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Abstract 
 

Analysis of transient thermoelastic stress distribution of a thin circular sector disk with a time-fractional derivative 

of order α is proposed. The Neumann types of boundary conditions are used and the integral transform method and 

Caputo fractional derivative are used to obtain the analytical solutions of the temperature, displacement, and 

stresses. Numerical values of temperature, displacement, and stresses are computed for an Aluminum (pure) 

material and presented graphically with help of Mathcad software.  
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1. Introduction  
  Lord et al. [1] introduced the generalized thermoelastic 

theory of dynamical system with one relaxation time, for 

the isotropic body. Green et al. [2] proposed the behavior of 

thermoelastic material without energy dissipation with 

linear and nonlinear theories. Ootao et. al. [3] solved the 3D 

problem for anon-homogeneous hollow circular cylinder 

with moving heat sources in the axial direction and it’s 

transient thermal stresses. Ishihara et al. [4] presented the 

theoretical approach of thermoelastic deformation for a 

circular plate with a partially distributed heat supply. 

Sherief et. al. [5] studied the two-dimensional problem for a 

half-space whose surface is traction-free and subjected to 

the effects of heat sources is considered within the context 

of the theory of thermoelasticity with two relaxation times. 

Podlubny [6] presented the geometrical and physical 

interpretation of fractional integration and fractional 

differentiation. Povstenko [7] proposed the stresses 

corresponding to the fundamental solutions of a Cauchy 

problem for the fractional heat conduction equation in one-

dimensional and two dimensional cases using the Caputo 

fractional derivative. Sherief et. al. [8] discussed the 

problem of a thermoelastic half-space with a permeating 

substance in contact with the bounding plane in the context 

of the theory of generalized thermoelastic diffusion with 

one relaxation time. Povstenko [9] discussed the heat 

conduction with time and space fractional derivatives and 

on the theory of thermal stresses based on this equation. 

Sherief et. al. [10] derived the new theory of 

thermoelasticity using the methodology of fractional 

calculus and the theories of coupled thermoelasticity and of 

generalized thermoelasticity with one relaxation time 

discussed. 

   Gaikwad et. al. [11] studied the quasi-static 

thermoelastic mathematical model for infinitely long 

circular cylinder by using the integral transform technique. 

El-Karamany et. al. [12] introduced the two general models 

of fractional heat conduction for non-homogeneous 

anisotropic elastic solids and the constitutive equations for 

thermoelasticity theory are obtained, uniqueness and 

reciprocal theorems are proved and the convolution 

variational principle is established and used to prove a 

uniqueness theorem with no restriction on the elasticity or 

thermal conductivity tensors except for symmetry 

conditions. Sur et. al. [13] proposed a new theory of two-

temperature generalized thermoelasticity is constructed in 

the context of a new consideration of heat conduction with 

fractional orders. Gaikwad et. al. [14] studied the non-

homogeneous heat conduction problem and its thermal 

deflection due to internal heat generation in a thin hollow 

circular disk. Gaikwad [15] analyzed the thermoelastic 

deformation of a thin hollow circular disk due to a partially 

distributed heat supply. Sur et. al. [16] proposed a new 

mathematical model of thermoelasticity theory in the 

context of a new consideration of heat conduction with 

fractional-order theory. A functionally graded isotropic 

unbounded medium is considered subjected to a 

periodically varying heat source in the context of space-

time non-local generalization of three-phase-lag 

thermoelastic model and Green-Naghdi models. Raslan [17] 

studied the fractional order theory of thermoelasticity to a 

1D problem of an infinitely long cylindrical cavity. Raslan 

[18] introduced the fractional-order theory of 

thermoelasticity to the two-dimensional problem of a thick 

plate whose lower and upper surfaces are traction-free and 

subjected to the given axi-symmetric temperature 

distribution. Gaikwad [19] studied the mathematical 

modeling of thermoelastic problem in a circular sector disk 

subject to heat generation. Gaikwad [20] proposed the two-

dimensional study-state temperature distribution of a thin 

circular plate due to uniform internal energy generation. 

Gaikwad [21] discussed the axi-symmetric thermoelastic 

stress analysis of a thin circular plate due to heat 

generation. Gaikwad [22] studied the time-fractional heat 

conduction problem in a thin hollow circular disk and its 

thermal deflection. 
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In this work, the analysis of transient thermoelastic 

stress distribution of a thin circular sector disk with a time-

fractional derivative of order α is proposed. The Neumann 

types of boundary conditions are used and the integral 

transform method and Caputo fractional derivative are used 

to obtain the analytical solutions of the temperature, 

displacement, and stresses. Numerical values of 

temperature, displacement, and stresses are computed for an 

Aluminum (pure) material and presented graphically with 

help of Mathcad software. It is believed that this particular 

problem has not been considered by anyone. This is a new 

and novel contribution to the field of thermoelasticity. The 

results presented here will be more useful in engineering 

problems particularly, in the determination of the state of 

strain in a thin circular disk constituting foundations of 

containers for hot gases or liquids, in the foundations for 

furnaces, etc. 

 

2. Formulation of the Problem 

Consider a 2D problem for a circular sector disk 

occupying the space 0 ≤ r ≤ a, 0 ≤ φ ≤ φ0 ≤ 2π, 0 ≤ z ≤ h. A 

mathematical model is prepared considering nonlocal 

Caputo type time fractional heat conduction equation of 

order α for a thin circular disk. 

“The definition of Caputo type fractional derivative 

given by [23] 
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For finding the Laplace transform, the Caputo derivative 

requires information of the initial values of the function f(t) 

and its integer derivative of the order k = 1, 2, ..., n – 1 
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Also, the definition of Riemann-Liouville fractional 

derivative given by [23] 
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The temperature of the circular sector disk T(r, φ, z, t) at 

time t satisfying the time fractional differential equation, 
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in 0 ≤ r ≤ a, 0 ≤ φ ≤ φ0 ≤ 2π, 0 ≤ z ≤ h, for t > 0,  

 

 

Figure 1. Geometrical representation of the problem. 

with the boundary conditions, 
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where, k is the thermal conductivity, and ( , , , )RLD T r z t  for 

α>0 is the Riemann-Liouville fractional integral 

( , , , )I T r z t   and initial conditions, 
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Following Gaikwad [20], we assumed that for small 

thickness h the circular disk is in a plane state of stress. In 

fact, “the smaller the thickness of the hollow disk compared 

to its diameter, the nearer to a plane state of stress is the 

actual state”. The displacement equations: 
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Introducing 

Ui = ψ,i , i = 1, 2,                                                              (13) 
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The displacement potential function ( , , , )r z t  is 

expressed as: 
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with 0
r


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
 at r = a for all time t. 

Initially T = ψ = 0 at t = 0                                               (18) 

 

The stresses function rr  and   are: 
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The traction-free boundary conditions as: 

 

0 rr r   for r=a, 0 ≤ φ < φ0,  t > 0      (21) 
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0 r    for 0 ≤ r < a, φ=φ0,  t > 0      (23) 

 

Equations (4) to (23) constitute the problem formulation 

under consideration. 

 

3. Solution of the Heat Conduction Problem 

To obtain the expression for temperature function 

( , , , )T r z t ; firstly we define the finite Fourier transform 

and its inverse transform over the variable z in the range     

0 ≤ z ≤ h defined in [24] as 
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and 1 2, ...   are the positive roots of the transcendental 

equation 
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Applying the finite Fourier transform to equation (4) 

defined in equation (24) and using the conditions (5)-(11), 

we get 
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the boundary conditions 
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Secondly, we define finite Fourier transform and its 

inverse transform over the variable φ in the range                

0 ≤ φ ≤ φ0 as defined in [25] as 
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defined in equation (34) and using the conditions (29)-(33), 
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Lastly, we define finite Hankel transform and its inverse 

over the variable r in the range 0 ≤ r < a as defined in [25] 

respectively as, 
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and 
1 2, ,...  are the positive roots of the transcendental 

equation 
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Applying the finite Hankel transform to equation (38) 

defined in equation (42) and using the conditions (39)–(41), 

we get 
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Applying the Laplace transform and their inverse to 

equation (46), we get 
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Finally, taking the inverses defined in (43), (35) and 

(25) of equation (50), we obtain the required temperature 

as: 

1 0 2
1 1 2 2

2

2
2 2

2

1
( , , , ) ( , ) ( , ) ( , )

1

 

 


 

  
 

   
        

    

 m p

m p

m p

m p mn

T r z t K r K K z

c
r

E k t b
r







    


 


 

(51) 

where 


0

1 0 1

0 0

1 2

0 0 0

0 1 3

0 0 0

. . ( , ) ( , ) ( , ). ( , , ).

2
. . ( , ) ( , ). ( , , ).

2
. . cos( ) ( , ) ( , ). ( , , ).

2
. .

  

  

  

      

       

       



 

 

 

h

mn m p

z

a h

m p

r z

a h

m p

r z

p

b c a K a K K z f z t d dz

c r K r K z f r z t dr dz

c r K r K z f r z t dr dz

c





     

  


   





0

0

1 0 4

0 0

1 0 5

0 0

( , ) ( , ). ( , , ).

2
. .cos( ). ( , ) ( , ). ( , , ).

  

  

      

       

 

 

a

m

r

a

p p m

r

r K r K f r z t dr d

c h r K r K f r z t dr d









   

     


                                                                                         (52) 

and 

 1 0( , ) ( , )





m mK r K r
r

                                               (53) 

 

Using equation (51) in equation (17) the displacement 

function ψ, as follows: 
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Equation (54) becomes: 
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Using equation (55) in equations (19)–(20) we obtain 

the thermal stresses as: 
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where   
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4. Numerical Results and Discussion 
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where r is the radius and A > 0. 

 

4.1 Dimension 

Radius of a circular sector disk a = 1 m, 

Thickness of circular sector disk h = 0.1 m, 

Portion of circular sector disk φ0 = 2700, 
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Central circular path of disk in radial and axial 

directions: r1 = 1 m, and z1 =0.05 m and φ0 = 1350. 

The first five positive root of the transcendental 

equation J1(βma) = 0 as defined in [25] are β1 = 3.8317,     

β2 = 7.0156, β3 = 10.1735, β4 = 13.3237, β5 = 16.470. The 

pure aluminum material was chosen for purposes of 

numerical evaluations and the constants of the problem 

were taken as following table 1. 

 

Table 1. Material Constants. 

Physical constants Value 

Thermal diffusivity (c) 84.18 m2/s 

Thermal conductivity (k) 204 W/(m. K) 

Young’s modulus (E) 70 GPa 

Coefficient of thermal expansion( at ) 22.2 × 10−6 K-1 

Specific heat (cp ) 896 J/(kg. K) 

Lame’s constants (μ)  26.67 GPa 

Poisson’s ratio (ν) 0.35 

Density (ρ) 2707 kg/m3 

 

The numerical calculation and graphs have been carried 

out with help of computational mathematical software [26] 

PTC Mathcad Prime-6.0. Figure 2-5 shows the variation of 

temperature, displacement, stresses in radial distance r at 

instants α = 0.50 for time parameter t = 0.25, 0.50, 0.75, 1. 

From figure 2. The temperature profile increases within the 

region 0 ≤ r ≤ 0.4, 0.7 ≤ r ≤ 1 and decreases within the 

region 0.4 ≤ r ≤ 0.7 in the radial direction. Figure 3. 

indicates the variation of displacement along the radial 

direction, it is clear that displacement decreases within the 

region 0 ≤ r ≤ 0.4, 0.7 ≤ r ≤ 1 and increases within the 

region 0.4 ≤ r ≤ 0.7 with increasing the radius. Figure 4. 

Shows the radial stress distribution, it is observed that stress 

distribution decreases within the region 0 ≤ r ≤ 0.5,          

0.8 ≤ r ≤ 1 and increases within the region 0.5 ≤ r ≤ 0.8 

with increasing the radius. Figure 5. indicates the 

circumferential stress distribution in the radial direction, it 

is observed that it will decrease in the region 0 ≤ r ≤ 0.2, 

0.5 ≤ r ≤ 0.8 and increase within the region 0.2 ≤ r ≤ 0.5, 

0.8 ≤ r ≤ 1. 

 

Figure 6-9, depicts the temperature, displacement, and 

stresses in radial direction at time t = 0.50 for different 

values of α = 0.5, 1, 1.5, 2. From Figure 6. We can see that 

temperature distribution increases in the region 0 ≤ r ≤ 0.4, 

0.7 ≤ r ≤ 1 and decreases within the region 0.4 ≤ r ≤ 0.7 

with the value of α increase with increasing the radial 

distance. Figure 7. indicates the displacement in the radial 

direction with different fractional-order parameters, it is 

clear that it will decrease in the region 0 ≤ r ≤ 0.4,            

0.7 ≤ r ≤ 1 and increase within the region 0.4 ≤ r ≤ 0.7 with 

the value of α increase. From Figure 8. the radial stress 

distribution decreases with increasing the value of α in the 

region 0 ≤ r ≤ 0.5, 0.8 ≤ r ≤ 1 and increases within the 

region 0.5 ≤ r ≤ 0.8 with increasing the radius. Figure 9. 

indicates the circumferential stress distribution, it will 

decrease with increasing the α in the region 0 ≤ r ≤ 0.2,   

0.5 ≤ r ≤ 0.8 and increase in the region 0.2 ≤ r ≤ 0.5,        

0.8 ≤ r ≤ 1 in the radial direction. 

 

 
Figure 2. Temperature distribution at α = 0.5 and           

different values of t. 

 

 
 

Figure 3. Displacement distribution at α = 0.5 and different 

values of t. 

 

 
 

Figure 4. Radial stress distribution at α = 0.5 and different 

values of t. 
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Figure 5. Circumferential stress distribution at α = 0.5 and 

different values of t. 

 

 
Figure 6. Temperature distribution at t =0.5 and different 

values of α. 

 

 
Figure 7. Displacement distribution at t =0.5 and different 

values of α. 

 

 
Figure 8. Radial stress distribution at t =0.5 and different 

values of α. 

 

 
Figure 9. Circumferential stress distribution at t =0.5 and 

different values of α. 

 

5. Conclusion 

This article analyzed the temperature, displacement, and 

thermal stresses for a circular sector disk occupying the 

space 0 ≤ r ≤ a, 0 ≤ φ ≤ φ0 ≤ 2π, 0 ≤ z ≤ h. The general 

solution obtained from finite Hankel, Fourier, and Laplace 

transform and its inverses. Figure 2-5, shows the 

temperature, displacement, and thermal stresses at α = 0.5 

for times t = 0.25, 0.50, 0.75, 1. 

1. From the figures of temperature and 

displacement, we observed that the direction of 

heat flow and direction of body displacement 

are opposite and they are inversely 

proportionally to each other. 

2. From the figures of radial and circumferential 

stresses, it develops the tensile and 

compressive stresses in the radial direction. 

3. The fractional-order parameter 0 < α < 1,         

1 < α < 2 and α = 1 indicates the weak, strong, 

and normal conductivity respectively. 

4. From figures 6-9, we see that the time-

fractional derivatives play a significant role in 

all quantities in the given field and changes in 
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the values of the parameter α. This work may 

prove useful in material science, designers, 

real-life engineering problems, physicists, and 

those working to further develop the theory of 

fractional-order thermoelasticity. 

 

Acknowledgements: 

The authors are grateful thanks to Chhatrapati Shahu 

Maharaja Research, Training and Human Development 

Institute (SARTHI) for awarding the Chief Minister 

Special Research Fellowship - 2019 (CMSRF - 2019). 

 

Nomenclature (List of Symbols): 

 

at  linear coefficient of thermal expansion (K-1) 

c thermal diffusivity (m2.s-1) 

cp specific heat at constant strain (J/Kg.K) 

E cubical dilation (K-1) 

k thermal conductivity (W/m.K) 

T  absolute temperature (K) 

Ui  Components of displacement vector (m) 

Greek symbols 

μ  Lame’s constants (GPa) 

ν Poisson’s ratio 

ρ density (kg/m3) 

ψ displacement potential function 

δij  Kronecker’s delta tensor 

σij  components of stress tensor 

σrr  radial stress (Pa) 

σθθ  circumferential stress (Pa) 

Abbreviations 

1D one-dimensional (m) 

2D  two-dimensional (m) 

3D three-dimensional (m) 
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