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Abstract 

 

A fractional Cattaneo model for studying the thermoelastic response for a finite thick circular plate with source 

function is considered. The thick plate is subjected to radiation-type boundary conditions on the upper and lower 

surfaces, and its curved surface is kept at zero temperature. The theory of integral transformations is used to solve the 

generalized fractional Cattaneo-type, classical Cattaneo-Vernotte and Fourier heat conduction model. The analytical 

expressions of displacement components using thermoelastic displacement potentials; and thermal-stress distribution 

are computed and depicted graphically. The effects of the fractional-order parameter and the relaxation time on the 

temperature fields and their thermal stresses are investigated. The findings show that the higher the fractional-order 

parameter, the higher the thermal response. The greater the relaxation period, the longer the heat flux propagates on 

thick structures.  

  

Keywords: Fractional Cattaneo-type equation; fractional calculus; non-Fourier heat conduction; thick plate; thermal 

stress; integral transform. 

 

1. Introduction 

It is required to preserve the structural elements from 

wear, corrosion, and delamination in high-temperature 

environments such as the cosmos, thermal power stations, 

and internal combustion engines. These kinds of 

environments have incredibly high temperatures. The 

development of functionally graded materials has been done 

to alleviate the effects of thermal and residual stresses. 

Functionally graded materials can avoid destruction because 

of the gradual change in the material properties. Recently, 

Haskul [1,2] obtained analytical solutions for the stresses and 

displacements of a functionally graded cylindrically curved 

beam subjected to a heat load in the radial direction using 

von Mises' yield criterion. Haskul et al. [3,4] investigated the 

elastic stress response of a thick-walled cylindrically curved 

panel subjected to a radial temperature gradient under the 

assumption of generalized plane strain according to both 

yield criteria, Tresca and von Mises. 

As everyone knows, the heat current is based on particles 

or quasi-particle motion from the macroscopic experience. 

The same reflects in Fourier's law within the framework of 

the classical parabolic heat conduction equation in which the 

velocity of heat transport is not limited. A modified Fourier's 

law fulfilled these conditions explicitly by considering the 

finite propagation velocity of heat in the conduction equation 

by the so-called hyperbolic heat conduction equation. 

Furthermore, technological development with advancements 

in Science helps to revolutionize by introducing the heat 

relaxation time to the non-equilibrium heat conduction 

mechanism [5-8]. Cattaneo [9] and Vernotte [10] multiplied 

the thermal relaxation time to a partial time derivative of the 

heat flux. This so-called Cattaneo-Vernotte hyperbolic heat 

conduction equation can predict the non-equilibrium heat 

conduction progression combined with the energy equation. 

Meanwhile, Compte and Metzler [11] proposed four possible 

generalizations of the Cattaneo telegraph equation. Though 

the theoretical modeling of Cattaneo-Vernotte equations 

overcomes the infinite heat propagation speed for the non-

equilibrium process, few nonconformities in the 

experimental results were noticed by Jiang et al. [12]. 

Povstenko [13] proposed a quasi-static uncoupled theory 

of thermoelasticity based on a fractional heat conduction 

equation. Povstenko [14] published highly cited literature 

reviews on fractional thermoelasticity. The above literature 

emphasizes that coupling between deformation and heat 

conduction in the heat equation into account does not 

complicate the Neumann boundary value problem in the 

quasi-static theory framework. In the framework of 

fractional thermoelasticity, Povstenko [15] also proposed the 

time-fractional Cattaneo heat conduction equation from the 

time-non-local generalization of the Fourier law using 

different kernels, i.e., Mittag-Leffler type, within the 

framework of corresponding thermal stress theory. Mishra 

and Rai [16] obtained the fractional single-phase-lagging 

heat conduction model by applying the fractional Taylor 

series formula to the single-phase-lagging heat conduction 

model. Few researchers [17-22] recently got the 

mathematical solutions of the fractional Cattaneo-Vernotte 

heat conduction problem with Neumann boundary 

conditions on a finite or semi-infinite medium. However, 

based on the Cattaneo-Vernotte fractional model, the heat 

conduction of the finite thickness along with the radiation 
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boundary condition has been less studied. Therefore, the 

analytical solution for the time-fractional heat conduction of 

Cattaneo in a finite thick plate under radiation conditions is 

studied in this paper. The heat conduction mechanism that 

differs from the fractional-order parameters is analyzed. The 

time-fractional thermoelastic analysis of the Cattaneo-type 

for a thick plate under radiation boundary conditions has not 

been investigated to the best of the author's knowledge. 

The outline of the remaining paper is as follows. Section 

2 presents the mathematical modeling of the generalized heat 

conduction equation in the framework of fractional 

Cattaneo-type, with its associated thermal stresses. Section 3 

obtains the solution of time-fractional Cattaneo analysis 

under radiation conditions. Section 4 gives deduction and 

validation of the results. Section 5 gives outcomes that are 

graphically shown. Finally, conclusive comments are 

summarized in Section 6.  

 

2. Mathematical Model 

2.1 Fractional Cattaneo-Type Heat Conduction  

 The classical Cattaneo model [23] as  

 


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

q
q k T

t
                                                       (1) 

 

By combining Eq. (1) with the continuity equation 
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leads to the hyperbolic heat conduction equation 
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in which q  is the heat flux vector,   is the relaxation time, 

k  is the heat conductivity of a solid,   is the thermal 

diffusivity coefficient, 
 
is the density, Cv is the calorific 

value,   is the gradient operator, T is the temperature and t
is the time, respectively.  

 The fractional generalization [24] of the classical Cattaneo 

model by introducing the fractional Taylor formula [21] as 
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where without losing the generality (1 )  p  appearing in 

the Taylor series is merged in 
p  terms,   is the gamma 

function, p is introduced to keep the dimension in order and 

/ p pt  is the fractional time derivative based on Caputo 

fractional definition [25]. For the limiting case of 0  (or 

p=0), Eq. (4) reduces to classical Fourier heat conduction and 

the standard Cattaneo heat conduction equation for p=1. The 

estimated ranges of relaxation time (in seconds) usually 

involve 11 14(10 10 )   for metals, 8 10(10 10 )   for gases, and 
2(10 10 ) for porous materials [26]. 

 Combining Eq. (4) with the law of conservation of energy 

shown in Eq. (2), leads to the fractional generalized Cattaneo 

equation as 
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Taking the Laplace transform [27-29] of Eq. (4), one obtains 
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in which the asterisk denotes the transform and s  is a 

transform parameter. Using the inversion theorem of the 

Laplace transform, one gets the solution of Eq. (6) as 

 

1

,
0

( )
( ) ( ) ( )

p
t

p

p pp p

k t
q t t E T d


  

 

  
     

 
    (7) 

 

where ( )E  is the generalized Mittag-Leffler functions. Here 

Eq. (7) with 
p   was obtained by Povstenko [13-15]. 

 

2.2 The Plate Under Radiation Boundary Conditions 

Figure 1 shows a schematic sketch of the studied 

thermoelasticity problem and the cylindrical coordinate axes 

r, θ, z.  

 

 
Figure 1 Plate configuration and heating conditions. 

 

It is used to describe a time-fractional thermoelastic 

analysis of the thick plate under radiation boundary 

conditions. The two-dimensional finite thick circular plate 

occupies the domain {( , ) [0, ] [ , ]}   D r z b h h  in the 

unstressed reference configuration. Equations governing the 

time-fractional Cattaneo-type heat conduction equation as 
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with zero initial condition 
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under the Dirichlet-type boundary condition on the curved 

surface 
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where ( , , )T T r z t  is the temperature in cylindrical 

coordinates, /( ) vk C   is the thermal diffusivity of the 

material, k  is the conductibility of the medium,   is its 

density, 
vC  is the calorific capacity, assumed to be constant, 

and ( , , )r z t is the source function having physical 

dimension o 2[ ] C/m , respectively.   

 Povstenko [30-32] has recently investigated the time-

fractional heat conduction equation with Caputo derivative 

under mathematical and physical Robin-type boundary 

conditions. Another equivalent name in use is radiation-type 

boundary condition [33-37], a specification of a linear 

combination of the values of a temperature function and its 

normal derivative on the domain's boundary and can be given 

as [ ( / )] ( , )   i i z h if f z A r t   [36]. Here i  and i

( 1,2)i   are the constant thermal parameters related to the 

conduction and convection coefficients whose value can be 

positive, negative, or zero acting on surfaces z h   and 

( 1,2)iA i   is temperature distributions of the surrounding 

media. As a particular case, these conditions of radiation-

type contour acting on surfaces  z h  and z h  can be 

taken as 
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where the radiation constant coefficients on the upper and 

lower surfaces are taken as 
1 2 1   , 

1 1 k , 
2 2 k

 
for a 

specified temperature on the boundary,   is the heat transfer 

coefficient having the physical dimension o[ ] C m , ( )  

is the Dirac delta function, 
0( ) ( ) ( )f t H t H t t    is the 

difference of two Heaviside functions, 
0r  and 

0t is a fixed 

value, ( )H  is the Heaviside function, and for the sake of 

brevity, we consider internal heat generation as 
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in which the coefficient 
0Q characterizes the stream of heat 

and has the physical dimension o 2

0[ ] C mQ . 

 

2.3 Thermoelastic Formulation 

 The Navier's equations [38] without the body forces can 

be expressed as  
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where the displacement components in radial and axial 

directions are 
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and the dilatation is 
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with 
t  as the thermal expansion coefficient,   represents 

Poisson's ratio, ( , , )L r z t  is Love's function [37], and 

( , , )r z t  is Goodier's displacement potential that must 

satisfy the equation [38] 
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and Love's function must satisfy the equation 
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The stress component [38] is 
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in which G is the shear modulus,   is Poisson's ratio, and 

the Laplacian operator as 
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The traction-free boundary conditions can be represented as 

follows: 

 

: 0,rr rzr b           (21) 

 

and the other boundary conditions on the lower and upper 

surfaces are set free. Eqs. (8) to (21) constitute the 

mathematical formulation of the problem. 

 

3. Solutions For The Plate Under Radiation Conditions 

3.1 Solution Of Time-Fractional Cattaneo Analysis 
 Firstly, introducing the Hankel integral transform [39] and 

its inversion theorem as 
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where n be the transform parameter and the kernel for the 

finite transform defined by 
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with 
n  are the positive roots of the characteristic equation 

0 ( ) 0J b . We recall another integral transform proposed 

by Marchi and Fasulo [36] that responds to the radiation 

boundary conditions given in Eq. (11) as 
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where the orthogonal function gives the nucleus as 
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and the eigenvalues a
m

 are the positive roots of the 

characteristic equation  
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 Following the rules defined in Eq. (22) and (24) to 

equation (8), one obtains 
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subjected to the transformed initial condition (9) as 
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Then, the transformed temperature of Eq. (27) in the 

Laplace domain is 
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Eq. (33) is expanded into the following form [21] 
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 Applying the convolution theorem, the inversion of 

Laplace transforms for Eq. (34) 
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 By adopting the discretization method [40], one obtains 
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where ( )

,

lE    is the generalized Mittag-Leffler functions [26] 
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 Applying the inversion theorems of transformation rules 

defined in Eqs. (22) and (24) on equation (35), one obtains 
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where  
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 Thus, Eq. (38) represents the temperature at every instant 

of the time-fractional Cattaneo heat conduction model and at 

all points of a thick circular plate when there are radiation-

type conditions. Substituting the expression (31) into Eq. 

(16), one obtains Goodier's potential as 
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 Similarly, Eq. (31) satisfying Eq. (17), one gets Love's 

function as 
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in which unknown arbitrary functions 
nA and Cn  are to be 

determined later.  Using Eqs. (21) and (22) into Eq. (14), one 

obtains 
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 The stress components were evaluated using Eqs. (19)-

(21) in (19) 
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Using Eqs. (21), (44) and (47), one obtains 
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where prime denotes the differentiation of the function. 

 

3.2 Solution Of The Classical Cattaneo-Vernotte Model 

 Taking 1p , Eq. (8) can be reduced to Cattaneo-Vernotte 

heat conduction model as 
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 Following the procedure in subsection 3.1, the solution of 

Eq. (49) can be obtained as 
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3.3 Solution Of The Fourier Heat Conduction Model 

 Taking 0  , Eq. (8) can be reduced to the classical 

Fourier conduction model as 
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 Following the procedure in subsection 3.1, the solution of 

Eq. (51) can be obtained as 
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4. Numerical Results, Discussion And Remarks 

 To interpret the numerical computations, we consider the 

material properties of Aluminum metal, which can be 

commonly used in both wrought and cast forms. In the 

following calculation, the physical parameters taken are b = 

1, h = 0.8, k1= k2= 0.86 and T0 = 150oC. The time, coordinate, 

displacement and stresses are normalized as follows 
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and 
0( , , )ik Q  is also taken into account when introducing 

nondimensional quantities for numerical calculation. The 

numerical results with various values of the fractional 

parameter p  and the relaxation time   are taken between 0 

to 10. The thermomechanical properties [34] of isotropic 

material at room temperature are considered in Table 1.  
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Table 1. Thermo-mechanical properties: Aluminum. 

Dimension Value 

Modulus of Elasticity, E 68 GPa 

Poisson's ratio 0.35 

Thermal Expansion Coeff., t 25.510-6/0C 

Thermal diffusivity, κ 84.1810-6 m2s−1 

Thermal conductivity, λ 204.2Wm−1K−1 

Shear modulus, G 27 GPa 

Density,  2,710 Kg/m3 

Specific heat capacity, Cv 921.096 J/kg-K 

 

Figures 2 and 3 represent the temperature distributions 

along radial and thickness directions for the thick plate with 

0 0.5r , 
0 0.5z , 

0 0.5t  and (0.1, 0.3,0.5,0.9,1.2)t . 

Figure 2 shows that the temperature decreases when the 

dimensionless radial position is less than 0.5 inspite of an 

increase in the time value, which might be due to internal 

energy availability. The temperature increases up to 0.8 and 

again attains zero at the right boundary. The small 

temperature bump represents the absorption of heat from the 

external source. However, the area integral of the 

temperature distribution along the thickness direction shows 

a grown temperature bump and follows the standard bell-

shaped curve irrespective of time variation. Figure 3 shows 

the dimensionless temperature profile for different values of 

the fractional-order p  when 0.6t  is fixed. It shows that 

the tensile force is high at the left boundary, which reduces 

as it approaches the right edge. The maximum tensile 

strength is central in the thickness direction, with both ends 

having high compressive force, as shown in Figure 5. It can 

be seen in Figures 6 and 7 that the temperature distribution 

on the heated surface increases as time proceeds. The 

increment in temperature trend with a rise in fractional-order 

parameter and relaxation time is seen in Figures 6 and 7. In 

Figures 8 and 9 show the results for the thermal radial stress 

rr  for the different parameter values of  p. Figure 8 shows 

that the maximum value of compressive stresses occurs up to 

0.46r  along the radial direction, and the tensile stress acts 

towards the end. Figure 9 shows that the tensile stresses are 

maximum at the central part of thickness which is later 

overlaid by the compressive stress at both ends along the 

thickness direction. Figures 10 through 13 show the effects 

of fractional order p on tangential stress and axial direction. 

Initially, high tensile stress is noticed on the left boundary 

along the radial direction, as shown in Figures 10 and 12, 

which further show damping sine wave-like characteristics 

by attaining the minimum value. Figures 11 and 13 show a 

bimodal distribution along the thickness direction. Figures 

14 and 15 display the dimensionless shear stress profile at 

different fractional-order parameters along the radial and 

thickness directions. Figure 14 shows that the maximum 

values of shear stresses occur on the plate's left boundary 

along the radial direction, which pretends as a damped 

sinusoidal function whose magnitude approaches zero as the 

radius position increases. In Figure 15, it is noted that the 

fluctuation occurs along the thickness direction. 

 

 
Figure 2. Temperature profile at a different time 

when 0.8p   along the  r   direction. 

 

 
Figure 3. Temperature profile at a different time 

when 0.8p   along the z  direction. 

 

 
Figure 4. Temperature variation at various p when 

0.6t   along the  r   direction. 

 

 
Figure 5. Temperature variation at various p when 

0.6t   along the  z   direction.  
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Figure 6. Temperature distribution along 

dimensionless time at various p  when 0.6  . 

 

 
Figure 7. Temperature distribution along the time at 

various   when 0.6p   is fixed. 

 

 
Figure 8. Radial stress profile at a different fractional 

order p along the r direction. 

 

 
Figure 9. Radial stress profile at a different fractional 

order p along the z direction. 

 

 
Figure 10. Effects of fractional order p on tangential 

stress along the r   direction. 

 

 
Figure 11. Effects of fractional order p on tangential 

stress along the z  direction. 

 

 
Figure 12. Dimensionless axial stress variation at a 

different p along the r  direction. 
 

 
Figure 13. Dimensionless axial stress variation at a 

different p along the z direction. 
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Figure 14. Shear stress distribution at different p 

along the r direction. 

 

 
Figure 15. Shear stress distribution at different p 

along the z direction. 

 

 
Figure 16. Comparing classical Cattaneo-Vernotte, 

fractional-order Cattaneo and Fourier models along 

the r direction. 

 

 
Figure 17. Comparing classical Cattaneo-Vernotte, 

fractional-order Cattaneo and Fourier models along 

the z direction. 

 

Figures 16 and 17 show the dimensionless temperature 

distribution profile compared to the classical Cattaneo-

Vernotte, fractional-order Cattaneo and Fourier model 

fractional-order parameters along the radial and thickness 

direction. Figure 16 shows that the temperature field's 

maximum values occur on the plate's left boundary, whose 

magnitude approaches zero along the radial direction. Figure 

17 shows that the temperature distribution along the 

thickness direction depicts a normal bell-shaped curve bump 

for all three model solutions. 
 

4. Deduction And Validation Of The Results 

This section refers to the deduction of the conclusions 

derived in the previous section regarding the classical 

uncoupled thermoelasticity model and the classical 

Cattaneo-Vernotte thermoelasticity theory for a 

homogeneous thick plate 

 

(i) Taking 1p   in Eq. (5), the equation results in the 

classical Cattaneo-Vernotte heat conduction model [24] 

as given in Eq. (49) with a solution in Eq. (50). 

(ii) Taking 0  in Eq. (5), the equation reduces to the 

classical Fourier heat conduction model [41] as given in 

Eq. (51) with a solution in Eq. (52). 

 

The key that was derived by Deshmukh et al. [41] for an 

isotropic, homogeneous, elastic hollow is compatible with 

the present thermoelastic solutions that were determined. In 

this piece of research, a fractional-order constitutive model 

and the classic continuity equation are brought together. 

Recent research [47,48] shows that it is possible for a non-

Fourier constitutive model and a non-trivial continuity 

equation based on the Boltzmann transport theory to coexist. 

The findings demonstrate that the constitutive model and the 

continuity equation are not independent of one another, 

which is something that this work does not take into 

consideration. 
 

5. Conclusion 

In this problem, the fractional Cattaneo model is derived 

for studying the thermoelastic response for a finite thick 

circular plate impacted by an assigned temperature. At the 

same time, heat supply appears as a source in the energy 

equation. The integral transformation theory is used to obtain 

the analytical solution for the fractional Cattaneo and 

classical Fourier models. The temperature distribution 

dependence and its thermoelastic response on the fractional-

order parameter and relaxation time are studied for different 

times and positions. It is observed that the fractional 

Cattaneo model gives continuous temperature and thermal 

stress variation irrespective of the fractional-order 

parameter. It is also detected that the heat flux flows from 

higher temperatures to lower for the fractional Cattaneo and 

classical Fourier models. Based on the findings of this study, 

we have come to the following conclusions:  

 

1. The fractional parameter does have a substantial impact on 

the various components. Somewhere along the line, the 

fractional parameter will cause the variations to move in 

the opposite direction. In contrast, in other places, it will 

cause the amplitude of the variation to shift. 

2. When looking at the stress component, the conductive 

temperature, the temperature change, and the cubic 

dilatation components, it is observed that the pattern of 

changes consists of rapid descents and jumps. 
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3. As the variations are studied, the thermal stress function, 

the stress components, and the smooth face either grow 

or decrease. 

4. In the future, it will be possible to build such a 

mathematical model for a transversely isotropic media, 

and then it will be possible to investigate the changes. 

5. Those who are engaged in studying thermodynamics and 

thermoelasticity will find this model to be of great 

assistance to them. 

6. The solution to the problem can be applied to a two-

dimensional problem with a dynamic response caused by 

a variety of thermal sources; this solution has a number 

of geophysical and industrial applications. 

 

Nomenclature: 

t  linear coefficient of thermal expansion (/0C) 

κ thermal diffusivity (m2s-1) 

k  thermal conductivity (W/m.K) 
 
 

Greek symbols 

μ     Lame's constants (GPa) 

ν     Poisson's ratio 

ρ     density (kg/m3) 

σij   components of stress tensor 
 
 

References: 

[1] M. Haskul, "Elastic state of functionally graded curved 

beam on the plane stress state subject to thermal load," 

Mech. Based Des. Struct. Mach., 48 (6), 739-754, 2020. 

DOI: 10.1080/15397734.2019.1660890. 

[2] E. Arslan, M. Haskul, "Generalized plane strain solution 

of a thick-walled cylindrical panel subjected to radial 

heating," Acta Mech, 226, 1213–1225, 2015. 

https://doi.org/10.1007/s00707-014-1248-4 

[3] M. Haskul, E. Arslan and W. Mack, "Radial heating of a 

thick-walled cylindrically curved FGM-panel," Z. 

Angew. Math. Mech., 97, 309-321, 2017. 

https://doi.org/10.1002/zamm.201500310 

[4] M. Haskul, "Yielding of functionally graded curved 

beam subjected to temperature," Pamukkale University 

Journal of Engineering Sciences, 26 (4), 587-593, 2020. 

DOI: 10.5505/pajes.2019.92331 

[5] E. Hoashi, T. Yokomine, A. Shimizu, and T. Kunugi, 

"Numerical analysis of wave-type heat transfer 

propagating in a thin foil irradiated by short-pulsed 

laser," Int. J. Heat Mass Transf., 46 (19), 4083–4095, 

2003. DOI: 10.1016/S0017-9310(03)00225-4. 

[6] X. Ai and B. Q. Li, "Numerical simulation of thermal 

wave propagation during laser processing of thin films," 

J. Electron. Mater., 34 (5), 583–591, 2005. DOI: 

10.1007/s11664-005-0069-6. 

[7] T.  T. Lam and E. Fong, "Application of solution 

structure theorem to non-Fourier heat conduction 

problems: Analytical approach," Int. J. Heat Mass 

Transf., 54, 4796–4806, 2011. DOI: 

10.1016/j.ijheatmasstransfer.2011.06.028. 

[8] T. T. Lam, "A unified solution of several heat conduction 

models," Int. J. Heat Mass Transf., 56 (1–2), 653–666, 

2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.055. 

[9] C. Cattaneo, “Sur uneforme de l’équation de la 

chaleuréliminant le paradoxed’une propagation 

instantanée,” C. R. Acad. Sci., 247, 431–433, 1958. 

[10] P. Vernotte, “Les paradoxes de la théorie continue de 

l’équation de la chaleur,” C. R. Acad. Sci., 246, 3154-

3155, 1958. 

[11] A. Compte and R. Metzler, "The generalized Cattaneo 

equation for the description of anomalous transport 

processes," J. Phys. A: Math. Gen., 30, 7277-7289, 1997. 

[12] F. M. Jiang, D. Y. Liu, and J. H. Zhou, "Non-Fourier 

heat conduction phenomena in porous material heated by 

microsecond laser pulse," Microscale Thermophys. Eng., 

6 (4), 331–346, 2003. DOI: 

10.1080/10893950290098386. 

[13] Y. Povstenko, Fractional thermoelasticty, Springer, 

New York, 2015. 

[14] Y. Povstenko, "Fractional heat conduction equation and 

associated thermal stress," J. Therm. Stresses, 28 (1), 83–

102, 2005. 

[15] Y. Povstenko, "Fractional Cattaneo-type equations and 

generalized thermoelasticity," J. Therm. Stresses, 34 (2), 

97-114, 2011. DOI: 10.1080/01495739.2010.511931. 

[16] T. N. Mishra and K. N. Rai, "Numerical solution of 

FSPL heat conduction equation for analysis of thermal 

propagation," Appl. Math. Comput., 273, 1006–1017, 

2016. DOI: 10.1016/j.amc.2015.10.082. 

[17] H. Qi, H. Xu, and X. Guo, "The Cattaneo-type time 

fractional heat conduction equation for laser heating," 

Comput. Math. Appl., 66 (5), 824–831, 2013. DOI: 

10.1016/j.camwa.2012.11.021. 

[18] H. Qi, and X. Guo, "Transient fractional heat 

conduction with generalized Cattaneo model," Int. J. 

Heat Mass Transf., 76, 535–539, 2014. 

[19] H. Xu, H. Qi, and X. Jiang, "Fractional Cattaneo heat 

equation on a semi-infinite medium," Chin. Phys. B, 22 

(1), 014401, 2013. DOI: 10.1088/1674-

1056/22/1/014401. 

[20] G. Xu, J. Wang, and Z. Han, "Study on the transient 

temperature field based on the fractional heat conduction 

equation for laser heating," Appl. Math. Mech., 36, 844–

849, 2015. 

[21] G. Xu and J. Wang, "Analytical solution of time 

fractional Cattaneo heat equation for finite slab under 

pulse heat flux," Appl. Math. Mech., 39 (10), 1465–1476, 

2018. DOI: 10.1007/s10483-018-2375-8. 

[22] G. Xu, J. Wang, and Z. Han, "Notes on 'The Cattaneo-

type time fractional heat conduction equation for laser 

heating' [Comput. Math. Appl. 66 (2013) 824–

831],"Comput. Math. Appl., 71 (10), 2132–2137, 2016. 

DOI: 10.1016/j.camwa.2016.03.011. 

[23] C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. 

Mat. Fis. Univ. Modena, 3, 83–101, 1948. 

[24] H. R. Ghazizadeh, M. Maerefat, and A. Azimi, 

"Explicit and implicit finite difference schemes for 



 
044 / Vol. 26 (No. 2)  Int. Centre for Applied Thermodynamics (ICAT) 

fractional Cattaneo equation," J. Comput. Phys., 229 

(16), 7042–7057, 2010. DOI: 10.1016/j.jcp.2010.05.039. 

[25] Z. M. Odibat, N. T. Shawagfeh, "Generalized Taylor's 

formula," Appl. Math. Comput., 186, 286–293, 2007. 

[26] I. Podlubny, Fractional Differential Equations, 

Academic Press, New York, 1999. 

[27] Z. Zhang and D.Y. Liu, "Advanced in the study of non-

Fourier heat conduction," Advance Mechanics, 30, 446-

456, 2000. 

[28] R. Gorenflo and F. Mainardi, Fractional Calculus: 

Integral and Differential Equations of Fractional Order, 

A. Carpinteri and F. Mainardi (Editors): Fractals and 

Fractional Calculus in Continuum Mechanics), 223-276, 

Springer Verlag, Wien and New York, 1997. 

[29] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory 

and applications of fractional differential equations, 204, 

Elsevier Science, Amsterdam, 2006. 

[30] Y. Povstenko, "Axisymmetric Solutions to Time-

fractional heat conduction equation in a half-space under 

Robin boundary conditions," Int. J. Differ. Equ.,  1–13, 

2012. DOI: 10.1155/2012/154085. 

[31] Y. Povstenko, "Axisymmetric solutions to fractional 

diffusion-wave equation in a cylinder under Robin 

boundary condition," Eur. Phys. J. Spec. Top., 222, 

1767–1777, 2013. DOI: 10.1140/epjst/e2013-01962-4. 

[32] Y. Povstenko, "Fundamental solutions to the fractional 

heat conduction equation in a ball under Robin boundary 

condition," Centr. Eur. J. Math., 12 (4), 611–622, 2014. 

DOI: 10.2478/s11533-013-0368-8. 

[33] H.  S. Carslaw and J.C. Jaeger, Conduction of Heat in 

Solids, 2nd ed., Oxford University Press, Oxford, 1959. 

[34] G. M. L. Gladwell, J. R. Barber, and Z. Olesiak, 

"Thermal problems with radiation boundary conditions," 

Q. J. Mech. Appl. Math., 36 (3), 387–401, 1983. DOI: 

10.1093/qjmam/36.3.387. 

[35] E. Marchi and G. Zgrablich, "Heat conduction in 

hollow cylinders with radiation," Proc. Edimburgh Math. 

Soc., 14(11), 159-164, 1964. 

[36] E. Marchi and A. Fasulo, "Heat conduction in sector of 

hollow cylinder with radiation," Atti, della Acc. Sci. di. 

Torino, 101, 373-382, 1967.  

[37] R. Kumar, N. K. Lamba, and V. Varghese, "Analysis of 

thermoelastic disc with radiation conditions on the 

curved surfaces," Mater. Phys. Mech., 16 (2), 175-186, 

2013. 

[38] N. Noda, R. B. Hetnarski, Y. Tanigawa, Thermal 

stresses, 2nd ed., Taylor and Francis, New York, 2003.  

[39] A. E. H. Love, A Treatise on the mathematical theory of 

elasticity, 4th ed., Dover publications, New York, 1944. 

[40] W. Nowacki, Thermoelasticity, 2nd ed., PWN-Polish 

Scientific Publishers, Warsaw and Pergamon Press, 

Oxford, 1986. 

[41] J.  J. Tripathi,  K. C. Deshmukh and J. Verma, Fractional 

Order Generalized Thermoelastic Problem in a Thick 

Circular Plate with Periodically Varying Heat Source, 

Int. J. Thermodyn., 20 (3), 132-138, 2017. DOI: 

10.5541/ijot.5000190819. 

[42] K. C. Deshmukh, S. D. Warbhe, and V. S. Kulkarni, 

"Brief Note on Heat Flow With Arbitrary Heating Rates 

in a Hollow Cylinder," Therm. Sci., 15 (1), 275–280, 

2011. DOI: 10.2298/TSCI100817063D. 

[43] S. N. Li, B. Y. Cao, "Fractional Boltzmann transport 

equation for anomalous heat transport and divergent 

thermal conductivity," Int. J. Heat Mass Transf., 137, 84-

89, 2019. DOI: 

10.1016/j.ijheatmasstransfer.2019.03.120. 

[44] S. N. Li, B. Y. Cao, "Fractional-order heat conduction 

models from generalized Boltzmann transport equation," 

Philos. Trans. R. Soc. A, 378, 20190280, 2020. DOI: 

10.1098/rsta.2019.0280.

 


