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Abstract 

 

The equations connecting speed of sound with other thermodynamic properties of gases and liquids, suitable for 

numerical integration with respect to temperature, density, and pressure, along isentropes, are derived. Algorithms of 

their solution are given too. They are tested with several substances (e.g., Ar, N2, O2, CH4, CO2, and H2O) in wide 

ranges of pressure and temperature. Average absolute deviation of thermal properties is 0.0129% in supercritical 

gaseous phase, 0.0308% in transcritical gaseous phase, and 0.0009% in liquid phase. Corresponding deviations of 

caloric properties are 0.1706%, 0.1863%, and 0.0702%, respectively. 
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1. Introduction 
 Thermodynamic properties of gases above their critical 

temperature may be derived from speed of sound if pressure 

and temperature, or density and temperature, are used as 

independent variables. In the former case, initial values of 

dependent variables (e.g., density and isobaric heat capacity) 

are specified along the lowest temperature at several 

pressures. In the later case, initial values of dependent 

variables (e.g., pressure and isochoric heat capacity) are 

specified along the lowest temperature at several densities. 

Numerical integration is performed with respect to 

temperature in both cases, but along isobars and isochores, 

respectively. When speed of sound is measured in the same 

pressure range at each temperature, these data are best 

exploited if integration is performed along isobars [1, 2]. For 

initial values specified in the same pressure range, 

integration along isochores will cover wider pressure range 

[3]. In this case, initial values may also be specified along 

the lowest density (e.g., in the limit of ideal gas) at several 

temperatures, and integration performed with respect to 

density along isotherms [4]. However, in order to retain 

stability of the solution, boundary values are needed along 

the lowest temperature(s). The same sets of initial values 

may be used to carry out integration below critical 

temperature. In this case, pressure [2] and density [3, 5] are 

divided by their corresponding values at saturation, at each 

temperature, and these quantities are used as new 

independent variables instead of pressure and density, 

respectively. 

 When it comes to liquid phase above critical pressure, 

temperature and pressure are used as independent variables. 

Initial values of dependent variables (e.g., density and 

isobaric heat capacity) are specified along the lowest 

pressure at several temperatures. Numerical integration is 

performed with respect to pressure along isotherms [6, 7]. 

The same set of initial values may be used to carry out 

integration below critical pressure. In this case integration is 

performed along paths whose shapes gradually change from 

that of an isotherm to that of the saturation line [6]. Also, 

initial values may be specified along the lowest pressure at 

several temperatures and integration performed along the 

same paths in opposite direction, or along isotherms with 

temperature range being extended to the saturation line in 

each integration step [7]. However, in order to retain stability 

of the solution in two later approaches, boundary values are 

needed along the saturation line. Initial values may also be 

specified along the saturation line and integration performed 

with respect to pressure along isotherms, but with front of 

integration having shape of the saturation line rather than that 

of isobar [6]. 

 If all derivatives appearing in equations connecting speed 

of sound with other thermodynamic properties (of gases and 

vapors) are expressed in terms of finite differences [8] or 

cubic splines [9], the sets of nonlinear algebraic equations 

are obtained. They can be solved for pressure and heat 

capacity in very wide ranges of temperature and density. 

Unlike an approach based on numerical integration, which 

requires initial values not only of thermal but also of caloric 

properties (or of thermal ones but of Neumann type), this 

approach requires only boundary values of thermal 

properties of Dirichlet type. However, they have to be 

imposed along overall boundary (e.g., along two isotherms 

and two isochores). 

 For initial values specified in the same pressure range, 

integration along isentropes in gaseous phase will cover 

wider pressure range than integration along isochores, as one 

can see from example given at Figure 1. Here, temperature 

and entropy are used as independent variables. 

If density and entropy are used as independent variables, 

domain of integration could be increased even further, as one 

can see from example given at Figure 2. 

Similarly, for initial values specified in the same 

temperature range, integration along isentropes in liquid 

phase will cover wider temperature range than integration 
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along isotherms, as one can see from example given at Figure 

3. Also, isentrope on the left side of integration domain 

crosses melting line (not seen on the figure) at much higher 

pressure than corresponding isotherm does. Here, pressure 

and entropy are used as independent variables. 

 

 
Figure 1. Integration with respect to T at p = const., v = 

const., and s = const., for methane in gaseous phase [22]. 

 

 
Figure 2. Integration with respect to  at s = const., for 

methane in gaseous phase [22]. 

 

Integration with respect to pressure at T = const. in 

supercritical gaseous phase is not recommended in general, 

since density increases very quickly with pressure at fixed 

temperature, and this becomes even more emphasized as 

critical point is approached. This area of thermodynamic 

surface could be avoided if integration is conducted at s = 

const., as one can see from example given at Figure 4. 

While entropy is not measurable quantity, it still can be 

calculated from thermal properties and heat capacity along 

initial isochore or isobar. Also, it may be used explicitly or 

implicitly (e.g., in terms of other properties). 

 

 
Figure 3. Integration with respect to p at T = const. and s = 

const., for methane in liquid phase [22]. 
 

 
Figure 4. Integration with respect to p at T = const. and s = 

const., for methane in gaseous phase [22]. 
 

2. Theory 

 The speed of sound is an intensive property whose value 

depends on the state of the medium through which sound 

propagates. Experiments indicate that the relation between 

pressure and density across a sound wave is nearly 

isentropic. The expression for the speed of sound reads [10] 

 

  

(1) 
 

 

where: u is the speed of sound, p is the pressure,  is the mass 

density, and s is the specific entropy. However, Eq. (1) may 

not be solved for  since u is not measured along isentropes 

but rather along isotherms. To overcome this, additional 

property relations have to be included. 
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2.1 Temperature and entropy as independent variables 
2.1.1 Isothermal and isochoric derivatives 

According to the following rule of differential calculus 

 

 (2) 
 

one can write 

 

 (3) 
 

where T is the thermodynamic temperature. According to 

another rule 
 

 (4) 
 

one can also write 

 

 (5) 
 

Combining (1), (3), and (5) one obtains 

 

 (6) 
 

 (7) 
 

If rule (2) is applied to the isochoric derivative in (6), it is 

obtained 

 

 (8) 
 

The second order isochoric derivative in (8) may be obtained 

from the following thermodynamic relation [10] 

 

 (9) 
 

where cv is the specific heat capacity at constant volume, 

which may be obtained from 
 

 (10) 
 

and finally 

 

 (11) 
 

where cp is the specific heat capacity at constant pressure. 

2.1.2 Isothermal and isobaric derivatives 

According to the rules (2) and (4) one can also write 

 

 (12) 
 

 (13) 
 

Combining (1), (12), and (13) one obtains 

 

 (14) 
 

 (15) 
 

If rule (2) is applied to the isobaric derivative in (14), it is 

obtained 

 

 (16) 
 

The second order isobaric derivative in (16) may be obtained 

from the following thermodynamic relation [10] 

 

 (17) 
 

The specific heat capacity at constant pressure may be 

obtained from 

 

 (18) 
 

and finally 

 

 (19) 
 

2.2 Density and entropy as independent variables 

2.2.1 Implicit use of entropy 

In this case, one can start from the relation [10] 

 

 (20) 
 

and the following property relation [10] 

 

 (21) 
 

In order to eliminate s at R.H.S. of (21), one can use rule (4) 

to obtain 
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 (22) 
 

If (22) is combined with the following relation [10] 

 

 (23) 
 

it becomes 

 

 (24) 
 

Combining (21) and (24) one obtains 

 

 (25) 
 

However, Eqs. (20) and (25) may not be solved for p and T 

since cv is also unknown. This may be overcome by 

introducing the following relation [10] 
 

 (26) 
 

Having in mind rule (2) one can write 

 

 (27) 
 

Combining (26) and (27) one obtains 

 

 (28) 
 

When cv is known, cp may be calculated from 
 

 (29) 
 

2.2.2 Explicit use of entropy 

In this case, one can also start from the relation [10] 

 

 (30) 
 

and the following property relation [10] 

 

 (31) 
 

Now, cv is calculated from [10] 

 

 (32) 
According to the rule (2), one can write 

 

 (33) 
 

Combining (30), (31), and (33) one obtains 

 

 (34) 
 

and finally [10] 

 

 (35) 
 

2.3 Pressure and entropy as independent variables 

In this case, one can start from the relation [10] 

 

 (36) 
 

and the following property relation [10] 

 

 (37) 
 

In order to eliminate s at R.H.S. of (37), one can use rule (4) 

to obtain 
 

 (38) 
 

If (38) is combined with the following relation [10] 

 

 (39) 
 

it becomes 

 

 (40) 
 

Combining (37) and (40) one obtains 

 

 (41) 
 

However, Eqs. (36) and (41) may not be solved for  and T 

since cp is also unknown. This may be overcome by 

introducing the following relation [10] 
 

 (42) 
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Having in mind rule (2) one can write 

 

 (43) 
 

Combining (42) and (43) one obtains 

 

 (44) 
 

When cp is known, cv may be calculated from 
 

 (45) 
 

3. Algorithms of solution 

In this paper it is supposed that practical speed of sound 

measurements are conducted in p–T domain bounded by two 

isentropes and two isotherms, isochores, or isobars, 

respectively, or in any other domain from which speed of 

sound data can be mapped into the former domains with 

negligible error. Since true isentropes are yet to be found, 

approximate ones are generated by a cubic equation of state 

(EOS). For that purpose the following relation is used 
 

 (46) 
 

where entropy change, s2 – s1, between any two states 1 and 

2 is represented as a sum of residual entropy change, s2
R – 

s1
R, and ideal gas entropy change sig. The former is obtained 

from an EOS, while the later is given by 
 

 (47) 
 

where cp
ig is the ideal gas heat capacity. Since along an 

isentrope it holds 
 

 (48) 
 

Eqs. (47) and (48) are replaced into (46), and the resulting 

equation 

 

 (49) 
 

is solved for p2 or T2, given p1 and T1. Since Eq. (49) is 

nonlinear with respect to p2 and T2, the solution is obtained 

by iteration. If u is specified along isotherms or along 

isochores, specific volume or temperature is iterated, 

respectively, and pressure is obtained from an EOS directly, 

since the cubic EOSs are pressure explicit. However, if u is 

specified along isobars, temperature is iterated in outer loop 

(finding zero of Eq. (49)), and specific volume in inner loop 

(finding zero of an EOS). 
 

 

 

3.1 Temperature and entropy as independent variables 
 When it comes to gaseous phase above critical 

temperature, the most common way of deriving 

thermodynamic properties from speed of sound is the one 

based on numerical integration with respect to temperature, 

along paths of constant density. Although this approach is 

more demanding (e.g., computationally and experimentally) 

than the one conducted along paths of constant pressure, it is 

proved to be more stable. The main source of instability in 

the later approach are isobaric derivatives, which are 

estimated less accurately than isochoric ones in the former 

approach. The aim of the following two algorithms is to 

check out if isochoric derivatives also introduce less error 

than isobaric ones when entropy is used instead of density 

(in the former approach) or pressure (in the latter approach) 

as independent variable. 

 

3.1.1 Isothermal and isochoric derivatives 

 

1. Specify u(p, T) at several isotherms, along several 

isentropes generated by a cubic EOS 
 

2. Specify  and cv or (∂p/∂T) at several pressures along 

isotherm with lowest temperature (T0) 
 

3. Estimate (∂p/∂)T 
 

4. Calculate cv and cp from (10) and (11), respectively 
 

5. Estimate ∂2p/∂T∂ and (∂cv/∂)T 
 

6. Calculate (∂/∂T)s, (∂p/∂T)s, [∂(∂p/∂T)/∂T]s, and 

(∂2p/∂T2) from (6), (7), (8), and (9), respectively 
 

7. Calculate , p, and (∂p/∂T) at T=T0+T by numerical 

integration of (6), (7), and (8), respectively 
 

8. Interpolate EOS pressures along EOS isentropes to T 
 

9. Interpolate u along EOS isentropes to T 
 

10. Interpolate u from EOS pressures to those from step 7 
 

11. Repeat steps 3 to 10 until final temperature is reached 

 

3.1.2 Isothermal and isobaric derivatives 

 

1. Specify u(p, T) at several isotherms, along several 

isentropes generated by a cubic EOS 
 

2. Specify p and cp or (∂/∂T)p at several densities along 

isotherm with lowest temperature (T0) 
 

3. Estimate (∂/∂p)T 
 

4. Calculate cp and cv from (18) and (19), respectively 
 

5. Estimate ∂2/∂T∂p and (∂cp/∂p)T 
 

6. Calculate (∂p/∂T)s, (∂/∂T)s, [∂(∂/∂T)p/∂T]s, and 

(∂2/∂T2)p from (14), (15), (16), and (17), respectively 
 

7. Calculate p, , and (∂/∂T)p at T=T0+T by numerical 

integration of (14), (15), and (16), respectively 
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8. Interpolate EOS pressures along EOS isentropes to T 
 

9. Interpolate u along EOS isentropes to T 
 

10. Interpolate u from EOS pressures to those from step 7 
 

11. Repeat steps 3 to 10 until final temperature is reached 

 

3.2 Density and entropy as independent variables 

Thermodynamic properties of gases above their critical 

temperature may be derived from speed of sound also if 

numerical integration is conducted with respect to density, 

along paths of constant temperature. Since this approach 

requires boundary values along the lowest temperature(s), 

the aim of the following two algorithms is to check out if the 

solution is stable without boundary values imposed when 

integration is conducted along isentropes instead of 

isotherms. It would be also interesting to compare algorithm 

which uses entropy explicitly to the one which uses entropy 

implicitly, because the former solves first order PDEs, while 

the later solves second order PDEs. Since both temperature 

and pressure are dependent variables here, it would be also 

interesting to see if fitted values of speed of sound could 

successfully replace interpolated ones. 

 

3.2.1 Implicit use of entropy 

 

1. Specify u(p, T) at several isochores and several isentropes 

generated by a cubic EOS 
 

2. Fit u from step 1 to a suitable function of p and T 
 

3. Specify p and cv at several temperatures along isochore 

with lowest density (0) 
 

4. Estimate (∂p/∂T), (∂2p/∂T2), and (∂cv/∂T) 
 

5. Calculate (∂p/∂)s, (∂/∂)s, and (∂cv/∂)s from (20), (25), 

and (28), respectively 
 

6. Calculate p, T, and cv at =0+ by numerical integration 

of (20), (25), and (28), respectively 
 

7. Calculate cp from (29) 
 

8. Calculate u at p and T from step 6 by a function from step 

2. 
 

9. Repeat steps 4 to 8 until final density is reached 

 

3.2.2 Explicit use of entropy 

 

1. Specify u(p, T) at several isochores and several isentropes 

generated by a cubic EOS 
 

2. Fit u from step 1 to a suitable function of p and T 
 

3. Specify p and cv at several temperatures along isochore 

with lowest density (0) 
 

4. Calculate s from (23) along 0, at temperatures from step 

3, with initial value chosen arbitrarily 
 

5. Estimate (∂p/∂s) and (∂T/∂s) 

6. Calculate (∂p/∂T) = (∂p/∂s) / (∂T/∂s) 
 

7. Calculate cv from (32) 

 
8. Calculate (∂p/∂)T from (34) 
 

9. Calculate cp from (35) 
 

10. Calculate (∂p/∂)s and (∂/∂)s from (30) and (31), 

respectively 
 

11. Calculate p and T at =0+ by numerical integration 

of (30) and (31), respectively 
 

12. Calculate u at p and T from step 11 by a function from 

step 2 
 

13. Repeat steps 5 to12 until final density is reached 

 

3.3 Pressure and entropy as independent variables 

When thermodynamic properties of liquids are derived 

from speed of sound, pressure is always used as a variable 

with respect to which the integration is performed, and the 

other independent variable is usually temperature. 

Integration domain is situated between melting line at the left 

and saturation line at the right, and since these two are not 

isotherms, significant part of the domain is left uncovered. 

However, it can be increased considerably if integration is 

performed along isentropes instead of isotherms. When it 

comes to gaseous phase, integration with respect to pressure 

is not stable, even if isothermal paths are replaced by 

isentropic ones. However, it would be interesting to see if 

isentropic paths combined with approach similar to the one 

tried before [9] may solve the problem, especially having in 

mind aggravating circumstance that boundary values may 

not be specified along isentrope(s). 

 

3.3.1 Numerical integration 

 

1. Specify u(p, T) at several isobars, along several isentropes 

generated by a cubic EOS 
 

2. Specify  and cp at several temperatures along isobar with 

lowest pressure (p0) 
 

3. Estimate (∂/∂T)p, (∂2/∂T2)p, and (∂cp/∂T)p 
 

4. Calculate (∂/∂p)s, (∂/∂p)s, and (∂cp/∂p)s from (36), (41), 

and (44), respectively 
 

5. Calculate , T, and cp at p=p0+p by numerical integration 

of (36), (41), and (44), respectively 
 

6. Calculate cv from (45) 
 

7. Interpolate u along EOS isentropes to p 
 

8. Interpolate u from EOS temperatures to those from step 5 
 

9. Repeat steps 3 to 8 until final pressure is reached 
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3.3.2 Least squares 

 

1. Specify u(p, T) at several isobars, along several isentropes 

generated by a cubic EOS 
 

2. Specify  and cp at several temperatures along isobar with 

lowest pressure (p0) 

 
3. Calculate s from (39) along p0, at temperatures from step 

2, with initial value chosen arbitrarily 
 

4. Guess  along isentropes from step 3 at several pressures 
 

5. Estimate (∂/∂p)s 
 

6. Calculate u from (36) 
 

7. Interpolate T with respect to u and p 
 

8. Estimate (∂T/∂p)s, (∂/∂s)p, and (∂T/∂s)p 
 

9. Calculate (∂/∂T)p = (∂/∂s)p / (∂T/∂s)p 
 

10. Calculate cp from (39) 
 

11. Calculate cv from (45) 
 

12. Calculate f = (∂T/∂p)s + (∂/∂s)p / 2 
 

13. Calculate g = ( f 2) / 2 
 

14. If g > 10–4, calculate new values of  by a least squares 

method 
 

15. Repeat steps 5 to 14 as many times as necessary to obtain 

g ≤ 10–4 
 

4. Results and discussion 

 All interpolations are performed by polynomials [11], 

while derivatives are estimated by cubic splines [12] and 

interpolation polynomials. When both pressure and 

temperature are dependent variables (Algorithms 3.2.1 and 

3.2.2), speed of sound data are fitted to bivariate Chebyshev 

polynomials (with ln(p) and ln(T) scaled between -1 and +1). 

The polynomials coefficients are obtained by method of 

linear least squares with iterative refinement of Björck [13]. 

Numerical integrations are performed by Runge-Kutta-

Verner fifth-order and sixth-order method with adaptive step-

size [14]. In Algorithm 3.3.2, densities are calculated by a 

modified Levenberg – Marquardt method [15 – 17]. 

Algorithms of solution described in Sections 3.1 and 3.2 (for 

gaseous phase) and 3.3 (for liquid and gaseous phase) are 

tested with several substances. Their list and p––T ranges 

covered are given in Tables 1 to 4, 16, 19, and 20. Reference 

properties are generated by corresponding fundamental 

EOSs [18 – 24]. Speed of sound data used are obtained from 

the same EOSs and from measurements [3]. All the results 

obtained as well as the coefficients of Chebyshev 

polynomials (see appendix) are given in separate file as a 

supplement to this paper. 
 Initial values for supercritical gaseous phase (Algorithms 

3.1.1 and 3.1.2) are specified along isotherm with the lowest 

temperature, at 10 equally spaced pressures (see Table 5). 

Reference properties are specified at 16 equally spaced 

isotherms, along 10 isentropes passing through the points 

with initial values. Speed of sound data are specified at the 

same isotherms, but along isentropes generated by Peng-

Robinson (P-R) EOS [25]. All derivatives are estimated by 

cubic splines. Both thermal and caloric properties are derived 

with AADs an order of magnitude smaller if isochoric 

derivatives are used instead of isobaric ones (see Tables 9 

and 10). These AADs are of similar magnitude to those when 

temperature and density [4] or temperature and pressure [1], 

respectively, are used as independent variables. 
 Initial values for supercritical gaseous phase (Algorithms 

3.2.1 and 3.2.2) are specified along isochore with the lowest 

density, at 11 equally spaced temperatures (see Table 6). 

Entropies corresponding to these temperatures are obtained 

from Eq. (23), with initial values chosen arbitrarily. 

Reference properties are specified at 11 isochores, along 11 

isentropes passing through the points with initial values. 

Speed of sound data are specified at isochores and isentropes 

generated by P-R EOS [25]. Derivatives are estimated by 

interpolation polynomials (Algorithm 3.2.1) and cubic 

splines (Algorithm 3.2.2). Both thermal and caloric 

properties are derived with AADs about 50% smaller if 

entropy is used explicitly instead of implicitly (see Tables 11 

and 12). The solution is stable without boundary values 

imposed when integration is conducted along isentropes 

instead of isotherms. Fitted values of speed of sound can 

successfully replace interpolated ones. 
 Initial values for transcritical gaseous phase (Algorithms 

3.1.1 and 3.1.2) are specified along isotherm with the lowest 

temperature, at 10 equally spaced pressures (see Table 7). 

Reference properties are specified at 11 to 15 equally spaced 

isotherms, along 10 isentropes passing through the points 

with initial values. Speed of sound data are specified at the 

same isotherms, but along isentropes generated by P-R EOS 

[25]. All derivatives are estimated by cubic splines. Both 

thermal and caloric properties are derived with AADs 4 to 5 

times smaller if isochoric derivatives are used instead of 

isobaric ones (see Tables 13 and 14). These AADs are of 

similar magnitude to those when temperature and ratio of 

density to saturated vapor density [5], or temperature and 

ratio of pressure to saturation pressure [2], respectively, are 

used as independent variables. 
 Initial values for liquid phase (Algorithm 3.3.1) are 

specified along isobar with the lowest pressure, at 7 to 10 

equally spaced temperatures (see Table 8). Reference 

properties are specified at 9 to 11 isobars, along 7 to 10 

isentropes passing through the points with initial values. 

Speed of sound data are specified at the same isobars, but 

along isentropes generated by P-R EOS [25]. All derivatives 

are estimated by interpolation polynomials. Both thermal 

and caloric properties are derived with AADs of similar 

magnitude to those when pressure and temperature [6, 7] are 

used as independent variables (see Table 15). It is confirmed 

that stability of solution in liquid phase, when integration is 

performed along isentropes, is similar to that along isotherms 

[26]. 
 Initial values for supercritical gaseous phase (Algorithm 

3.3.2) are specified along isobar with the lowest pressure, at 

11 equally spaced temperatures (see Table 17). Entropies 

corresponding to these temperatures are obtained from Eq. 

(39), with initial values chosen arbitrarily. Reference 

properties are specified at 11 isobars, along 11 isentropes 

passing through the points with initial values. Speed of sound 

data are specified at the same isobars, but along isentropes 

generated by P-R EOS [25]. All derivatives are estimated by 
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interpolation polynomials. The results are the same whether 

guessed values of density are generated by reference EOS 

(with simulated error of 5%) or by P-R EOS. Both thermal 

and caloric properties are derived with AADs of similar 

magnitude to those when density and temperature [4, 9] are 

used as independent variables (see Table 18). The solution is 

obtained even without boundary values imposed, but with 

initial values consisting of thermal and caloric properties. 
 Initial values for argon in supercritical gaseous phase 

(Algorithm 3.1.1) are specified along isotherm with the 

lowest temperature, at 11 equally spaced pressures (see Table 

21). Reference properties are specified at 10 isotherms, along 

11 isentropes passing through the points with initial values. 

Speed of sound data [3, 18] are specified at the same 

isotherms, but along isentropes generated by P-R EOS [25]. 

All derivatives are estimated by cubic splines. Similar results 

are obtained with measured and EOS generated speed of 

sound values, when these later are specified in the same (p, 

T) points in which speed of sound measurements are 

conducted (see Table 23). 
 Initial values for carbon dioxide in transcritical gaseous 

phase (Algorithm 3.1.1) are specified along isotherm with 

the lowest temperature, at 8 equally spaced pressures (see 

Table 22). Reference properties are specified at 9 isotherms, 

along 9 isentropes passing through the points with initial 

values. Speed of sound data [3, 23] are specified at the same 

isotherms, but along isentropes generated by P-R EOS [25]. 

All derivatives are estimated by cubic splines. Similar results 

are obtained with measured and EOS generated speed of 

sound values, when these later are specified in the same (p, 

T) points in which speed of sound measurements are 

conducted (see Table 24). 
The fact that similar results are obtained with measured 

and EOS generated speed of sound values, in the last two 

cases, is confirmation that the two sets of speed of sound 

have similar uncertainty. So, why AADs in Tables 9 and 23 

for argon, or 13 and 24 for carbon dioxide, are an order of 

magnitude different? This question may be best answered if 

one takes a closer look at corresponding data sets for argon 

and carbon dioxide. From Table 1 one can see that 

temperature range covered for argon is 160 to 310 K and the 

number of isotherms used is 16, while in Table 20 the 

corresponding range is 156.08 to 350 K and the number of 

experimental isotherms is only 10. Also, from Table 3 one 

can see that temperature range covered for carbon dioxide is 

240 to 480 K and the number of isotherms used is 13, while 

in Table 20 the corresponding range is 250 to 450 K and the 

number of experimental isotherms is only 6. 
 

5. Conclusions 

With only a few initial data, specified at single isotherm, 

isochore, or isobar, it is possible to derive thermal and caloric 

properties of real fluids from speed of sound in a wide p–T 

range if integration paths follow isentropes. While isentropic 

paths enable covering wider pressure range in gaseous phase, 

comparing to isochoric paths, this advantage comes at a 

price. Namely, quicker rise of pressure with temperature 

along isentropes results in higher nonlinearities, which 

introduces additional error during interpolation and 

derivation. It is especially the case when integration is 

conducted with respect to temperature, but somewhat less 

pronounced when integration is conducted with respect to 

density. Besides, selection of appropriate initial temperature 

and initial pressure range, or initial density and initial 

temperature range, is of crucial significance if one wants to 

cover specific area of thermodynamic surface in gaseous 

phase. Since isentropes of liquids have similar shape to 

isotherms in p–T coordinates, the solution stability is similar 

too. However, their positive inclination with respect to 

isotherms enables wider temperature range to be covered. 

Generally, the AADs of the results obtained, with respect to 

corresponding reference data, are such that their 

uncertainties are similar to those of direct measurements. 
 

Nomenclature 

AAD average absolute deviation (%) 
cp  specific heat capacity at constant pressure (J/kgK) 
cv  specific heat capacity at constant volume (J/kgK) 
p  pressure (Pa) 
s  specific entropy (J/kgK) 
T  thermodynamic temperature (K) 
u  speed of sound (m/s) 
v  specific volume (m3/kg) 
 

Greek Letters 

  mass density (kg/m3) 
 

Superscripts 

ig  ideal gas 
R  residual 
 

Abbreviations 

EOS equation of state 

PDE partial differential equation 

P-R Peng-Robinson 

 

Appendix 

 

Table 1. p––T ranges covered in supercritical gaseous 

phase (Algorithms 3.1.1 and 3.1.2). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 0.50 29.5246 15.4656 455.7321 160.0 310.0 

N2 0.35 41.5905 8.6420 381.1771 140.0 290.0 

O2 0.50 41.2324 11.6120 457.2604 170.0 320.0 

CH4 0.50 49.2063 4.9837 231.6339 200.0 350.0 

CO2 0.70 35.1821 11.9116 453.9972 320.0 470.0 

H2O 2.20 51.8782 7.4587 218.9286 660.0 810.0 

 
Table 2. p––T ranges covered in supercritical gaseous 

phase (Algorithms 3.2.1 and 3.2.2). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 5.0 63.5603 243.2643 500.0 160.0 489.4233 

N2 3.5 76.0620 120.9870 375.0 140.0 455.4120 

O2 5.0 73.7194 162.6782 460.0 170.0 470.1185 

CH4 5.0 85.4198 87.76400 240.0 200.0 463.6393 

CO2 7.0 72.2296 178.7401 530.0 320.0 608.2809 

H2O 22.0 98.9995 141.9413 290.0 660.0 957.4060 
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Table 3. p––T ranges covered in transcritical gaseous 

phase (Algorithms 3.1.1 and 3.1.2). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 0.1 21.7206 4.0577 252.3890 120.0 400.0 

N2 0.1 33.2891 3.1089 306.9767 110.0 310.0 

O2 0.1 36.8089 3.1174 358.3584 125.0 365.0 

CH4 0.1 48.0311 1.2617 190.7753 155.0 415.0 

CO2 0.1 19.1436 2.2282 240.7653 240.0 480.0 

H2O 0.1 6.9887 0.4738 22.7240 460.0 720.0 

 

Table 4. p––T ranges covered in liquid phase (Algorithm 

3.3.1). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 5.0 100.0 1053.233 1495.712 90.0 187.7662 

N2 3.5 90.0 604.0069 917.1604 70.0 158.0081 

O2 5.0 80.0 845.5365 1338.650 60.0 176.0196 

CH4 5.0 80.0 323.9083 469.7829 100.0 209.8933 

CO2 7.0 100.0 914.2519 1253.424 220.0 328.1373 

H2O 0.1 900.0 967.4033 1220.401 280.0 402.2188 

 
Table 5. Points with initial values in supercritical gaseous 

phase (Algorithms 3.1.1 and 3.1.2). 

 

 

p (MPa)  

T (K) 
Min Max Step 

Ar 0.50 5.0 0.50 160.0 

N2 0.35 3.5 0.35 140.0 

O2 0.50 5.0 0.50 170.0 

CH4 0.50 5.0 0.50 200.0 

CO2 0.70 7.0 0.70 320.0 

H2O 2.20 22.0 2.20 660.0 

 
Table 6. Points with initial values in supercritical gaseous 

phase (Algorithms 3.2.1 and 3.2.2). 

 

 

T (K)  

 (kg·m–3) 
Min Max Step 

Ar 160.0 260.0 10.0 243.2643 

N2 140.0 240.0 10.0 120.9870 

O2 170.0 270.0 10.0 162.6782 

CH4 200.0 300.0 10.0 87.76400 

CO2 320.0 420.0 10.0 178.7401 

H2O 660.0 760.0 10.0 141.9413 

 

 

 

 

Table 7. Points with initial values in transcritical gaseous 

phase (Algorithms 3.1.1 and 3.1.2). 

 

 

p (MPa)  

T (K) 
Min Max Step 

Ar 0.1 1.0 0.1 120.0 

N2 0.1 1.0 0.1 110.0 

O2 0.1 1.0 0.1 125.0 

CH4 0.1 1.0 0.1 155.0 

CO2 0.1 1.0 0.1 240.0 

H2O 0.1 1.0 0.1 460.0 

 
Table 8. Points with initial values in liquid phase (Algorithm 

3.3.1). 

 

 

T (K)  

p (MPa) 
Min Max Step 

Ar 90.0 135.0 5.0 5.0 

N2 70.0 115.0 5.0 3.5 

O2 60.0 140.0 10.0 5.0 

CH4 100.0 170.0 10.0 5.0 

CO2 220.0 280.0 10.0 7.0 

H2O 280.0 360.0 10.0 0.1 

 
Table 9. Average absolute deviation in supercritical gaseous 

phase (Algorithm 3.1.1). 

 

 

AAD (%) 

 p cp cv 

Ar 0.0006 0.0011 0.0080 0.0061 

N2 0.0094 0.0131 0.0709 0.0575 

O2 0.0051 0.0075 0.0516 0.0374 

CH4 0.0057 0.0112 0.0961 0.0671 

CO2 0.0031 0.0041 0.0270 0.0177 

H2O 0.0059 0.0068 0.0629 0.0340 

 
Table 10. Average absolute deviation in supercritical 

gaseous phase (Algorithm 3.1.2). 

 

 

AAD (%) 

 p cp cv 

Ar 0.0230 0.0431 0.2729 0.1857 

N2 0.0253 0.0383 0.3050 0.2174 

O2 0.0239 0.0352 0.2440 0.1682 

CH4 0.1194 0.1865 1.3816 1.0070 

CO2 0.0275 0.0371 0.2824 0.2234 

H2O 0.0320 0.0399 0.4339 0.3562 
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Table 11. Average absolute deviation in supercritical 

gaseous phase (Algorithm 3.2.1). 

 

 

AAD (%) 

p T cp cv 

Ar 0.0010 0.0033 0.2979 0.1558 

N2 0.0004 0.0014 0.0798 0.0524 

O2 0.0001 0.0004 0.0288 0.0189 

CH4 0.0011 0.0031 0.1798 0.0923 

CO2 0.0002 0.0004 0.0438 0.0299 

H2O 0.0004 0.0010 0.2117 0.1118 

 
Table 12. Average absolute deviation in supercritical 

gaseous phase (Algorithm 3.2.2). 

 

 

AAD (%) 

p T cp cv 

Ar 0.0004 0.0010 0.0490 0.0246 

N2 0.0003 0.0012 0.0658 0.0457 

O2 0.0002 0.0011 0.0616 0.0426 

CH4 0.0006 0.0011 0.0780 0.0467 

CO2 0.0003 0.0007 0.0666 0.0463 

H2O 0.0005 0.0011 0.2469 0.1302 

 
Table 13. Average absolute deviation in transcritical gaseous 

phase (Algorithm 3.1.1). 

 

 

AAD (%) 

 p cp cv 

Ar 0.0071 0.0116 0.0960 0.0663 

N2 0.0031 0.0050 0.0480 0.0306 

O2 0.0138 0.0191 0.1352 0.1030 

CH4 0.0213 0.0285 0.1243 0.0995 

CO2 0.0083 0.0101 0.0739 0.0596 

H2O 0.0016 0.0018 0.0227 0.0212 

 
Table 14. Average absolute deviation in transcritical gaseous 

phase (Algorithm 3.1.2). 

 

 

AAD (%) 

 p cp cv 

Ar 0.0119 0.0178 0.1032 0.0767 

N2 0.0440 0.0618 0.3475 0.2813 

O2 0.0331 0.0456 0.2994 0.2440 

CH4 0.1575 0.2003 1.0555 0.9065 

CO2 0.0149 0.0175 0.1382 0.1157 

H2O 0.0014 0.0016 0.0128 0.0108 

 

 

 

 

Table 15. Average absolute deviation in liquid phase 

(Algorithm 3.3.1). 

 

 

AAD (%) 

 T cp cv 

Ar 0.0001 0.0008 0.0603 0.0256 

N2 0.0001 0.0011 0.0839 0.0418 

O2 0.0010 0.0023 0.0759 0.0479 

CH4 0.0002 0.0011 0.0908 0.0507 

CO2 0.0003 0.0019 0.2212 0.1032 

H2O 0.0004 0.0013 0.0229 0.0186 

 
Table 16. p––T ranges covered in supercritical gaseous 

phase (Algorithm 3.3.2). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 5.0 15.0 63.37348 293.2735 180.0 589.5826 

N2 3.5 14.0 32.52045 204.8415 160.0 535.9944 

O2 5.0 15.0 49.37306 247.1161 190.0 528.8307 

CH4 5.0 15.0 23.28734 122.3224 220.0 521.7476 

CO2 7.0 17.0 70.81165 278.1599 340.0 640.0213 

H2O 22.0 32.0 60.44128 151.0565 680.0 956.5035 

 
Table 17. Points with initial values in supercritical gaseous 

phase (Algorithm 3.3.2). 

 

 

T (K)  

p (MPa) 
Min Max Step 

Ar 180.0 380.0 20.0 5.0 

N2 160.0 360.0 20.0 3.5 

O2 190.0 390.0 20.0 5.0 

CH4 220.0 420.0 20.0 5.0 

CO2 340.0 540.0 20.0 7.0 

H2O 680.0 880.0 20.0 22.0 

 
Table 18. AAD and number of iterations taken in 

supercritical gaseous phase (Algorithm 3.3.2). 

 

 

 

Iterations taken 

AAD (%) 

 T cp cv 

Ar 445 0.0007 0.0033 0.1202 0.0847 

N2 334 0.0026 0.0098 0.2915 0.2311 

O2 445 0.0011 0.0032 0.1399 0.1089 

CH4 445 0.0010 0.0015 0.0466 0.0350 

CO2 445 0.0005 0.0018 0.1001 0.0695 

H2O 556 0.0120 0.0133 0.9247 0.2586 
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Table 19. p––T ranges covered in supercritical gaseous 

phase (Algorithm 3.1.1). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

Ar 0.1 16.5101 3.0975 227.9245 156.08 350.0 

 
Table 20. p––T ranges covered in transcritical gaseous 

phase (Algorithm 3.1.1). 

 

 

p (MPa)  (kg·m–3) T (K) 

Min Max Min Max Min Max 

CO2 0.5 14.4634 11.0975 198.7124 250.0 450.0 

 
Table 21. Points with initial values in supercritical gaseous 

phase (Algorithms 3.1.1). 

 

 

p (MPa)  

T (K) 
Min Max Step 

Ar 0.1 2.1 0.2 156.08 

 
Table 22. Points with initial values in transcritical gaseous 

phase (Algorithms 3.1.1). 

 

 

p (MPa)  

T (K) 
Min Max Step 

CO2 0.5 1.2 0.1 250.0 

 
Table 23. Average absolute deviation in supercritical 

gaseous phase (Algorithm 3.1.1). 

 

 

AAD (%) using measured speed of sound 

 p cp cv 

Ar 0.0325 0.0356 0.1198 0.1760 

 AAD (%) using EOS generated speed of sound 

Ar 0.0319 0.0351 0.1202 0.1761 

 
Table 24. Average absolute deviation in transcritical gaseous 

phase (Algorithm 3.1.1). 

 

 

AAD (%) using measured speed of sound 

 p cp cv 

CO2 0.0845 0.0932 0.5893 0.5254 

 AAD (%) using EOS generated speed of sound 

CO2 0.0340 0.0403 0.3323 0.2874 

 
Chebyshev polynomials in two variables 
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Ti,j  calculated temp. at i-th isochore and j-th isentrope 
Pi,j  calculated pressure at i-th isochore and j-th isentrope 
Ti,j

PR temp. at P-R i-th isochore and P-R j-th isentrope 
Pi,j

PR pressure at P-R i-th isochore and P-R j-th isentrope 
U  speed of sound at Ti,j and Pi,j 
Ci  coefficients of the Chebyshev polynomial 
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