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Abstract  

 

The weld quality is highly related to the thermal history of the weld and there have been many trials to monitor the 

quality using an infrared (IR) sensor. To obtain the real temperature of a surface based on the brightness temperature 

values measured by an IR camera, the emissivity value must be derived. For an accurate assessment of the emissivity, 

one must be aware of the melting point isotherm. The temperature profiles only depend on three factors during laser 

processing, specified as constants the characteristics of the material: laser beam speed (v), laser beam diameter (d), 

and power (P). Predicting the width of the melted zone reached during the welding process as the parameters vary is 

a tool for helping a quality laser processing and for determination of true temperature in laser welding using IR camera. 

This study describes the semi-analytical (SA) solution of the heat conduction equation for a localized moving Gaussian 

heat source with constant parameters on a semi-infinite medium. The solution, simple and quick to obtain, provides 

information on the width of the melted zone with an average error < 5 %. The outcome is assessed numerically and 

contrasted with FEM solutions for a Gaussian source, the latter having undergone experimental validation. With two 

distinct defocus values, def0 and def-6, and by varying the speed and power settings, two separate types of experiments 

were run. Thus, the SA solution was obtained and compared after the FEM solution had been obtained with a good 

approximation (max err 4.3 %, average err 2.7 %). Only in regard to the 1AL test is an error more than 5 % detected; 

in the other case, the average error is 3.75 %. Two more tests at the defocus values of def-4 and def-8 were conducted 

to confirm the model's validity as the parameters varied. Overall, the average error between the semi-analytical and 

the FEM solution is 4.1%. The SA solution may be used to effectively estimate the isotherms related to the melting 

point of aluminum (770 K).   This allows to obtain a tool which helps restoring the real temperature based on the 

brightness values measured by the IR camera during laser welding. At the same time, this effective tool allows to 

investigate the importance of different processing parameters in laser manufacturing. 

 

Keywords: Semi-analytical solution; laser welding; integral method; semi-infinite medium.  

 

1. Introduction  

The temperature of the object, including laser welding is 

one of the key parameters of thermal processes [1,2]. The 

temperature and temperature gradient determine the speed of 

phase transitions, chemical reactions, microstructure and 

properties of the material [3]. During laser processing, 

defined as constants the properties of the material, the 

temperature profiles depend exclusively on three parameters: 

laser beam speed (v) , laser beam diameter (d) and power (P).  

Predicting  temperatures reached during the welding 

process as the parameters vary is a tool for helping a quality 

laser processing and for determination of true temperature in 

laser welding using IR camera [4-5]. To restore the real 

temperature, based on the brightness temperature values 

measured by the IR camera, the emissivity must be 

evaluated. For this purpose, firstly, the isotherms 

corresponding to the melting point were calculated to 

compare it with the temperature distribution measured in the 

laser irradiation zone. The calculated and measured data 

were compared with the width of the melted zone. Using the 

melting point isotherm, the value of emissivity could be 

calculated, and the true temperature could be restored [6,24].  

The phenomenon of laser welding has been the subject of 

extensive experimental and analytical study. Rosenthal [25] 

and Rykalin et al. [26] have studied classical solutions of the 

heat conduction equations. A complete reference book with 

analytical solutions to the heat conduction equation has been 

created by Carslaw and Jaeger [27]. The heat sources used in 

this study are point sources, line sources and plane sources 

since these types of geometry offer the most straightforward 

analytical solutions. These sources are well adapted to 

forecast the thermal history far from the source. They are 

useless, however, if they are close to the heat source as the 

temperature would would become infinite. Eagar and Tsai 

[28] introduced 2D heat sources to address this issue. The 

first to introduce a 3D heat source, was Goldak et al. [29]. 

He employed finite element modeling to determine the 

temperature field using a pair of moving ellipsoids as heat 

sources.  A closed form analytical solution for these types of 

3D heat sources in a thick plate or a semi-infinite body was 

recently developed by Nguyen et al. [30,31]. The solution is 

particularly difficult since the mirror image approach must 

be employed when applying it on the finished slabs. The 

detailed derivation of the analytical approximation solution 
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for a double ellipsoidal density heat source in a finite thick 

plate is described by M. Van Elsen et al. in detail [32]. In this 

instance, the solution for the transient temperature field was 

determined using a complicated and time-consuming 

numerical approach. Thomas F. Flint et al. [33] and R.T. 

Forslunda et al. [34] both proposed analytical solutions that 

take into account a moving Gaussian heat flow and a double 

ellipsoidal volumetric heat source, respectively. The 

solutions in this case, in addition to being time-consuming, 

only explain the transient temperature field in the 

components without evaluated the width of the melted zone.  

The proposed SA solution simplifies the calculation of 

the width of the melted zone and eliminates the need for 

laborious numerical procedures. Using the SA solution it is 

possible to evaluate the isotherms corresponding to the 

melting point as the parameters vary. The solutions obtained 

approximating with a very small error (err < 5 %) the width 

of the melted zone. The use of a FEM model, modeled and 

validated by comparison with the laser tests, is certainly an 

alternative, but in any case presents much longer calculation 

times if referred to the semi-analytical solution. The solution 

is presented based on some assumptions and linearization. 

.  

2. Mathematical Model 

A mathematical model of heat conduction overlap 

welding by a laser beam was developed. Assumptions and 

simplifications were made to reduce computational cost. As 

we are purely interested in the evaluation of the melting point 

isotherm and not other aspects, for example such as, the 

depth of penetration (key hole) or the study of phenomena 

concerning the phase change or evaporation, this 

assumptions can be considered valid. The main 

simplifications of the model are presented and discussed 

below; 

• The phase transformations and in turn the latent heats 

of melting and solidification are ignored. This causes 

somewhat overestimated temperatures around the melting 

isotherm (which should consume latent heat) and vice versa 

underestimated temperatures around the solidification 

isotherm. Usually, the temperature in the central melt pool 

domain becomes somewhat too high. This simplification is 

justified by the reason that we are interested in the evaluation 

of the width of the melted  zone. 

 • Thermophysical material properties are assumed to be 

temperature independent (though suitable mean values can 

be chosen in place of the values for ambient temperature). 

• The heat source moves with constant speed v along x 

axis and its center coincide with the origin of the moving 

Cartesian x-y coordinate system at surface z=0 (Figure 1 ). 

The beam power density profile 𝑞̇(𝑥, 𝑦) is modelled by 

spatially superimposing several Gaussian beams in a suitable 

manner: q̇
g
(x,y)=

2⋅P

π⋅r0
2 Exp (-

2⋅r2

r0
2 )  wit r=√x2+y2. 

The work piece has six faces where boundary conditions 

have to be specified. At the bottom surface z = ɛ and on the 

four lateral faces the condition of thermal insulation has been 

assumed, and at the top surface z = 0, a combined Gaussian 

source (𝑞̇𝑔) and convection-radiation boundary condition is 

assumed (Figure 1). The medium is assumed initially in 

equilibrium with the ambient at temperature 𝑇0 = 𝑇∞. 

Given the above information, the problem can now be 

formulated as follows. The three-dimensional, transient heat 

conduction equation  is: 
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where α is the thermal diffusivity which is described by α = 

k/(ρ cp) , k is the thermal conductivity, ρ is the mass density 

and cp the specific heat. The initial and boundary conditions 

are written as: 
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Figure 1. Model for analysis of the moving source of a bar. 

 

If a coordinate system fixed to the heat source is chosen, 

according to the moving heat source theory [7], a 

mathematical statement of the three dimensional thermal 

conductive problem is: 

 
2 2 2
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The dimensionless energy balance equation and the 

related boundary conditions lead to a non-homogeneous 

linear problem:  
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where the following dimensionless parameters have been 

introduced: θ=(T-T∞)/ΔTref is the temperature; the group 

ΔTref = Cabs·P/(π·k·r0) is a reference temperature difference 

with𝐶𝑎𝑏𝑠 representing the absorption coefficient, a reference 

length xref =α/ν   and a reference radius rref = P1·xref where P1 

represents the proportionality coefficient. In this way it was 

possible to obtain a solution that best approximates both the 

maximum temperature profile and the fusion isotherm; the 

reference time is tref=xref
2 /α and reference velocity vref=2⋅α/r0. 

The dimensionless space variable was defined such as 

ξ=
x

xref
; ψ=

y

xref
; ζ=

z

xref
; σ=r/rref, and the dimensionless time 

resulted 𝜏=rref/tref. Finally, dimensionless velocity resulted ν 

= v/vref, 𝐵i=h⋅xref/k is the Biot number and 

A1=ε⋅σ⋅xref⋅ΔTref
3 /k is a dimensionless coefficient. The semi-

infinite slab model is justified because xref is small compared 

to the sample size. Thus, it is possible to simplify the 

problem and evaluate a  stationary solution. 

 

3. Materials and Method 

It was considered a base metal corresponding to the 

standard EN 45100 aluminum (Table 1). For the purposes of 

this work, a Yb: YAG disk laser source supplied in fiber, 

operating in continuous wave emission, was considered 

(Table 2). The movement of the laser head was performed by 

a 6-axis industrial robot with a dedicated controller, and an 

integrated 3-way power nozzle was attached to the laser head 

(Figure 2). 

Argon was injected as a carrier gas at a flow rate of 30 L 

/ min. The helium was coaxially blown to the laser beam at 

a flow rate of 10 L / min as a shielding gas on the melting 

bath.  

A tilt angle of 4◦ was set for the laser head, in accordance 

with common practice for processing highly reflective 

metals [8] to prevent rear reflections from entering the 

optical train. We have therefore been defined the main 

governance parameters and the crucial response variables to 

consider [9,23]. 

 

 
Figure 2. Schematic of the laser head with three-way feed 

nozzle; components not to scale. 

 

Table 1. Nominal Chemical Composition (wt %) of Base 

Metals. 

chemical components % 

Si 4.5÷6 

Fe 0.5 

Cu 2.6÷3.6 

Mn 0.55 

Mg 0.20÷0.45 

Cr / 

Ni 0.1 

Zn 0.1 

Sn 0.05 

Ti 0.2 

 

This choice is usually based on both the literature and 

past experience. Many variables are involved in laser 

welding, primarily, power and welding speed since they 

determine the heat input to the work-piece [10].  

 

Table 2. Welding System Technical Data. 

Maximum output power [kW] 4.0 

Laser light wavelength λ [nm] 1030 

Beam Parameter Product [nm x mrad] 8.0 

Focal beam waist d [mm] 0.3 

Rayleigh range [mm] 2.81 

Focal length f [mm] 200 

Maximum power density [kW/mm2] 56.6 

Laser beam diameter at defocus 0  [mm]  0.3 

Laser beam diameter at defocus -2  [mm] 0.44 

Laser beam diameter at defocus -4  [mm] 0.71 

Laser beam diameter at defocus -6 [mm] 1.11 

Laser beam diameter at defocus -8  [mm] 1.32 

 

In addition, successful laser welding requires the 

optimization of other parameters such as the size and the 

location of the focal spot. Thus, finally, defocusing d (the 

distance of the focal point with respect to the top surface)  

has been included in the experimental plan.  

The range for power in the experimental plan has been 

decided so that the specific threshold irradiance for 

conduction to key-hole transition would be overcome. 

Sensible values for welding speed have been found via 
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preliminary trials in the form of bead-on-plate tests aiming 

at producing full penetration with no significant drop-

through on the lower surface, thus matching the requirements 

as defined in the referred standard [11]. 

 

3.1. Numerical Modeling: Finite Element Method. 

The FEM model was built using COMSOL Multiphysics 

software. For the correct construction of the model have been 

defined: 

Model parameters: needed to build the numerical model 

such as the type of materials, sample size, wavelength , and 

work parameters: power, scan speed and laser beam diameter 

(Table. 2). 

Materials' Properties: as we are interested at the 

temperature profile corresponding to the melting isotherm, 

which then develops inside the melting zone, we have chosen 

to use the properties at the melting temperature value for both 

the specific heat and the thermal conductivity coefficient 

[12-13], both as regards density [14-15] (Table. 1b). The 

absorption values were chosen for aluminum 0.23 [16,17] . 

Geometry and mesh modeling: One of the most important 

steps in FEM modeling is the definition of the mesh 

geometry. The geometry of the model consists of two thin 

sheets. A  3-D solid blocks of (40 x 30 x 6) mm3 were 

created. Several different grid distributions have been tested 

to ensure that the calculated results are grid independent. 

Maximum temperature differences of the fields are less than 

0.1 precent by doubling the mesh nodes. The two parts are 

meshed using tetrahedral geometry meshes. The minimum 

and maximum size of the element for the mesh is 0.1 and 

0.15 mm for the block where one boundary condition has 

been applied and 0.15 and 0.5 mm for the other (Figure 3). 

The complete mesh consists of 2659767 volume elements, 

258806 surface elements, and 1184 elements for upper block 

and of 4242245 volume elements, 281738surface elements, 

and 2212 elements lower block. 

 

 
Figure 3. The minimum and maximum size of the element for 

the mesh. 

 

Boundary conditions and initial condition: The laser 

beam incident on the surface z = 0 was characterized by a 

second type boundary condition where the imposed flux is 

the heat source. In addition, the third type boundary 

condition on face z = 0 was considered. In the hypothesis of 

natural convection, the model was given a constant thermal 

convection coefficient h = 10 W m − 2 K − 1 [18-21]. It was 

also considering radiative cooling: a constant value was set ε 

= 0.1 [17] for aluminum. Furthermore, the condition of 

thermal insulation has been assumed on the remaining 

surfaces. The ambient temperature and the initial 

temperature conditions of the plate are equal to 293 K. 

Ultimately, the generation of plasma, and hence the 

attenuation of the beam, can be neglected since in this 

application, vaporization is prevented [22].  

Laser beam modeling: Let us consider a thin layer, 

infinite in the x and y dimensions, with a thickness in the z 

dimension. We establish the coordinate system in such a way 

that the top surface of the layer is at z = 0 and the bottom 

surface is at z = Lz (Figure 4). 

 

 
Figure 4. Sketch of the workpiece and coordinate system. 

 

We assume that in the z-direction the heat source is 

concentrated at a level immediately below the upper surface  

(z = 0). The irradiation of the beam gradually decreases 

at the edges.  

 

 
Figure 5. Gauss laser beam modelling. 

 

Table 3. Gauss Laser Beam Modeling. 

 Power in 

Range[%] 

 2 2

0 0

2 2

0 0

2 ( ) ( )2 x x y yP
Exp

r r

    
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 
 

 

 

    89 

 

To  define beam width for Gaussian beams was used a 

1/e2 method. The width of the beam is calculated by 

measuring the distance  between the two points where the 

intensity is 1/e2 of the peak value (Figure 5, Table 3). So 

only about 86.5 % of the laser power is contained within the 

1/e2 width (Eq. (18)).  

 

( , ) 86.5 %

 

   gauss

x y

q x y dxdy P
 

 

                         (18)                  

 

4. Result and Discussion 

4.1 Experimental Tests 

Two types of tests were carried out at different defocus 

values as shown in Table 4. A rectangular section plate of 

sizes (Lx=100 x Ly=50 x Lz=6 mm) was used. 

Each test was analyzed under an electron microscope 

which made it possible to obtain an image of the trace in TIF 

format (Figure 6). The traces were divided 17 parts at 4 mm 

https://www.ophiropt.com/laser-measurement-instruments/beam-profilers/knowledge-center/tutorial/camera-technologies-part-2
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intervals. For each section the size of the trace , mean values 

and standard deviations were evaluated (Table 5).  

 

 

Table 4. Welding system technical data. 

 Power  
P [W] 

welding speed  
v [mm s-1] 

Defocus  
def [mm] 

Beam 

Diameter 
 d [mm]  

1AL 2500 50 0 0.30 

2AL 3000 50 0 0.30 

3AL 3000 35 0 0.30 

5AL 3500 50 -6 1.01 

8AL 3750 40 -6 1.01 

9AL 4000 40 -6 1.1 

 

 

 
Figure 6. Test 1AL Width of the Melted Zone Sections. 

 

 

Table 5. Mean Value of a Width of the Melted Zone 1AL.   

Sez. s[mm] Sez. s[mm] 

a 2.26 m 2.57 

b 2.34 n 2.49 

c 2.34 o 2.44 

d 2.16 p 2.57 

e 2.34 q 2.39 

f 2.55 r 2.39 

g 2.34 s 2.39 

h 2.49 Mean 2.40 

i 2.34 Dev.St 0.11 

l 2.31   

 

 

These results (Table 6) will be used to validate the 

numerical model. For this purpose the isotherms 

corresponding to the melting point (ρy ) were calculated 

used through the finite element method. 

 

 

Table 6. Mean Value of a Width of the Melted Zone 

Test Width of the melted zone wz [mm] Dev. st 

1AL 2.40 0.11 

2AL 2.58 0.15 

3AL 2.88 0.15 

5AL 2.87 0.10 

8AL 3.18 0.13 

9AL 3.40 0.08 

 

The calculated ρy data were compared with the width of 

the melted zone (wz). 

 

 

4.2 FEM Result 

The simulation process allowed us to extrapolate the 

maximum temperature and  the values corresponding to the 

fusion isotherm (770 K) on the plane at z = 0 (Figure 7).  

The data were fitted using an ellipsoidal model (Tables 

7-8) where the coefficients have been defined in (Table 9). 

 

 
Figure 7. FE.M result: Test 1AL weld track. 

 

 

Table 7. Coordinate of the Best Fit Ellipse. 

𝑥(𝑟) = 𝑋0 + 𝑎 ⋅ 𝑐𝑜𝑠 𝜃𝑟 

𝑦(𝑟) = 𝑌0 + 𝑏 ⋅ 𝑠𝑖𝑛 𝜃𝑟 

0 ≤ 𝜃𝑟 ≤ 2 ⋅ 𝜋 

 

Table 8. Structure that Defines the Best Fit Ellipse. 

a  sub axis (radius) of the X axis of the non-tilt ellipse 

b sub axis (radius) of the Y axis of the non-tilt ellipse 

φ orientation in radians of the ellipse (tilt) 

X0 center at the X axis of the non-tilt ellipse 

Y0 center at the Y axis of the non-tilt ellipse 

ρx  size of the long axis of the ellipse 

ρy size of the short axis of the ellipse 

 

In this way it was possible to quickly obtain the value of 

the diameter of the isotherms corresponding to the melting 

ρy. 

 

Table 9. Fit Parameter FEM. 

 1AL. 2AL 3AL 5AL 8AL 9AL 

a 1.372 1.573 1.519 1.733 1.803 1.881 

b 1.159 1.324 1.378 1.481 1.600 1.664 

X0 9.525 9.401 8.057 9.326 8.380 8.339 

Y0 9.999 9.999 10.000 9.999 10.000 9.999 

ρx 2.744 3.147 3.038 3.467 3.607 3.763 

ρy 2.318 2.649 2.756 2.961 3.201 3.329 

Err % 0.110 0.257 0.419 0.075 0.093 0.184 

Tmax [K] 5977 6418 6823 14294 1694 17096 

Dev.St [K] 45 57 50 320 290 300 

 

As shown in the figure for the type of test with defocus 

0, being characterized by a smaller spot diameter, they have 

a higher power concentration, which translates into higher 

temperature profiles as regards the maximum temperature 

(Figures 8-9, Table 9).  

 

 
Figure 8. Test 1AL, isotherms corresponding to the melting 

point, FEM data fit at time = 0.1 s. 
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Figure 9. Test 5AL, isotherms corresponding to the melting 

point, FEM data fit at time = 0.1 s; Tmax on z=0 plane. 

 

In addition, to the same spot beam, the extension of the 

melted zone and therefore the diameter of the fusion 

isotherm increases as the maximum temperature reached 

increases. As shown in Figure 10, 

 

  
Figure 10. Comparison between isotherms corresponding to 

the melting point FEM test 1AL vs 2AL;8AL vs 9AL. 

 

fixed beam diameter and scan speed, as the power delivered 

by the laser increases, the Tmax and the extension of the 

diameter corresponding to the melting temperature increase. 

Once the beam diameter and laser power are fixed, the 

maximum temperature reached during laser welding 

increases as the scan speed decreases. Consequently, the 

diameter ρy also increases with decreasing speed (Figure 11).  

 

 
Figure 11. Comparison between isotherms corresponding 

to the melting point, FEM test  2AL vs 3AL. 

 

The timing of the transient extinction is very little, about 

0.01 s for defocus def0 and 0.04 s for defocus def-6, just as 

we expected. Therefore, for each test, the percentage error 

between the isotherms corresponding to the melting point (ρy 

numerically evaluated) and the extension of the melted zone 

(wz, obtained through experimental tests)  was evaluated.  

As shown in the Table 10, the error for all types of tests 

presents an error below 5%. Thus, we can say that the 

constructed FEM model can provide a useful approximation 

to reality with a low average error.    

 

Table 10. Isotherm Corresponding to the Melting Point  

Compared with the Width of the Melted Zone. 

 Tmax[K] Dev.st ρy wz Err % 

1AL 14294 320 2.3183 2.40 3.46 

2AL 16945 290 2.6490 2.58 2.64 

3AL 17096 300 2.7568 2.88 4.37 

5AL 5977.8 45 2.9619 2.87 3.15 

8AL 6418.9 57 3.2010 3.18 0.65 

9AL 6823.8 50 3.3293 3.40 2.10 

 

4.3 Semi-Analytical Solution 

In order to linearize the radiative boundary condition, an 

average temperature was chosen to ensure that the 

relationship between the radiative and the convective 

contribution remains approximately the same.  
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The temperature that would allow to obtain a radiative 

heat exchange coefficient about 100 times the convective one 

was therefore chosen as the reference temperature for the 

linearization. Since a convective heat exchange coefficient 

of 10
W

m2⋅K
 was chosen: 

 
4 4

, ( , , , )r l r pQ h A T x y z t T
                                           

(22) 
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In this way the ratio between radiatively and convectively 

exchanged thermal power is kept unchanged, with the 

advantage of being able to linearize the radiative boundary 

condition as follows: 
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Since the problem is linear, in stationary case, the 

solution can be sought as the sum of two partial 

solutions𝜃1(𝜁)and 𝜃2(𝜉, 𝜓), with the first affected by a non-

homogeneity arising from the Gaussian heating source. 

Then, the two partial solutions have to satisfy two distinct 

problems derived from the basic one: 
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Numerically, the value 3 has been chosen as the extreme 

of integration to infinity, as it has been verified that at the 

value of 3 xref the temperature remains almost fixed at the 

initial value. The analytical solution of the problem  1.1a  

was obtained: 
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The second problem was solved by applying the integral 

method. It was possible to obtain the solution of problem 2 

by choosing an approximate solution that makes explicit the 

dependence of the spatial variable: 
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Equation 2 has been integrated into the spatial coordinate 

and 𝜉:  
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By imposing that the approximate analytic equation 

satisfies the integral and applying a boundary conditions, we 

obtain: 
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The solution 𝑎(𝜓)  were obtained: 
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and therefore  the complete solution:
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4.4 Semi-Analytical Solution Results 

The solution was obtained using, for the two types of tests 

(def0-def-6), different parameter values as shown in the 

Table. 11. The coefficients P1 and P2 have been introduced 

in order to obtain a valid solution for all defocus values and 

therefore for each radius beam value (r). Remembering to 

have defined 𝑥𝑟𝑒𝑓 =
𝛼

𝑣
, therefore independent of 𝑟𝑟𝑒𝑓 , we 

noticed how, by choosing the radius of the spot as reference, 

the solution was strongly dependent on this value, allowing 

to obtain a solution valid only for a fixed value of r. 

 

Table 11. Proportionality Coefficients. 

def P1 P2 

0 0.142857 11.5 

-6 0.337838 10.9 

 



 
008 / Vol. 26 (No. 2)  Int. Centre for Applied Thermodynamics (ICAT) 

We have therefore done so to link 𝑟𝑟𝑒𝑓  to 𝑥𝑟𝑒𝑓  and to the 

defocus value through the coefficients P1 and P2. After 

obtaining the temperature profile corresponding to the z = 0 

plane (Figure 12)  using a semi-analytical solution, the 

isothermal surface corresponding to 770 ° K was obtained 

(Figure 13). 

 

 

 
Figure 12. SA 5AL Temperature profile corresponding to the 

z = 0 plane. 

 

 

 
Figure 13.  SA 5AL Temperature profile corresponding to the 

z = 0 plane; isothermal surface corresponding to 770 K. 

 

 

Also, in this case the data have been fitted using an ellipse 

(Table 12). 

 

 

Table 12.  Fit Parameter –SA. 

 1AL. 2AL 3AL 5AL 8AL 9AL 

a 1.302 1.337 1.336 1.642 1.669 1.691 

b 1.264 1.298 1.318 1.538 1.602 1.622 

X0 9.550 9.700 8.190 9.400 8.500 8.500 

Y0 10.00 10.00 10.00 10.00 10.00 10.00 

ρx 2.603 2.674 2.673 3.285 3.339 3.382 

ρy 2.528 2.596 2.636 3.077 3.204 3.245 

wz 2.40 2.58 2.88 2.87 3.18 3.40 

Fit Err % 0.38 0.47 0.39 0.38 0.39 0.42 

Tmax [K] 13932 16670 16690 5589 6095 6434 

 

and subsequently the profiles of the isotherms were 

compared (Figures 14-16). 

From the comparison it is evident that the error on ρy is very 

small (Table 13). As well as for the maximum temperature. 

Significantly greater is the error on ρx, but not relevant in this 

study and for our purposes. 

 

  
Figure 14. Isotherms corresponding to the melting point 

FEM vs SA; 1AL, 2AL. 

 

  
Figure 15. Isotherms corresponding to the melting point 

FEM vs SA; 3AL, 5AL. 

 

  
Figure 16. Isotherms corresponding to the melting point 

FEM vs SA; 8AL, 9AL. 

 

Table 13.  Comparison of Numerical and Semi-Analytical 

Solutions. 

 FEM SA Err % 

 Tmax 

[K] 

ρy 

[mm] 

Tmax 

[K] 

ρy 

[mm] 

Tmax 

[K] 

ρy 

[mm] 

1AL 14294 2.318 13932 2.528 2.5 8.5 

2AL 16945 2.649 16670 2.596 1.6 3.2 

3AL 17096 2.756 16690 2.636 2.4 4.4 

5AL 5977.8 2.961 5589 3.076 6.7 3.8 

8AL 6418.9 3.201 6095 3.204 5.1 0.1 

9AL 6823.8 3.329 6433 3.245 5.8 2.5 

 

An error greater than 5% is found only in relation to the 

1AL test, while the average error is equal to 3.75 %. In order 

to obtain a solution that is also valid for different defocus 

values, the coefficients P1 and P2 have been linearly 

interpolated to the respective defocus values def0 and def-6, 

and the relations P1 (def) and P2 (def) have been obtained : 

 

{
P1(def)=0.0314⋅def+0.1493

P2(def)=-0.1⋅def+11.5          
                                         (35) 

 

Two further tests were then carried out at the defocus 

values def-4, def-8 using the respective coefficients as shown 

in Table.14.  

 

Table 14.  Test Coefficients and Parameters. 

 P1  P2 P[W] v[mm·s-1] def[mm] d[mm] 

4AL 0.2749 11.1 3000 50 -4 0.71 

6AL 0.4005 10.7 3500 50 -8 1.32 
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First, the semi-analytical solution was evaluated, 

extrapolating the temperature profiles corresponding to the 

fusion isotherm (Table 15, Figures 17-18). 

 

 
Figure 17. SA, test 4AL, Temperature profile corresponding 

to the z = 0 plane. ; isothermal surface corresponding to 770 

K. 

 

 
Figure 18. SA, test 6AL, Temperature profile corresponding 

to the z = 0 plane; isothermal surface corresponding to 770. 

K. 

 

Table 15.  Fit Parameter –de focus -4,-8. FEM Tests. 

 4AL. 6AL 

 FEM SA FEM SA 

a 1.534 1.493 1.764 1.725 

b 1.329 1.421 1.497 1.593 

X0 9.422 9.400 9.351 9.400 

Y0 9.999 10.000 10.000 10.000 

ρx 3.067 2.986 3.529 3.067 

ρy 2.659 2.821 2.993 3.126 

Fit Err % 0.29 0.51 0.34 0.54 

wz [mm] 2.60 2.60 2.87 2.87 

Err % 2.2 5.1 4.1 8.1 

Tmax [K] 7393 7159 4547 4479 

Dev.St [K] 55.7 / 29.5 / 

 

Subsequently after having carried out the tests through 

FEM simulation and extrapolated the profiles corresponding 

to the fusion isotherm (Table 15),  

 

 
Figure 19. Test 4AL welding trace. 

 

 
Figure 20. Test 6AL welding trace. 

 

and it is compared to the width of the melt zone derived from 

experimental tests (Figures 19-20). Also in this case the error 

is less than 5%. Overall, the FEM tests were assessed with a 

maximum inaccuracy of 4.3% and an average err of 2.7%.  

The isotherms corresponding to the melting point, 

obtained through FEM simulation and semi-analytical 

solution, are then compared (Table 16, Figures 21-22). 

 

 
Figure 21. Isotherms corresponding to the melting point, 

FEM vs SA at time = 0.3 s Test 4AL.. 

 

 
Figure 22. Isotherms corresponding to the melting point, 

FEM vs SA at time = 0.3 s Test Test 6AL. 

 

Table 16. Tests at de focus -4,-8. FEM vs SA. 

  ρy 
[mm] 

ρy 
err % 

Tmax 

[K] 

Tmax  

err % 

4AL 
SA 2.821 

6 
7159 

3.2 
FEM 2.993 4547 

6AL 
FEM 2.659 

4.3 
7393 

1.5 
SA 3.126 4479 

 

In this case the error is slightly higher (Table 16), but by 

appropriately modifying the proportionality coefficients it is 

possible to obtain a more accurate solution. Nonetheless, the 

total average error remains at an acceptable 4.1%. 

 

5. Conclusions 

We have seen how the semi-analytical solution recovers, 

with a small error, the value of the width of the melted zone. 

The  semi-analytical solution has a strong dependence on the 

parameters involved, in particular on the value of the 

diameter of the laser beam. This means that having chosen 

the trial function for a given defocus value, the solution is 

valid only for the combined values of P and v at that fixed 

def value. In order to make the solution valid also for other 

defocus values, the proportionality coefficients have been 
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introduced. In particular, the coefficient P1 refers to the 

reference quantity 𝑟𝑟𝑒𝑓 = 𝑃1 ⋅ 𝑥𝑟𝑒𝑓 , and serves to correct the 

value of ρy, while the coefficient P2, referred to the trial 

function, has an effect on the maximum temperature.  

So, after defining the proportionality coefficients to the 

defocus def0 and def-6 values, the coefficients P1 and P2 have 

been linearly interpolated to the respective defocus values, 

and the relations P1 (def) and P2 (def) have been obtained. 

In this way it was possible to use a single trial function 

capable of providing a well approximated solution (err 5%), 

in terms of maximum temperature and ρy, as the working 

parameters (P, v, d) vary. This allowed it to value the 

emissivity [35] after setting parameters and measuring the 

width of the melted zone (wmz = ρy) by  SA solution. 

 

Nomenclature 

d 

r0  

Beam diameter  

Beam radius 

mm 

mm 

def       Focal beam waist mm 

v  Welding speed mm s-1 

wz 

ρy 

 

P 

Lx 

Width of the melted zone 

Isotherm corresponding to the melting 

point   

Laser power  

Slab length 

mm 

mm 

 

W 

mm 

Ly Slab width mm 

Lz Slab depth mm 

Cabs Absorption coefficient   / 

k Thermal conductivity W m-1K-1 

h Thermal convection coefficient  W m − 2K − 1 

ε Emissivity / 

ρ Mass density  Kg m-3 

α Thermal diffusivity coefficient m2 s-1 

cp Specific heat.   J kg-1 K-1 

a Radius of the X axis of the non-tilt 

ellipse 

mm 

b Radius of the Y axis of the non-tilt 

ellipse 

mm 

φ Orientation of the ellipse (tilt) rad 

X0 Center at the X axis of the non-tilt 

ellipse 

mm 

Y0 Center at the Y axis of the non-tilt 

ellipse 

mm 

ρx Size of the long axis of the ellipse  

P1 Proportionality coefficients / 

P2 Proportionality coefficients / 

𝜃 Dimensionless temperature / 

𝛥𝑇𝑟𝑒𝑓  Reference temperature K 

𝑥𝑟𝑒𝑓  Reference length  mm 

𝑟𝑟𝑒𝑓  Reference radius mm 

𝑡𝑟𝑒𝑓 Reference time s 

𝑣𝑟𝑒𝑓  Reference velocity m s-1 

𝜉 
  

Dimensionless space variable / 

𝜓 Dimensionless space variable / 

𝜁 Dimensionless space variable / 

FEM Finite element method / 

Bi Biot number  

𝑞̇𝑔 Gaussian source W m-3 
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