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Abstract: 
 

The present paper is aimed to studying the two-dimensional generalised magneto-thermo-viscoelasticity problem for 

a spherical cavity with one relaxation time using fractional derivative. The formulation is applied to generalised 

thermoelasticity based on the theory of generalised thermoelastic diffusion with one relaxation time. The spherical 

cavity of the solid surface is assumed to be traction free and subjected to both heating and an external magnetic 

field. The Laplace transform technique is used to obtain the general solution. The inverse Laplace transform is 

carried out using a numerical inversion method based. The temperature, displacement, and stresses are obtained and 

represented graphically with the help of Mathcad software. 
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1. Introduction  
The classical theory of thermoelasticity has been 

generalised and modified into various thermoelastic models 

that run under the label of hyperbolic thermoelasticity. The 

notation hyperbolic reflects the fact that thermal waves are 

modelled, avoiding the physical paradox of the infinite 

propagation speed of the classical model. At present, there 

are several theories of hyperbolic thermoelasticity.  

Biot [1] introduced the theory of coupled 

thermoelasticity, which predicts infinite speeds of wave 

propagation, which is physically unacceptable. Lord and 

Shulman [2] introduced the generalized dynamical theory 

of thermoelasticity with one relaxation time, for the 

isotropic body. Caputo [3] proposed viscoelastic energy 

dissipation mechanism based on a memory mechanism with 

two degrees of freedom for the problem. Ezzat [4] 

discussed the generalised magneto-thermoelastic waves by 

thermal shock in half-space. Ezzat [5] used the fractional 

order derivative to investigate magneto-thermoelasticity 

with thermoelectric properties. Roychoudhuri et al. [6, 7] 

investigated magneto-thermoelastic interactions in a 

viscoelastic cylinder of temperature rate dependent material 

subjected to periodic loading, as well as the effect of 

rotation and relaxation times in generalised 

thermoviscoelasticity. Sherief et al. [8] proposed the new 

theory of coupled thermoelasticity and generalised 

thermoelasticity with one relaxation time using the method 

of fractional calculus. Povstenko [9] solved some 

thermoelastic problems based on the heat conduction 

equation in one dimensional and two dimensional domains 

with a time fractional derivative and associted thermal 

stresses. Deswal and Kalkal [10] introduced the effects of 

viscosity and diffusion on thermoelastic interactions in 

thermally, isotropic and electrically conducting half-space 

solids whose surfaces are subjected to thermal and 

mechanical loads. 

Zenkour et al. [11] studied the generalised 

thermodiffusion of an unbounded body for a spherical 

cavity subjected to periodic loading. Gaikwad et. al. [12] 

studied the quasi-static thermoelastic mathematical model 

for an infinitely long circular cylinder by using the integral 

transform technique. Gaikwad [13] analysed the 

thermoelastic deformation of a thin hollow circular disk due 

to a partially distributed heat supply. Gaikwad et. al. [14] 

studied the non-homogeneous heat conduction problem and 

its thermal deflection due to internal heat generation in a 

thin hollow circular disk. Gaikwad [15] analysed the 

thermoelastic deformation of a thin hollow circular disk due 

to partially distributed heat supply. H. Sherief and A. M. 

Abd El-Latief [16] discussed the application of fractional 

order theory of thermoelasticity problem for a half-space. 

Raslan [17] solved one dimensional problem of fractional 

order theory of thermoelasticity of an infinitely long 

cylindrical cavity using integral transform technique. 

Kalkal and Deswal [18] investigated the effects of 

fractional order parameter, viscosity, magnetic field, and 

diffusion on thermoelastic interaction in an infinite body 

with a mechanical load on its surface. Hussain [19] solved 

the fractional order thermoelastic problem for an infinitely 

long solid circular cylinder. Raslan [20] introduced the 

fractional-order theory of thermoelasticity to the two-

dimensional problem of a thick plate whose lower and 

upper surfaces are traction-free and subjected to the given 

axi-symmetric temperature distribution. Gaikwad [21] 

proposed the two-dimensional study-state temperature 

distribution of a thin circular plate due to uniform internal 

energy generation.  

Tripathi et al. [22] analyzed the fractional order 

thermoelastic problem for a thick circular plate with finite 

wave speeds. Gaikwad [23] discussed the axi-symmetric 

thermoelastic stress analysis of a thin circular plate due to 

heat generation. Gaikwad [24] studied the time-fractional 
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heat conduction problem in a thin hollow circular disk and 

its thermal deflection. Khavale et al. [25] introduced the 

generalized theory of magneto-thermo-viscoelastic 

spherical cavity problem under fractional order derivative 

using the state space approach. Gaikwad et al.[26] analyzed 

the transient thermoelastic temperature distribution of a thin 

circular plate and its thermal deflection under uniform heat 

generation. Gaikwad et al.[27] proposed the fractional order 

thermoelastic problem for finite piezoelectric rod subjected 

to different types of thermal loading using direct approach. 

Gaikwad et al.[28] solved the fractional order transient 

thermoelastic problem using the integral transform 

technique and discussed stress analysis of a the thin circular 

sector disk. 

In the present work, a new model of time-fractional 

derivative of order α has been considered in the context of a 

two-dimensional generalised magneto-thermoviscoelasticity 

problem for a spherical cavity with one relaxation time. The 

spherical cavity of the solid surface is assumed to be 

traction free and subjected to both heating and an external 

magnetic field. Laplace transform have been employed for 

the general solution of the problem. The results obtained 

theoretically have been computed numerically and are 

depicted graphically. It is believed that this particular 

problem has not been considered by anyone. This is a new 

and novel contribution to the field of thermoelasticity. 

Applications of this study are more useful in the fields of 

seismology, geomechanics, earthquakes engineering and 

soil dynamics etc,. 

 

2. Basic Equations and Formulation 

The constitutive equations and field equations for an 

isotropic, homogeneous elastic solid in the absence of body 

forces under the fractional order theory of generalized 

thermo-viscoelasticity with temperature-dependent modulus 

of elasticity can be written in the following form. 

 

 

Figure 1. Geometrical representation of the problem. 

(i) Maxwell governing equations:  

 
𝑐𝑢𝑟𝑙  𝒉 = 𝑱 (1) 

 

𝑐𝑢𝑟𝑙  𝑬 = −𝜇0
𝜕𝒉

𝜕𝑡
 (2) 

 

𝑬 = −𝜇0
𝜕𝒖

𝜕𝑡
× 𝑯0 (3) 

 

𝑑𝑖𝑣  𝒉 = 0 (4) 

 

𝑑𝑖𝑣  𝑬 = 0 (5) 

where Fi is the components of Lorentz force, whose 

expression is 

 
𝐹𝑖 = 𝜇0(𝑱 × 𝑯)𝑖      (6) 

 

(ii) Equation of motion: 
 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝐹𝑖 + 𝜇 (1 + 𝛼2

𝜕

𝜕𝑡
) 𝑢𝑖,𝑗𝑗

+ (𝜆 (1 + 𝛼1
𝜕

𝜕𝑡
) + 𝜇 (1 + 𝛼2

𝜕

𝜕𝑡
)) 𝑢𝑗,𝑖𝑗

 

 −(3𝜆 + 2𝜇)𝛽(𝛼𝑡𝜃,𝑖 − 𝛼𝑐𝐶,𝑖)       (7) 

 

where α1 and α2 are the thermoviscoelastic relaxation times 

and β = (1 +
3λα1+2μα2

3𝜆+2μ

∂

∂t
). 

(iii) Heat conduction equation: 
 

𝑘 ′𝜃,𝑖𝑖 = (
𝜕

𝜕𝑡
+ 𝑡0

𝜕𝛼+1

𝜕𝑡𝛼+1
) (𝜌𝐶𝐸𝜃 + (3𝜆 + 2𝜇)𝛼𝑡𝛽𝑇0𝑒 + 𝑎𝑇0𝐶)(8) 

 

The Caputo type fractional derivative given by [30] 
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For finding the Laplace transform, the Caputo derivative 

requires information of the initial values of the function f(t) 

and its integer derivative of the order k = 1, 2, ..., n – 1 
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(iv) Mass diffusion equation: 
 

𝐷(3𝜆 + 2𝜇)𝛼𝑐𝛽𝑒,𝑖𝑖 + 𝐷𝑎∇2𝜃,𝑖𝑖 + (
𝜕

𝜕𝑡
+ 𝑡1

𝜕2

𝜕𝑡2) 𝐶 − 𝐷𝑏∇2𝐶,𝑖𝑖 = 0

 (11) 

 

where D is diffusion coefficient, a is a coefficient 

describing the measure of thermoelastic diffusion effects 

and b is a coefficient describing the measure of diffusive 

effects. 

(v) Constitutive equations: 
 

𝜎𝑖𝑗 = 2𝜇 (1 + 𝛼2
𝜕

𝜕𝑡
) 𝑒𝑖𝑗 + 𝛿𝑖𝑗 (𝜆 (1 + 𝛼1

𝜕

𝜕𝑡
) 𝑒𝑘𝑘 + (3𝜆 +

2𝜇)𝛽(𝛼𝑡𝜃 − 𝛼𝑐𝐶))                                                  (12) 

 

(vi) Chemical potential equation: 
 

𝑃 = −(3𝜆 + 2𝜇)𝛼𝑐𝛽𝑒𝑘𝑘 + 𝑏𝐶 − 𝑎𝜃                                   (13) 

 

where P is the chemical potential per unit mass. 

Consider the spherical polar coordinates (r, Θ, ϕ) are 

taken for any representative point of the body at at time t 
and the origin of the coordinate system is at the center of 

the spherical cavity of radius R. Considering radial 

variations of the medium, the only non-zero displacement 

component is u = u(r, t), so that, the component of strain 

tensor are 
 

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 𝑒𝜃𝜃 =

𝑢

𝑟
= 𝑒𝜙𝜙, 𝑒𝑟𝜙 = 𝑒𝑟𝜃 = 𝑒𝜃𝜙 = 0 (14)  
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𝑒 = 𝑑𝑖𝑣 u = 𝑒𝑟𝑟 + 𝑒𝜙𝜙 + 𝑒𝜃𝜃 =
𝜕𝑢

𝜕𝑟
+

2𝑢

𝑟
=

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
 (15) 

 

From equation (12), we obtained the stress tensor 

components as 
 

𝜎𝑟𝑟 = 2𝜇 (1 + 𝛼2
𝜕

𝜕𝑡
)

𝜕𝑢

𝜕𝑟
+ 𝜆 (1 + 𝛼1

𝜕

𝜕𝑡
) 𝑒 − (3𝜆 +

            2𝜇)𝛽(𝛼𝑡𝜃 − 𝛼𝑐𝐶) (16)  

 

𝜎𝜃𝜃 = 2𝜇 (1 + 𝛼2
𝜕

𝜕𝑡
)

𝑢

𝑟
+ 𝜆 (1 + 𝛼1

𝜕

𝜕𝑡
) 𝑒 − (3𝜆 +

           2𝜇)𝛽(𝛼𝑡𝜃 − 𝛼𝑐𝐶) (17) 

 

and from equation (11), the chemical potential is 
𝑃 = −(3𝜆 + 2𝜇)𝛼𝑐𝛽𝑒 + 𝑏𝐶 − 𝑎𝜃 (18) 

Due to the application of the initial magnetic field 𝐇𝟎, there 

results an induced magnetic field 𝐡 = (0,0, h) which be 

small, so that, their products with ui and their derivatives 

can be neglected for linearization and an induced electric 

field E. Applying an initial magnetic field vector 𝐇𝟎 =
(0,0, H0) then equations (1),(2) and (3) yield. 

 

𝐽 = (𝑜, −
𝜕𝒉

𝜕𝑢
, 0) (19) 

  

ℎ = −𝑯𝟎 (
𝜕𝑢

𝜕𝑟
+

2𝑢

𝑟
) (20) 

 

𝑬 = (𝑜, 𝜇0𝐻0
𝜕𝑢

𝜕𝑡
, 0) (21) 

 

The components of Lorentz force can be obtained from 

equation (19-21) in the form  

 

 𝐹𝑟 = 𝜇0(𝑱 × 𝑯)𝑟 = 𝜇0𝐻0
2 𝜕

𝜕𝑟
(

𝜕𝑢

𝜕𝑟
+

2𝑢

𝑟
) (22) 

 

The equation of motion, equation (7) can be written as: 

 

𝜎𝑟𝑟,𝑟 +
𝜎𝑟𝑟−𝜎𝜃𝜃

𝑟
+ 𝐹𝑟 = 𝜌

𝜕2𝑢

𝜕𝑡2    (23) 

 

Using equations (16),(17) and (23), we get 

 

𝜌
𝜕2𝑢

𝜕𝑡2 = [𝜆 (1 + 𝛼1
𝜕

𝜕𝑡
) + 2𝜇 (1 + 𝛼2

𝜕

𝜕𝑡
) + 𝜇0𝐻0]

𝜕𝑒

𝜕𝑟
−(3𝜆 +

2𝜇)𝛽 (𝛼𝑡
𝜕𝜃

𝜕𝑟
− 𝛼𝑐

𝜕𝐶

𝜕𝑟
)      (24) 

 

Applying the operator (∂/ ∂r + 2/r) to both sides of 

equation (24), one obtains 

 

𝜌
𝜕2𝑢

𝜕𝑡2
= [𝜆 (1 + 𝛼1

𝜕

𝜕𝑡
) + 2𝜇 (1 + 𝛼2

𝜕

𝜕𝑡
) + 𝜇0𝐻0] ∇2𝑒 

                       −(3𝜆 + 2𝜇)𝛽(𝛼𝑡∇2𝜃 − 𝛼𝑐∇2)           (25) 

 

The heat conduction equation, equation (8) can be written 

as:  
 

𝑘′∇2𝜃 = (
𝜕

𝜕𝑡
+ 𝑡0

𝜕𝛼+1

𝜕𝑡𝛼+1) (𝜌𝐶𝐸𝜃 + (3𝜆 + 2𝜇)𝛼𝑡𝛽𝑇0𝑒 + 𝑎𝑇0𝐶)

                                                                                (26) 

 

where ∇2 is Laplaces operator in spherical coordinates 

which is given by 

 

∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
) +

1

𝑟2sinΘ
(sinΘ

𝜕

𝜕Θ
) +

1

𝑟2sin2Θ

𝜕2

𝜕𝜙2    (27) 

 

In case of dependence on only r, this reduce to 

∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
)                                                                 (28) 

 

Now, we will introduced the following non-dimensional 

variables:  

 

𝑟 ′ = 𝑐𝜂𝑟,        𝑢′ = 𝑐𝜂𝑢,        𝑃′ =
𝑃

(3𝜆+2𝜇)𝛼𝑐
,        𝑡 ′ = 𝑐2𝜂𝑡,

𝜃′ =
(3𝜆+2𝜇)𝛼𝑡

𝜆+2𝜇
𝜃,        𝑡0

′ = 𝑐2𝜂𝑡0,        𝐶 ′ =
(3𝜆+2𝜇)𝛼𝑐

𝜆+2𝜇
𝐶,

𝑡1
′ = 𝑐2𝜂𝑡1,        𝜎𝑖𝑗

′ =
1

𝜆+2𝜇
𝜎𝑖𝑗,        𝑞𝑟

′ =
3𝜆𝛼1+2𝜇𝛼2

𝑘′(3𝜆+2𝜇)𝑐(𝜆+2𝜇)
𝑞𝑟 .

 (29) 

where η =
ρCE

k′
 ,  c = √

λ+2μ

ρ
 is the speed of propagation of 

isothermal elastic waves, qr is the heat flux in the radial 

direction. 

Using these non-dimensional variables, equations (16-

18) and (25-27) takes the form (dropping the primes for 

convenience):  

 
𝜕2𝑒

𝜕𝑡2 = 𝛽1∇2𝑒 − 𝛽∇2𝜃 − 𝛽∇2𝐶 (30) 

 

∇2𝜃 = (
𝜕

𝜕𝑡
+ 𝑡0

𝜕𝛼+1

𝜕𝑡𝛼+1) (𝜃 + 𝜀𝛽𝑒 + 𝜀𝛽2𝐶) (31) 

 

𝛽3∇2𝐶 = 𝛽∇2𝑒 + 𝛽2∇2𝜃 + 𝛽4 (
𝜕

𝜕𝑡
+ 𝑡1

𝜕2

𝜕𝑡2) 𝐶 (32) 

 

𝜎𝑟𝑟 = (1 +
(𝜆𝛼1 + 2𝜇𝛼2)2

𝜌(𝜆 + 2𝜇)

𝜕

𝜕𝑡
) 𝑒 −

4𝜇

𝜆 + 2𝜇
(1 + 𝛼2

𝜕

𝜕𝑡
)

𝑢

𝑟
 

            −𝛽𝜃 − 𝛽𝐶                                                                  (33) 

 

   𝜎𝜃𝜃 = (1 −
2𝜇

𝜆+2𝜇
) (1 + 𝛼1

𝜕

𝜕𝑡
) 𝑒 −

2𝜇

𝜆+2𝜇
(1 + 𝛼2

𝜕

𝜕𝑡
)

𝑢

𝑟
 

            −𝛽𝜃 − 𝛽𝐶    (34) 

 

  

𝑃 = 𝛽3𝐶 − 𝛽𝑒 − 𝛽2𝜃 (35) 

 

here  

 

𝛽1 = 1 +
𝜇0

2𝐻0
2

𝜌(𝜆 + 2𝜇)
+

(𝜆𝛼1 + 2𝜇𝛼2)2

𝜌(𝜆 + 2𝜇)

𝜕

𝜕𝑡
, 

 

𝛽2 =
𝑎𝜌𝑐2

(3𝜆 + 2𝜇)2𝛼𝑡𝛼𝑐

, 𝜀 =
(3𝜆 + 2𝜇)2𝛼𝑡

2𝑇0

𝜌𝐶𝐸(𝜆 + 2𝜇)
, 

 

𝛽3 =
𝑏𝜌𝑐2

(3𝜆 + 2𝜇)2𝛼𝑐
2

, 𝛽4 =
𝜌𝑐2

(3𝜆 + 2𝜇)2𝛼𝑐
2𝜂𝐷

 

 

(vii) The initial and regularity conditions: 

 

𝑢 = 0 =
𝜕𝑢

𝜕𝑡
, at  𝑡 = 0 (36) 

 

𝜃 = 0 =
𝜕𝜃

𝜕𝑡
, at  𝑡 = 0 (37) 

 

𝐶 = 0 =
𝜕𝐶

𝜕𝑡
  at  𝑡 = 0 (38) 

 

The homogeneous indictional conditions are supplemented 

by the following boundary conditions:   

    • The cavity surface is traction free:  

 
σrr = 0    at  r = R                                                  (39)  

 

    • The cavity surface is subjected to a thermal shock:  
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θ = θ0H(t)    at  r = R                                                  (40) 

  

    • The chemical potential is also assumed to be a known 

function of time at the cavity surface 

  
P = P0H(t)    at  r = R                                                  (41)  

 

where θ0 and P0 are constants and H(t) is heaviside unit 

step function. 

 

3. Solution in the Laplace Transform Domain  

Apply the Laplace transform defined by the relation.  

 

f(̅r, s) = L[f(r, t)] = ∫
∞

0
e−stf(r, t)dt                                   (42) 

 

to equation (30) to (35) under the initial conditions given in 

equation (36) to (38) we obtain  

 

(∇2 − β5s2)e̅ = β6s∇2θ̅ + β6s∇2C̅                                   (43) 

  

(∇2 − (s + t0sα+1))θ̅ = β7εs(s + t0sα+1)e̅ 

                                     +β2ε(s + t0sα+1)C̅                    (44) 

  

β3∇2C̅ = β8∇2e̅ + β2∇2θ̅ + β4(s + t0s2)C̅                    (45) 

  

σ̅rr = β9e̅ −
4μ(1+α2s)

λ+2μ

u̅

r
− β8θ̅ − β8C̅                                   (46) 

 

σ̅θθ = 1 +
2μ

λ+2μ
(1 + α1s)e̅ +

2μ(1+α2s)

λ+2μ

u̅

r
− β6θ̅ − β6C̅    (47) 

  

P̅ = β3C̅ − β8e̅ − β2θ̅                                               (48) 

 

here, 

β5 =
ρ(λ+2μ)

ρ(λ+2μ)+μ0
2H0

2+(λα1+2μα2)2 ,

β6 =
ρ(λ+2μ)[(3λ+2μ)+(3λα1+2μα2)]

(3λ+2μ)[ρ(λ+2μ)+μ0
2H0

2+(λα1+2μα2)2]
, β7 =

(3λα1+2μα2)

3λ+2μ
,

β8 = 1 +
3λα1+2μα2

3λ+2μ
s, β9 = 1 +

μ0
2H0

2

ρ(λ+2μ)
+

(λα1+2μα2)2s

ρ(λ+2μ)

 

 

Eliminating e̅ ,C̅ between equations (43)-(45), one obtained 

six-order partial differential equation satisfied by θ̅ in the 

form 

 

(∇6 − 𝐶1∇4 + 𝐶2∇2 − 𝐶3)𝜃̅ = 0 (49) 

 

here, 

𝐶1 =
𝑏2𝑎2 + 𝑏1𝑎3 − 𝜉𝑏3 − 𝑎1𝑏4

𝑏1𝑎2 − 𝑎1𝑏3

,

𝐶2 =
𝑏2𝑎3 − 𝜉𝑏4 − 𝑎1𝑏2

𝑏1𝑎2 − 𝑎1𝑏3

,    𝐶3 =
−𝜉𝑏2

𝑏1𝑎2 − 𝑎1𝑏3

,

 

 

in which, 

𝑎1 = 1 +
[𝜌(𝜆 + 2𝜇)][(3𝜆 + 2𝜇) + (3𝜆𝛼1 + 2𝜇𝛼2)𝑠]𝑠𝛼𝑡𝛼𝑐

𝑎𝜌𝑐2[𝜌(𝜆 + 2𝜇) + 𝜇0
2𝐻0

2 + (𝜆𝛼1 + 2𝜇𝛼2)2]
, 

 

𝑎2 =
[𝜌(𝜆 + 2𝜇)][(3𝜆 + 2𝜇) + (3𝜆𝛼1 + 2𝜇𝛼2)𝑠](3𝜆 + 2𝜇)𝛼𝑡𝛼𝑐

𝑎𝜀𝜌𝑐2[𝜌(𝜆 + 2𝜇) + 𝜇0
2𝐻0

2 + (𝜆𝛼1 + 2𝜇𝛼2)2]
, 

 

𝑎3 =

[𝜌(𝜆 + 2𝜇)][(3𝜆 + 2𝜇) + (3𝜆𝛼1 + 2𝜇𝛼2)𝑠][(𝑠 + 𝑡0𝑠𝛼+1)

((3𝜆 + 2𝜇)2𝛼𝑡𝛼𝑐 − 𝑎𝜀𝜌𝑐2)]

𝑎𝜀𝜌𝑐2[𝜌(𝜆 + 2𝜇) + 𝜇0
2𝐻0

2 + (𝜆𝛼1 + 2𝜇𝛼2)2](3𝜆 + 2𝜇)
, 

 

𝑏1 = 1 +
𝑠(3𝜆𝛼1 + 2𝜇𝛼2)(𝑎 + 𝑏𝛼𝑡)

𝑎(3𝜆 + 2𝜇)
, 

𝑏2 =
𝜀𝑠𝛼𝑡(𝑠 + 𝑡0𝑠𝛼+1)(3𝜆𝛼1 + 2𝜇𝛼2)

𝑎𝜀𝜂𝐷(3𝜆 + 2𝜇)
, 

 

𝑏3 =
𝑏𝛼𝑡

𝑎𝜀𝛼𝑐(𝑠 + 𝑡0𝑠𝛼+1)
, 

 

𝑏4 =
𝑎𝜌𝑐2

𝜀𝛼𝑡𝛼𝑐(3𝜆 + 2𝜇)2 +
𝛼𝑡

𝑎𝜀𝛼𝑐𝜂𝐷
+

𝑏𝛼𝑡𝜆(1 + 𝛼1𝑠)

𝑎𝜀𝛼𝑐(𝑠 + 𝑡0𝑠𝛼+1)(𝜆 + 2𝜇)
, 

 

𝜉 =
𝜌(𝜆 + 2𝜇)𝑠2

𝜌(𝜆 + 2𝜇) + 𝜇0
2𝐻0

2 + (𝜆𝛼1 + 2𝜇𝛼2)2
 

 

Similarly, we can show that e̅ and C̅ satisfy the equations 

 

(∇6 − 𝐶1∇4 + 𝐶2∇2 − 𝐶3){𝑒̅, 𝐶̅} = 0                                   (50) 

 

Introducing ki, i = 1,2,3 into equation (49), one obtained 

 

(∇2 − 𝑘1
2)(∇2 − 𝑘2

2)(∇2 − 𝑘3
2)𝜃̅ = 0                                   (51) 

 

where, k1, k2 and k3 are the positive roots for the 

characteristic equation 

 
𝑘6 − 𝐶1𝑘4 + 𝐶2𝑘2 + 𝐶3 = 0 (52) 

 

The roots k1, k2 and k3 are 

 

𝑘1 = √
1

3
[2𝑝  sin(𝑞) + 𝐶1], 

 

𝑘2 = √
−𝑝

3
[√3  cos(𝑞) + sin(𝑞)] +

𝐶1

3
, 

 

𝑘3 = √
𝑝

3
[√3  cos(𝑞) − sin(𝑞)] +

𝐶1

3
 

 

Where 

 

𝑝 = √𝐶1
2 − 3𝐶2,    𝑞 =

1

3
sin−1(𝜒), 

 

𝜒 = −
2𝐶1

3 − 9𝐶1𝐶2 + 27𝐶3

2𝑝3
 

 

The solution of equation (52), which is bounded at infinity, 

is given by 

 

𝜃̅(𝑟, 𝑠) =
1

√𝑟
∑3

𝑖=1 𝐵𝑖(𝑠)𝐾1/2(𝑘𝑖𝑟)    (53) 

 

where Bi are parameters depending on s and K1/2(. ) are the 

half order modified Bessel function of the second kind. 

Similarly,  
 

{𝑒̅(𝑟, 𝑠), 𝐶̅(𝑟, 𝑠)} =
1

√𝑟
∑3

𝑖=1 {𝐵𝑖
′(𝑠), 𝐵𝑖

′′(𝑠)}𝐾1/2(𝑘𝑖𝑟) (54) 

 

Where 

 

𝐵𝑖
′ =

𝑏3𝑘𝑖
4 − 𝑏4𝑘𝑖

2 + 𝑏2

𝑏1𝑘𝑖
2 − 𝑏2

𝐵𝑖 = 𝐸𝑖𝐵𝑖  
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𝐵𝑖
′′ =

(𝑏1 − 𝑎5𝑏3)𝑘𝑖
4 − (𝑏1𝑎4 + 𝑏4 − 𝑏4𝑎5)𝑘𝑖

2 + 𝑎4𝑏2 − 𝑎5𝑏2

𝑤6(𝑦1𝑘𝑖
2 − 𝑦2)

𝐵𝑖

= 𝐺𝑖𝐵𝑖 

 

in which 

 

𝑎4 = 𝑠 + 𝑡0𝑠𝛼+1, 𝑎5 = 𝜖(𝑠 + 𝑡0𝑠𝛼+1)
(3𝜆𝛼1 + 2𝜇𝛼2)𝑠

3𝜆 + 2𝜇
 

 

Substituting equation (40) into equations (30)-(34), one 

obtains 

 

{𝑒̅(𝑟, 𝑠), 𝐶̅(𝑟, 𝑠)} =
1

√𝑟
∑3

𝑖=1 {𝐸𝑖 , 𝐺𝑖}𝐵𝑖𝐾1/2(𝑘𝑖𝑟)  (55) 

 

Using the relation between u̅ and e̅, one gets the 

solution for the dimensionless form of displacement 

assuming that u̅ vanishes at infinity as:  

 

𝑢̅ = −
1

√𝑟
∑3

𝑖=1
𝐸𝑖

𝑘𝑖
𝐵𝑖𝐾3/2(𝑘𝑖𝑟) (56)                          

 

Thus, from equations (55) and (56), one obtains     

 

𝜎̅𝑟𝑟(𝑟, 𝑠) =
1

√𝑟
∑3

𝑖=1 ((𝛽9𝐸𝑖 − 𝛽8 − 𝛽8𝐺𝑖)𝐾1

2

(𝑘𝑖𝑟) +

                   
4𝜇(1+𝛼2𝑠)

𝜆+2𝜇

𝐸𝑖

𝑘𝑖𝑟
𝐾3/2(𝑘𝑖𝑟)) 𝐵𝑖(𝑠)                    (57) 

 

𝜎̅𝜃𝜃(𝑟, 𝑠) =
1

√𝑟
∑3

𝑖=1 (((1 +
2𝜇

𝜆+2𝜇
) (1 + 𝛼1𝑠)𝐸𝑖 − 𝛽8 − 𝛽8𝐺𝑖)

𝐾1

2

(𝑘𝑖𝑟) −
2𝜇(1+𝛼2𝑠)

𝜆+2𝜇

𝐸𝑖

𝑘𝑖𝑟
𝐾3/2(𝑘𝑖𝑟)) 𝐵𝑖(𝑠)

     

                                                                           (58) 

 

𝑃̅(𝑟, 𝑠) =
1

√𝑟
∑3

𝑖=1 (𝛽3𝐺𝑖 − 𝛽2 − 𝛽8𝐸𝑖)𝐾1/2(𝑘𝑖𝑟)𝐵𝑖(𝑠) (59) 

 

The transformed boundary conditions become 

 

𝜎̅𝑟𝑟 = 0, 𝜃̅ =
𝜃̅0

𝑠
, 𝑃̅ =

𝑃̅0

𝑠
,    at  𝑟 = 𝑅                                   (60) 

 

Apply the boundary conditions given in equation (60) 

together with equations (55) and (57-59) is used. we 

obtains: 

 

∑3
𝑖=1 𝐵𝑖(𝑠)𝐾1/2(𝑘𝑖𝑅) =

𝜃0√𝑅

𝑠
                                   (61) 

 

∑3
𝑖=1 ((𝛽9𝐸𝑖 − 𝛽8 − 𝛽8𝐺𝑖)𝐾1

2

(𝑘𝑖𝑅) +

                               
 4𝜇(1+𝛼2𝑠)

𝜆+2𝜇

𝐸𝑖

𝑘𝑖𝑅
𝐾3/2(𝑘𝑖𝑅)) 𝐵𝑖(𝑠) = 0 (62) 

 

∑3
𝑖=1 (𝛽3𝐺𝑖 − 𝛽2 − 𝛽8𝐸𝑖)𝐾1/2(𝑘𝑖𝑅)𝐵𝑖(𝑠) =

𝑃0√𝑅

𝑠
    (63) 

 

Equations (61)-(63) is a system of linear equations with 

Bi(s) as unknown parameters. On solving these equations, 

we get the complete solution of the problem in the Laplace 

transform domain. 
 

4. Numerical Inversion of the Laplace Transforms 

Laplace transformation of the continuous f(t) function 

is presented  

 

f(̅s) = ∫
∞

0
e−stf(t)dt                                                  (64) 

for t > 0 and s = x + iy. 

 

The inversion integral is utilized to identify the actual 

function f(t) when the solution is provided in the Laplace 

domain. 

  

f(t) = ∫
γ+i∞

γ−i∞
e−stf(̅s)ds                                                  (65) 

 

Where, contour should be placed to the right of all f(̅s) 

singularities. The direct Equation (65) integration is usually 

challenging and sometimes not feasible analytically. We 

use a numerical inverse approach based on the Stehfest for 

ultimate solution of the stress distribution, displacement 

temperature in the time domain [29]. In the given approach, 

the inverse f(t) of Laplace f(̅s) is estimated by the 

relationship.  

 

f(t) =
ln  2

t
∑N

j=1 Vj  F (
ln  2

t
j)                                   (66) 

 

Where the following equation is presented Vj: 

  

Vj = (−1)((N/2)+1) ∑min(i,N/2)
k=(i+1)/2

k((N/2)+1)(2k)!

(N/2−k)!  k!  (i−k)!  (2k−1)!
    (67) 

 

 The N parameter is the summation number (63) of 

terms and must be maximized by trial and error. Rising N 

improves the result accuracy to a point and subsequently 

decreases accuracy due to increased round-off errors. All 

parameters’ solutions in the space time domain are 

therefore provided with 

 

𝜃(𝑟, 𝑡) =
ln  2

𝑡
∑𝑁

𝑗=1 𝑉𝑗   𝜃̅ (𝑟,
ln  2

𝑡
𝑗) (68) 

  

𝑢(𝑟, 𝑡) =
ln  2

𝑡
∑𝑁

𝑗=1 𝑉𝑗   𝑢̅ (𝑟,
ln  2

𝑡
𝑗) (69) 

  

𝜎𝑟𝑟(𝑟, 𝑡) =
ln  2

𝑡
∑𝑁

𝑗=1 𝑉𝑗   𝜎̅𝑟𝑟 (𝑟,
ln  2

𝑡
𝑗) (70) 

  

𝜎𝜃𝜃(𝑟, 𝑡) =
ln  2

𝑡
∑𝑁

𝑗=1 𝑉𝑗   𝜎̅𝜃𝜃 (𝑟,
ln  2

𝑡
𝑗) (71) 

  

𝑃 =
ln  2

𝑡
∑𝑁

𝑗=1 𝑉𝑗   𝑃̅ (𝑟,
ln  2

𝑡
𝑗) (72) 

 

5. Numerical Results and Discussion 

The copper material was chosen for purposes of 

numerical evaluations and the constants of the problem 

were taken as following Table 1. 

The numerical calculation and graphs are carried out 

with the help of computational mathematical software PTC 

Mathcad Prime-7.0.0.0 

Figure 2-6 shows the variation of the temperature field, 

displacement and stresses vary with different values of 

times, t = 0.25, 0.50, 0.75, 1 with fractional-order parameter 

α = 1. Figure 2 has been plotted to illustrate the variation of 

temperature field in radial direction with different time 

parameters. The temperature filed start with the maximum 

value (in magnitude) and then gradually decreases with 

increase the radius. Figure 3 shows that the displacement 

increases as time t increases for r ≤ 0.2 and its remains 

constant for r ≥ 0.2. Figure 4 shows that variation of radial 

stress in radial direction, it is clear that initially radial 

stresses decreases within region 0 ≤ r ≤ 0.1 and increases 

within the region 0.1 ≤ r ≤ 1 with increases time. Figure 5 
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shows that the value of angular stress increases with an 

increase in time t along the radial direction. 

 

Table 1. Material constants. 

Physical constants Value 

Reference uniform temperature (T0) 293 K 

Thermal diffusivity (c) 84.18 m2/s 

Thermal conductivity (𝑘′) 386 W/(m. K) 

Density (ρ) 8954 kg/m3 

Lame’s constants (μ) 3.86 × 1010  kg/(m. s2) 

Lame’s constants (λ) 7.76 × 1010  kg/(m. s2) 

Coefficients of linear thermal expansion (αt) 1.78 × 10-5 K-1 

Coefficients of linear diffusion expansion(αc) 1.98 × 10-4  m3/kg 

Specific heat at constant strain (CE) 383.1  J/(kg. K) 

Magnetic permeability (μ0) 4π × 10-7  H/m 

Applied Magnetic field (H0) 107/  4π H/m 

Coefficient describing the measure of 

thermoelastic diffusion effects (a) 

1.2× 104 m2/(K. s2) 

Coefficient describing the measure of 

thermoelastic diffusive effects (b) 

0.9× 106  m5/(kg. s2) 

Diffusion coefficient (D) 0.85× 10-8   kg/m3.s 

Thermal relaxation time (t0) 0.2 s 

Diffusion relaxation time (t1) 0.02 s 

Component of thermoviscoelastic relaxation 
time (α1) 

0.06 s 

Component of thermoviscoelastic relaxation 

time (α2) 

0.09 s 

Figure 6-9 shows the variation of the temperature, 

displacement and stress with different values of fractional-

order parameter α at time t = 0.5. Figure 6 depicts the 

variation of temperature distribution along radial direction 

with t = 0.5 for different values of parameter α. Also, it be 

seen that, the fractional parameter has an increasing effects 

on the magnitude of this field. The profile of displacement 

distribution at t = 0.5 for different values of fractional-order 

parameter α is displaced in figure 7. The fractional-order 

parameter is found to have decreasing effects on this 

distribution. The radial and angular stresses σrr and σθθ are 

presented in figure 8 and 9 respectively, to investigate the 

effects of fractional parameter α. It is noticed that the 

stresses σrr and σθθ increases with decreasing the fractional-

order parameter α. 

 
Figure 2. Temperature distribution at α = 0.5 and different 

values of t. 

 
Figure 3. Displacement distribution at α = 0.5 and different 

values of t. 

Figure 4. Radial stress distribution at α = 0.5 and different 

values of t. 

 

 
Figure 5. Angular stress distribution at α = 1 and different 

values of t. 
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Figure 6. Temperature distribution at t =0.5 and different 

values of α. 

 

 
Figure 7. Displacement distribution at t =0.5 and different 

values of α. 

 

 
Figure 8. Radial stress distribution at t =0.5 and different 

values of α. 

 
Figure 9. Angular stress distribution at t = 0.5 and different 

values of α. 

 

 

5. Conclusion 

A two-dimensional boundary value problem based on 

the theory of generalised magneto-thermo-viscoelasticity 

for a spherical cavity with one relaxation time based on a 

fractional order model is solved. The spherical cavity of a 

solid surface is taken to be traction free with subject to both 

heating and an external magnetic field. Theoretical and 

numerical results reveal, that all the fractional-order 

parameters and time have a salient effect on the considered 

physical variables. The following concluding remakes can 

be considered according to the results of the present study. 

1. In figure 2–5, the effect of time is quite pertinent on all 

the fields and can easily be noticed from the figures. 

The increase in the values of time results in increases in 

the numerical values of the physical variables. Hence, it 

has a increasing effect. 

2. In figure 6–9, we observe that the, the fractional-order 

parameter strongly affects the physical quantities. It has 

a decreasing effect (in terms of magnitude) a profile of 

temperature, displacement and stresses. 

3. The fractional order parameter 0 < α < 1, 1 < α < 2 and 

α = 1 indicates the weak, strong and normal 

conductivity respectively. For a normal conductivity α = 

1 the results coincide with all the previous of 

application that are taken in the context of the 

generalised thermoelasticity with one relaxation time in 

the various field. 

4. The results presented in this paper will be very helpful 

for researchers concerned with martial science, and 

designers of new materials, etc. 
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Nomenclature (List of Symbols): 

 

J   current density vector (A/m2) 

E   induced electric field (V/m) 

H0   applied Magnetic field (N.s/C.m) 

h  the perturbation occurred in the total magnetic             

field by induction (Tesla) 

ui  components of displacement vector (m) 

T  absolute temperature (K) 

T0  reference uniform temperature (K) 

C concentration of the diffusive material in the   

elastic body (m2/s)  

αt coefficients of linear thermal expansion (K-1) 

αc coefficients of linear diffusion expansion  (K-1) 

k’ thermal conductivity (W/m.K) 

CE specific heat at constant strain (J/Kg.K) 

e cubical dilation (K-1) 

t0 thermal relaxation time (s) 

t1 diffusion relaxation time (s) 

Fi     component of Lorentz force (Tesla) 

P chemical potential (J/kg) 

D diffusion coefficient (kg/m3.s) 

c speed of propagation of isothermal elastic waves 

qr  heat flux in the radial direction(W/m2) 

a coefficient describing the measure of thermoelastic 

diffusion effects 

b coefficient describing the measure of thermoelastic 

diffusive effects 

α1,   component of thermoviscoelastic relaxation time(s) 

α2     component of thermoviscoelastic relaxation time(s) 

θ=T−T0    temperature increment such that |θ/T0|= 1 (K) 

Greek symbols 

λ , μ   Lame’s constants (GPa) 

μ0   magnetic permeability (H/m) 

ρ  density (kg/m3) 

δij   Kronecker’s delta tensor 

σij   components of stress tensor 

Abbreviations 

1D one-dimensional (m) 

2D  two-dimensional (m) 
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