alkaloids obtained from *Horsfieldia superba* (for example horsfiline) and *Eleagnus commutata* (for example elacomine). Similarly, these compounds are reported to exhibit broad spectrum chemotherapeutic properties (Figure 1) (3,4).

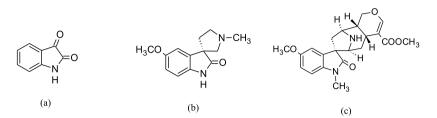


Figure 1. Chemical structures of isatin (a), (-)-horsfiline (b) and (elacomine (c)

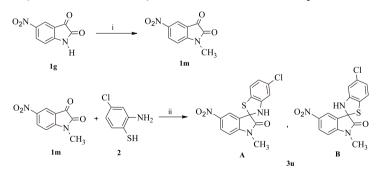
In our previous studies, several spiroindolinone derivatives **3a-t** incorporating benzothiazole or 5-chlorobenzothiazole nucleus were synthesized and evaluated for anticancer and antioxidant activities (5-7). In the current study, a new spiroindolinone compound **3u** was synthesized. Subsequently, previously reported compounds **3a-t** and compound **3u** were evaluated for antimicrobial and antiviral activities.

MATERIAL AND METHODS

General procedures

Melting points were estimated with a Buchi 540 melting point apparatus in open capillaries and were uncorrected. Elemental analyses were performed on a Thermo Finnigan Flash EA 1112 elemental analyzer. IR spectra were recorded on KBr discs, using a Perkin-Elmer Model 1600 FT-IR spectrometer. ¹H-NMR and HSQC spectra were obtained on VarianUNITY INOVA 500 spectrophotometers using DMSO- d_6 . Mass spectra were determined on Finnigan TM LCQ TM and AGILENT 1100 MSD instruments.

The synthesis of 1-methyl-5-nitro-1H-indole-2,3-dione (1m)

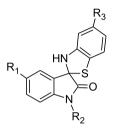

A suspension of 5-nitro-1*H*-indole-2,3-diones **1g** (5 mmol) and NaH (50% dispersion in mineral oil) (0.2 g) in anhydrous DMF (5 mL) was stirred for 30 min. at room temperature. After addition of iodomethane (15 mmol), the mixture was refluxed for 4 h. The product was poured onto ice and water, and subsequently filtered.

The synthesis of 5-chloro-1'-methyl-5'-nitro-3H-spiro[1,3-benzothia-zole-2,3'-indole]-2'(1'H)-one (3u)

To a solution of 1-methyl-5-nitro-1*H*-indole-2,3-dione **1m** (3.5 mmol) in ethanol (15 mL) was added 2-amino-4-chlorothiophenol 2 (3.5 mmol). The mixture was refluxed on a water bath for 4 h. The product formed after cooling was filtered and recrystallized from ethanol. Yield 43%; m.p. 122-126 °C; IR (KBr) cm⁻¹: v 3349 (NH), 1739 (C=O); ¹H-NMR (DMSO-*d*₄, 500 MHz) d (ppm): 3.20, 3.21 (3H, 2s, N-CH₂); 6.57, 6.69 (1H, 2dd, J=8.78, 1.95 Hz, benzothia. C₆-H); 6.63, 6.76 (1H, 2d, J=1.95 Hz, benzothia. C₄-H); 7.09, 7.11 (1H, 2d, J=8.29 Hz, benzothia. C₇-H); 7.29, 7.34 (1H, 2d, J=8.79 Hz, ind. C₇-H); 7.52 (1H, s, benzothia. NH); 8.22, 8.30 (1H, 2d, J=2.44 Hz, ind. C₄-H); 8.35, 8.53 (1H, 2dd, J= 8.78; 2.44 Hz, ind. C₆-H). HSQC-2D (DMSO-d₆/ TMS) d (ppm): 27.98, 27.99 (ind. 5-CH₂), 75.12 (spiro C), 109.45, 109.51 (benzothia. C_4), 109.48, 110.91 (ind. C_7), 118.96, 120.10 (benzothia. C_6), 121.47 (ind. C₄), 123.42 (benzothia. C₇), 123.94 (ind. C_{3a}), 128.76, 134.13 (ind. C₆), 131.37 (benzothia. C₅), 131.67 (benzothia. C_{7a}), 144.28 (ind. C₅), 149.07 (ind. C₇₂), 149.90 (benzothia. C₃₂), 175.83, 182.39 (ind. C=O). LCMS-ESI (+) m/z (%): 348, 349 (MH+; 31, 12); 346, 348 (67, 31); 345, 347 (100, 48); 344, 346 (75, 67). Analyses (%) Cald for C₁₅H₁₀ClN₃O₃S (347.78): C, 51.08; H, 2.90; N, 12.08. Found: C, 51.02; H, 2.86; N, 11.59.

RESULTS AND DISCUSSION

5-Chloro-1'-methyl-5'-nitro-3H-spiro[1,3-benzothiazole-2,3'indole]-2'(1'H)-one **3u** was synthesized by the reaction of 1-methyl-5-nitro-1H-indole-2,3-dione **1m** with 2-amino-4-chlorothiophenol **2** in ethanol (Scheme 1) (5-7). The structure of **3u** was confirmed by spectral (IR, ¹H NMR, HSQC-2D, LCMS-ESI) data and elemental analysis.


Scheme 1. Preparation of spiroindolinone derivative 3u. Reagents and conditions: i) NaH, anhyd.

DMF, stirred, 0.5h, CH₃I, reflux, ii) EtOH, reflux 4 h.

4

IR spectra of 3u showed absorption bands in the 3349 and 1739 cm⁻¹ regions resulting from the NH and C=O functions, respectively [1, 8]. ¹H NMR spectra of 3u displayed the NH proton of the benzothiazole (δ 7.52 ppm) ring as a separate singlet [9]. The indole NH resonances were not observed and thus the structure of **3u** was assigned to be the R₂-methylated derivative. The spectra of 3u supported this finding as it displayed the R_{a} -methyl resonances (δ 3.20 and 3.21 ppm). No duplication of signals were observed in the NMR spectra of **3a-t** whereas the resonances were observed as double signals in **3u**. Duplicate signals may originate from unique molecules, A and B, in the asymmetric unit. The benzothiazole rings in both molecules adopt an envelope conformation. The indolinone rings in both molecules are also not planar, with a twisted conformation. In the crystal structure, there are intermolecular N—H--O and N—H--S hydrogen-bonding interactions. The X-ray data of 3i was determined in order to confirm the assigned spiro structures (6). The formation of spiroindolinone is evident by the presence of a signal assigned to spiro C (δ 75.12 ppm) and the presence of signals attributed to the C=O function of indolinone (δ 175.83 and 182.39 ppm) in the HSQC spectra of **3u** [10]. In the mass spectra of **3u** showed MH⁺ and MH⁺+2 peaks which confirmed their molecular weights.

The antimicrobial activities of compound **3u**, along with previously reported compounds 3a-t were determined by the microbroth dilutions technique using the Clinical Laboratory Standards Institute (CLSI) recommendations against Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 4352, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 14153 and Candida albicans ATCC 10231. Ciprofloxazin, clotrimazole and flukonazol were used as the standards in the tests (Table 1) (11,12). None of the test compounds was active against E. coli ATCC 25922, K. pneumoniae ATCC 4352, P. mirabilis ATCC 14153 (>5000 μg/ ml), whereas compounds **3a-u** have considerable antimicrobial effect on S. aureus, S. epidermidis and C. albicans. Among the tested compounds, the most active compounds against S. aureus were R1-nonsubstituted 3i (4.9 μ g/ml) and R₁-fluor substituted **31** (4.9 μ g/ml). These compounds displayed the highest activity against C. albicans, too. The microbial inhibition concentrations (MIC) against C. albicans of both compounds were 15.6 µg/ml and 19.5 µg/ml, respectively. R_2 -nonsubstituted compounds, **3i** and **3l**, have a chlorine atom at the R_3 position. Only R_1 -chlorine substituted **3b** showed significantly activity against *S. epidermidis* (4.9 µg/ ml). The preliminary screening results indicated that the substitution of the chlorine at R_3 caused significantly increase in the activity against *C. albicans*, whereas none of the R_3 -chlorine substituted compounds was active against *S. epidermidis*. The activities of tested compounds were lower compared to the activities of the standard compounds.

Table 1. The microbial inhibition concentrations (MIC) of 3a-u against three
bacterial strains.

	MIC (µg/ml)					
Compound	\mathbf{R}_{1}	\mathbf{R}_{2}	R ₃	Staphylococcus aureus	Staphylococcus epidermidis	Candida albicans
3a	CH ₃	Н	Н	39	n.a.	n.a.
3b	Cl	Н	Н	9.8	4.9	n.a.
3c	NO ₂	Н	Н	19.5	39	n.a.
3d	CH,	CH,	Н	78	n.a.	n.a.
3e	CF ₃ O	CH,	Н	19.5	n.a.	n.a.
3f	CÌ	CH,	Н	39	625	n.a.
3g	Br	CH,	Н	n.a.	n.a.	n.a.
3h	NO ₂	CH,	Н	312	n.a.	n.a.
3i	H	H	Cl	4.9	n.a.	15.6
3j	CH,	Н	Cl	n.a.	n.a.	n.a
3k	CF ₃ O	H	Cl	n.a.	n.a.	n.a
31	F	H	Cl	4.9	n.a.	19.5
3m	Cl	H	Cl	n.a.	n.a.	n.a.
3n	Br	Н	Cl	19.5	n.a.	312
30	NO ₂	H	Cl	n.a.	n.a.	n.a.
3p	CH,	CH ₃	Cl	n.a.	n.a.	312
3q	CF ₃ O	CH,	Cl	n.a.	n.a.	78
3r	F	CH,	Cl	n.a.	n.a.	312
3s	Cl	CH,	Cl	n.a.	n.a.	312
3t	Br	CH,	Cl	n.a.	n.a.	312
3u	NO ₂	CH ₃	Cl	n.a.	n.a.	312
Ciprofloxacine				0.25	0.125	n.t.
Clotrimazole				n.t.	n.t.	4.9
Flukonazol				n.t.	n.t.	1

n.a.: not active (> 5000 μ g/ml); n.t.: not tested

Compounds **3a-u** were evaluated against *Mycobacterium tuberculosis* H37Rv (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA). The primary antituberculosis screening was performed in accordance with the protocol of the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) Southern Research Institute (13). Rifampin was used as the control drug in the tests. Compounds demonstrating a percent inhibition of bacterial growth of greater than or equal to 90% in the primary screen were retested against M. tuberculosis H37Rv, to determine the actual minimum inhibitory concentration (MIC) in the MABA. The MIC was defined as the lowest concentration effecting a reduction in fluorescence of 90%, relative to controls. This value was determined from the dose-response curve as the IC₀₀ using a curve fitting program. Any IC₉₀ value of $\leq 10 \ \mu g/mL$ was considered "Active" for antitubercular activity. Compounds active in the initial screen were tested for cytotoxicity (IC₅₀) in VERO cells. Cytotoxicity was determined from the dose-response curve as the IC_{50} using a curve fitting program. Concurrent with the determination of MICs, compounds were tested for cytotoxicity in VERO cells at concentrations 10x the MIC for *M. tuberculosis* H37Rv. Most of the tested compounds showed weakly antitubercular activity and cytotoxicities of the compounds were found to be very high (Table 2).

	H37Rv Data					
Compound	Assay	Activity	IС ₅₀ (µg/mL)	IC ₉₀ (μg/mL)		
3a	MABA	Weak Active	74.677	>100		
3b	MABA	Weak Active	36.269	77.361		
3c	MABA	Inactive	>100	>100		
3d	MABA	Weak Active	46.785	55.402		
3e	MABA	Weak Active	>100	>100		
3f	MABA	Weak Active	48.518	85.114		
3g	n.t.	n.t.	n.t.	n.t.		
3h	MABA	Inactive	>100	>100		
3i	MABA	Weak Active	27.58	95.652		
3j	n.t.	n.t.	n.t.	n.t.		
3k	MABA	Weak Active	13.676	21.592		
31	MABA	Weak Active	45.064	71.685		
3m	MABA	Weak Active	25.507	29.645		
3n	MABA	Weak Active	22.024	30.857		
30	n.t.	n.t.	n.t.	n.t.		
3p	n.t.	n.t.	n.t.	n.t.		
3q	n.t.	n.t.	n.t.	n.t.		
3r	n.t.	n.t.	n.t.	n.t.		
38	n.t.	n.t.	n.t.	n.t.		
3t	n.t.	n.t.	n.t.	n.t.		
3u	n.t.	n.t.	n.t.	n.t.		
Rifampin		1		0.125		

Table 2. Primary *in vitro* antimycobacterial activity of **3a-u** against*M. tuberculosis* H37Rv.

n.t.: not tested

The compounds **3a-u** were also evaluated against feline corona virus (FIPV), feline herpes virus (FHV) in Crandell-Rees feline kidney (CRFK). herpes simplex virus-1 (KOS)(HSV-1), herpes simplex virus-2 (G) (HSV-2), vaccinia virus, vesicular stomatitis virus (VSV), herpes simplex virus-1 TK KOS ACV in human embroyonic lung (HEL) and vesicular stomatitis virus in Henrietta Lacks (HeLa) cell cultures. Brivudin, ribavirin, cidofovir and ganciclovir were used as the standards in the tests (Table 3) (14). The most active compound was R_1 -bromo substituted **3n**. EC₅₀ values of **3n** were >0.16 µM for all tested virus strains (herpes simplex virus-1 (KOS) (HSV-1), herpes simplex virus-2 (G) (HSV-2), vaccinia virus, vesicular stomatitis virus (VSV) and herpes simplex virus-1 TK KOS ACV). R₁-trifluoromethoxy substituted 3k, R₁-chloro substituted 3m, R₁-nitro substituted 3o and R₁-trifluoromethoxy substituted 3q showed EC₅₀ values of >0.8 μ M for the same virus strains (Table 3). Most of these compounds (3k, 3m, 3n and 3o) were R₂- nonsubstituted compounds incorporating a chlorine atom at position R₃, whereas **3q** was R2- methyl substituted a compound. However, minimum cytotoxic concentrations (mM) of these compounds were very high compared to standards. **Table 3.** Antiviral and cytotoxic effects (EC₅₀) of **3a-u** against some RNA and DNA viruses.

	Minimum	EC ₅₀ (μM) ^b				
Compound cytotoxic concentration ^a (µM)	Herpes simplex virus-1 (KOS)	Herpes simplex virus-2 (G)	Vaccinia virus	Vesicular stomatitis virus	Herpes simplex virus-1 TK ⁻ KOS ACV	
3a	≥20	>20	>20	>20	>20	>20
3b	20	>4	>4	>4	>4	>4
3c	20	>4	>4	>4	>4	>4
3d	100	>20	>20	>20	>20	>20
3e	≥20	>20	>20	>20	>20	>20
3f	≥20	>20	>20	>20	>20	>20
3g	n.t.	n.t.	n.t.	n.t.	n.t.	n.t.
3h	≥20	>20	>20	>20	>20	>20
3i	≥20	>20	>20	>20	>20	>20
3j	100	>20	>20	>20	>20	>20
3k	4	>0.8	>0.8	>0.8	>0.8	>0.8
31	≥4	>4	>4	>4	>4	>4
3m	≥ 0.8	>0.8	>0.8	>0.8	>0.8	>0.8
3n	0.8	>0.16	>0.16	>0.16	>0.16	>0.16
30	4	>0.8	>0.8	>0.8	>0.8	>0.8
3p	n.t.	n.t.	n.t.	n.t.	n.t.	n.t.
3q	4	>0.8	>0.8	>0.8	>0.8	>0.8
3r	20	>4	>4	>4	>4	>4
38	20	>4	>4	>4	>4	>4
3t	20	>4	>4	>4	>4	>4
3u	20	>4	>4	>4	>4	>4
Brivudin	>250	0.04	50	0.8	>250	250
Ribavirin	>250	112	>250	50	250	250
Cidofovir	>250	1.2	0.4	5	>250	1
Ganciclovir	>100	0.03	0.1	>100	>100	4

n.t.: not tested; a: required to cause a microscopically detectable alteration of normal cell morphology; b: required to reduce virus-induced cytopathogenecity by 50 %

Against Feline corona virus (FIPV) and Feline herpes virus, compounds **3i**, **3n** and **3o** showed EC₅₀ values of higher than >0.8 μ M (Table 4). These compounds have a hydrogen atom at position R₂ and a chlorine atom at position R₃. The substitution of the chlorine group at R₃ usually increased the activities of compounds against Feline corona and Feline herpes viruses. However, cytotoxicities of all compounds were very high compared to standards. HHA lectin, UDA lectin and ganciclovir were used as the standards in the tests.

		EC ₅₀ (μM) ^b		
Compound	Minimum cytotoxic concentration ^a (µM)	Feline corona virus (FIPV)	Feline herpes virus	
3a	>100	>100	>100	
3b	44.0	>20	>20	
3c	27.8	>20	>20	
3d	54.9	>20	>20	
3e	56.5	>20	>20	
3f	45.1	>20	>20	
3g	n.t.	n.t.	n.t.	
3h	>100	>100	>100	
3i	2.3	>0.8	>0.8	
3j	>100	>100	>100	
3k	>100	>100	>100	
31	>100	>100	>100	
3m	>100	>100	>100	
3n	3.2	>0.8	>0.8	
30	2.1	>0.8	>0.8	
3р	n.t.	n.t.	n.t.	
3q	12	>4	>4	
3r	9.1	>4	>4	
3s	58	>20	>20	
3t	10	>4	>4	
3u	8.2	>4	>4	
HHA lectin	>100	8.9	5.9	
UDA lectin	>100	54.1	6.8	
Ganciclovir	>100	>100	5.2	

Table 4. Antiviral and cytotoxic effects of **3a-u** against Feline corona andFeline herpes viruses.

n.t.: not tested; a: required to cause a microscopically detectable alteration of normal cell morphology; b: required to reduce virus-induced cytopathogenecity by 50 %

Acknowledgements

We thank Prof. Lieve Naesens from the Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium for evalution of antiviral activity. We thank Dr. Joseph A. Maddry from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of Allergy and Infectious Diseases Southern Research Institute, Alabama, USA, for the evaluation of anti-TB activity. This work was supported by Istanbul University Scientific Research Projects. Project Number: BYP-1895.

REFERENCES

- 1. Da Silva, J.F.M., Garden, S.J., Pinto, A.C., The Chemistry of Isatins: a Review from 1975 to 1999, *J. Braz. Chem. Soc.* 12, 273-324 (2001).
- Vine, K.L., Matesic, L., Locke, J.M., Ranson, M., Sklopeta, D., Cytotoxic and anticancer activity of isatin and its derivatives: a comprehensive review from 2000-2008, *Anti-cancer Agents Med. Chem.*, 9, 397-414 (2009).
- 3. Singh, G.S., Desta, Z.Y., Isatin as privileged molecules in design and synthesis of spiro-fused cyclic frameworks, *Chem. Rev.*, 112, 6104-6155 (2012).
- Bhaskar, G., Arun, Y., Balachandran, C., Saikumar, C., Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity, *Eur. J. Med. Chem.*, 51, 79-91 (2012).
- Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S., Salman, A., Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. *Eur. J. Med. Chem.*, 45, 1068-1077 (2010).
- Akkurt, M., Karaca, S., Ermut, G., Karalı, N., Büyükgüngör, O., 5-Chlorobenzothiazole-2-spiro-3'-indolin-2'-one. *Acta Cryst* E66, 0399-0400 (2010).
- Görkem, E., Karalı N., Özsoy, N., Can, A., New spiroindolinones bearing 5-chlorobenzothiazole moiety, *J. Enz. Inh. Med. Chem.* (2013) (early online)

- 8. Naumov, P., Anastasova, F., Experimental and theoretical vibrational study of isatin, its 5-(NO₂, F, Cl, Br, I, CH₃) analogues and the isatinato anion, *Spectrochim. Acta Part A* 57, 469-481 (2001).
- Laatsch, H., Thomson, R.H., Cox, P.J., Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein, J. Chem. Soc. Perkin Trans II 1331-1339 (1984).
- Jayashankaran, J., Manian, R.D.R.S., Raghunathan, R., A facile synthesis of novel dispiroheterocycles through solvent-free microwave-assisted [3+2] cycloaddition of azomethine ylides, *Tetrahedron Lett.* 45, 7303-7305 (2004).
- Wayne, PA. Clinical and Laboratory Standarts Institute:Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that grow Aerobically. Seventh Edition, Approved Standart M7-A7, CLSI, USA. 2006.
- 12. Clinical ans Laboratory Standards Institute (CLSI): Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standart M27-A2, Wayne. CLSI, USA. 2002.
- 13. Collins, L.A., Franzblau, S.G. Antimicrob. Agents Chemother., 41, 1004-1009 (1997).
- Vanderlinden, E., Göktaş, F., Cesur, Z., Froeyen, M., Reed, M.L., Russel, C.J., Cesur, N., Naesens, L., Novel inhibitors of influenza virus fusion: Structure-activity relationship and interaction with the viral hemagglutinin. *J. Virol.*, 84, 4277-4288 (2010).