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Abstract  
 

Thermo-economics analysis was used to identify the most economic distillation hybrid configuration to 

dehydrate bioethanol mash (12 wt%) to fuel grade (99.5 wt%) based on economic objective of minimization of 

operating cost in this work. Three different hybrids of THIDC with azeotropic and, extractive distillation units 

were assessed using similar feed and product specifications of 1200 kmol/h (12 wt% ethanol) and 55 kmol/h 

(99.5 wt% ethanol) respectively . The six hybrid configurations were simulated using Aspen Plus ®. The hybrid 

of THIDC with conventional extractive distillation (THEX1) was shown to have the lowest irreversibility rate 

(lost work) and highest exergetic efficiency followed by the hybrid containing thermally extractive sequence 

(THEX3). The latter also has the lowest energy consumption. However, economic evaluation showed that 

thermally coupled extractive distillation  hybrid (with THIDC) is the most attractive hybrid configuration 

dehydrating bioethanol to fuel grade at commercial scale with the highest return on investment (ROI) and the 

least annual product cost. This indicates its economic attractiveness when compared with the other hybrids 

considered in this work.  The trade-off existing between economic and exergy efficiency favors the selection of 

THEX3 as the preferred choice for bioethanol refining among all the six hybrids investigated.  

 

Keywords: Totally heat integrated distillation column; lost work; azeotropic distillation; extractive distillation; 

exergy efficiency; product cost. 

 

1. Introduction 

Anhydrous ethanol production has become one of the 

most important issues all over the world. This is due to the 

great efforts directed to the use of biofuels and reduction in 

pollution and environmental effects of fossil fuels.  

The process of anhydrous ethanol production comprises 

three main steps: fermentation, distillation and dehydration 

[1]. Bioethanol can be produced from sugar, starch or 

cellulosic feed stock by fermentation. The major problem 

associated with refining of resulting ethanol to fuel grade is 

the energy consumption cost. The 10-20 wt% ethanol 

obtained after fermentation [2,3] could only be distilled to 

maximum of 95.6 wt% due to the formation of azeotrope; 

thus the removal of part or all of the remaining 4.4 wt% 

water to obtain fuel grade is usually carried out using one of 

the following separation techniques: azeotropic distillation, 

extractive distillation, pervaporation and pressure swing 

molecular sieves adsorption processes [4]. 

The use of  hybrid separation systems provide means of 

achieving cheaper, easier and enhanced separation by 

linking distillation unit to any of the dehydration processes 

mentioned above. 

Exergetic and economic analysis provides useful 

information for identification and quantitative measure of 

the thermodynamic imperfections in processes (as a result 

of production of entropy) as well as cost implication of the 

operations. The result of thermodynamic (exergy) analysis 

may be in line with those of economic analyses when the 

thermodynamic cost optimum takes precedence over 

maximum thermodynamic efficiency in process 

specification [5]. The ultimate aim of the analysis is to 

obtain an energy efficient process possessing minimum 

capital and operating cost.  

Many works in this field focused on reduction in energy 

consumption and efficiency improvements of either a 

standalone unit or the hybrid unit (i.e. distillation and 

dehydration units). In the area of energy requirement 

several researchers worked to reduce energy consumption 

of either distillation stand alone or hybrid units containing 

azeotropic, extractive or pervaporation unit [1,6,7,8,2]. The 

hybrid configurations of distillation with three extractive 

sequences were compared based on energy requirement and 

second law efficiency on the basis of similar feed and 

product specifications [9]. Several attempts were made to 

study and investigate bioethanol refining using molecular 

sieves and to investigate the effects of several operating 

parameters for process improvements [10,11,12,13]. 

Bioethanol refining was also studied using hybrid 

distillation-pervaporation process and the serially connected 

module was chosen as the best [14]. In addition, 

distillation-pervaporation hybrid was studied using  

combined Aspen-Plus
®
 and Excel visual basic for 

application which provided not only design tool but 

optimization procedure [15].  

Furthermore, works in energy and economic analysis of 

bioethanol refining processes were carried out for the 

purpose of techno-economic comparison of energy usage 

between hybrids. Among such is the techno-economic 

comparison of energy usage between hybrids of azeotropic 

distillation and pervaporation with conventional distillation 

column [16]. It was found that the hybrid incorporating 

pervaporation consumes 52.4 % less energy than that 
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containing azeotropic distillation. Analysis was carried out 

to establish the most energy efficient among conventional, 

Petlyuk and thermally coupled extractive distillation 

sequences for bioethanol purification to 99.5 wt% [17]. 

Thermally extractive sequence recorded about 30 % 

reduction in energy consumption. However, energy saving 

and capital cost evaluation in distillation column sequences 

with divided wall was carried out and showed that divided 

wall column  gave significant energy reduction with less 

than 30 % capital cost savings [18]. 

In all of these previous works the choice of the 

distillation column type that formed the hybrid with the 

dehydrating unit appeared to have been made arbitrarily.      

 However, totally heat integrated distillation column 

(THIDC) was identified as the best of the distillation 

column types for bioethanol separation [19]. The other four 

distillation column types studied were the simple 

conventional column, distillation column having 

intermediate heat exchanger with and without heat pump 

and secondary reflux and vaporization distillation column 

(SRVP). Comparison of various distillation based hybrid 

configurations that incorporate THIDC in terms of 

exergetic and economic performance has not been carried 

out for bioethanol refining. Therefore in this work different 

hybrid configurations of THIDC with azeotropic or 

extractive distillation unit were assessed from exergetic-

economic view point. Similar feed and product 

specifications were used for the six distillation hybrid 

configurations investigated. 

 

2. Methodology 

Three azeotropic and extractive distillation 

configurations were selected from the works reported in the 

literature [7,16,9,2]. For the two dehydrating distillation 

processes, the selected configurations were the 

conventional column and two other integrated 

configurations which perform relatively very well in term 

of product purity, throughputs and energy consumption. 

They were individually connected to THIDC (using feed at 

102 
o
C) to obtain the hybrid configurations for dehydrating 

the water-ethanol mixture. These six hybrid configurations 

were subjected to simulation using Aspen Plus
®
 to generate 

data for exergy and economic analysis. The six 

configurations were then ranked in order to select the best 

configuration based on economic consideration. 

 

2.1 Simulation of THIDC-Azeotropic Distillation 

     Hybrid Configurations 

 Three different types of azeotropic distillation columns 

(as shown in Figures 1-3) were used to form hybrid with 

THIDC which was identified as the best [19]. The 

configurations were those whose recycle stream enters into: 

(a) azeotropic column with organic phase (Figure 1), (b) the 

azeotropic column along with fresh feed (Figure 2), (c) the 

decanter (Figure 3). These three azeotropic units have been 

identified as the best [2].  

In all cases a Radfrac column type was selected from 

Aspen-Plus
®
 window in developing each flow sheet. The 

simulated THIDC column was replicated by exporting the 

developed flow sheet to a new Aspen-Plus
® 

simulation 

environment. The third component - an entrainer 

(cyclohexane) - was added in the components list specified 

for the system. Though, benzene is more favourable 

economically and energy-wise it is not used anymore 

because of its environmental consequences [2]. The 

rectification column (THIDC) distillate (67.9 kmol/h) was 

connected as the feed stream into each of the three 

azeotropic distillation column types either as separate feed 

or combined feed with the recycle stream containing 99.5 

wt% ethanol. See Figure 1 as an example. 

Each of the azeotropic section consists of dehydration 

and azeotropic column having internal decanter with the 

exception of the configuration whose recycle stream was 

connected to an external decanter (Figure 3). The 

azeotropic distillate products were cooled in a condenser 

and split into aqueous and organic phase in the decanter.  In 

all simulations, a feed flow rate of 1200 kmol/h (12 wt% 

ethanol) into THIDC and azeotropic column bottoms 

products of 52 kmol/h (99.5 wt% ethanol) was maintained. 

In addition, the tray sizing, required block and stream 

specifications to the azeotropic section were provided and 

the three hybrid configurations were rigorously simulated. 

The simulation result obtained was transferred to Microsoft 

excel
®
 (Microsoft office suite) for use in subsequent 

analysis. 

 

2.2 Simulation of THIDC-Extractive Distillation  

Hybrid Configurations 
Three different configurations of extractive distillation 

were used to form hybrid with totally heat integrated 

distillation column (THIDC). They were the hybrids 

containing: (a) conventional extractive distillation (Figure 

4), (b) Petlyuk column and (c) thermally coupled column 

(Figure 6). The THIDC unit specifications were kept fixed 

with little interaction as the case may be with its 

downstream. 

The hybrid units were simulated as follows: The simulated 

THIDC column was replicated in a new Aspen Plus® 

simulation environment and a third component entrainer 

(ethylene-glycol) was added in the components list 

specified for the system. The choice of this entrainer was 

based on its low cost, good capacity and selectivity [21]. 

THIDC rectification distillate (67.9 kmol/h containing 95.5 

wt% ethanol) was connected as the feed stream to 

extractive columns of configurations 1 and 3 (Figuren1 and 

3. For configuration 2 (Figure 2), it was entering as the feed 

into Petlyuk column. The entrainer stream was recovered as 

bottom product of the extractive columns of configuration 2 

and 3 but recovered as bottom products of the recovery 

column of configuration 1. 

 Radfrac column type was used for the simulation and 

extractive column distillate products were maintained as 

ethanol (99.5 wt %). The destination stage and flow rate of 

intermediate streams withdrawn as feed to another column 

were specified and adjusted throughout the simulation. In 

addition, the flow sheets were completed and all required 

streams and blocks variables were specified  while  column 

tray sizing and report option was made in a similar way to 

that of the THIDC column.  In all simulations, feed flow 

rate of 1200 kmol/h (12 wt% ethanol) into THIDC and 

extractive column distillate products of 52 kmol/h 

containing 99.5 wt% ethanol were maintained. The 

developed flow sheets were rigorously simulated until 

convergence was achieved.  

In the entire hybrid configurations (Figures 1-6), similar 

product and feed specifications were used for the purpose 
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of comparing the configurations on the same basis. This 

allows selection of variables of the column and other 

equipment to achieve the target specification. The input 

parameters into the Aspen Plus® for all the configurations 

are shown in Table 2. 

 

 

 

 
Figure 1. THIDC-Azeotropic Distillation Hybrid with Recycle Stream Mixing and Entering with Organic Phase (THAZ1) 

 
Figure 2. THIDC-Azeotropic Distillation Hybrid with Recycle Stream Mixing and Entering with Feed (THAZ2) 
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Figure 3. THIDC-Azeotropic Distillation Hybrid with recycle Stream Entering into Decanter 

 

 
Figure 4. THIDC-Conventional Extractive Distillation Hybrid (THEX1) 
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Figure 5. THIDC-Petlyuk Column Extractive Distillation Hybrid (THEX2) 

 

 

Figure 6. THIDC-Thermally Coupled Extractive Distillation Hybrid (THEX3) 
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                                                 (1) 

 

        The chemical exergy       (kJ/sec) of each stream of 

matter with component mole fraction    (   for vapour) and 

standard chemical exergy   
 (kJ/sec) of each component    in 

a stream was evaluated using Eq. 2 [21]. 

. 

     =      
                                                                   (2) 

  

The total stream exergy        in Eq. 3 was evaluated as 

the sum of its physical        and chemical exergy        . 

            +                                                       (3) 

 

The lost work LW, around each piece of equipment or for 

overall configuration with streams flows   (kg/s), streams 

exergy B (kJ/kg), work flows   (kJ/s), utility heat duties   

(kJ/s) at actual temperature T (K) and reference state 

temperature    (K) was evaluated using Eq. 4 [22]. 

 

                                

       
  

 
  

  
       

  

 
                                (4)  

In addition, exergetic efficiency ( 
         

  was evaluated 

around equipment and for each hybrid configuration. The 

exergetic efficiency is the ratio of the exergy recovered 

      (total output exergy) to the total input exergy       

as given in Eq. 5 [23]. 

 

 
         

 
             

            
        (5) 

 

 

 

2.4 Economic Analysis of Hybrid Configurations 

Economic analysis of each of the successfully converged 

six hybrid configurations was carried out in stages. The first 

stage was the evaluation of all capital cost of each 

configuration. Secondly all annual utility, material 

requirement and cost were determined and subsequently the 

economic evaluation. However, the whole economic analysis 

was carried out using the approach developed for chemical 

plant economic evaluation [24]. Therefore, using this 

approach, fixed capital and working capitals were obtained 

using percentage of equipment delivery method.  

      In addition, parameters in Table 1 were used in the 

evaluation of materials input cost, equipment cost, utility cost 

and annual total product sales. However, the utility 

requirement and its cost was obtained from the Aspen Plus by 

specifying the heating/cooling duty (kJ/kg), inlet and outlet 

utility temperature as well as purchased price. The duty of a 

utility with specific heat capacity    (kJ/kg K) and 

temperature difference    between its inlet and outlet was 

obtained from the energy balance equation as the product  

        

All costs and products value were subjected to 

profitability analysis using online spread sheet for chemical 

plant economic evaluation [27]. Equations used to evaluate 

profitability parameters are contained in plant design and 

economics for chemical engineers [25] and the spreadsheets 

for carrying out this analysis are available online [27]. 

 

Table1. Parameters Assumed for Economic Analysis 

 

S/N Parameter Value 

1 Operating time (days/yr.) 335 

2 Equipment cost basis (CEPCI) 2012 

3 Desired product ethanol cost ($/kg) 4.0 

4 Steam cost (Medium pressure, $/kg) 0.00966 

5 Cooling water cost ($/kg) 0.00063 

6 Cyclohexane cost ($/kg) 0.37 

7 Ethylene glycol cost ($/kg) 0.39 

8 Input ethanol cost ($/kg) 0.02 
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Table2. Aspen Plus Input Parameters for Simulation of the Hybrids 

 
  Parameter Value 

THEX1 THEX2 THEX3 THAZ1 THAZ2 THAZ3 

Fermenters feed flow (kmol/h) 

Azeotropic feed flow (kmol/h)  

Separating agent flow (kmol/h)  
Extractive column’s distillate flow (kmol/h) 

Azeotropic column’s  bottoms flow (kmol/h) 

Molar fraction of  fuel-ethanol  
Temperature of fermenters feed (ºC)  

Temperature of azeotropic feed (ºC)  

Temperature of separating agent (ºC)  
Molar reflux ratio in rectifier column  

Molar reflux ratio in extractive column  

Molar boil-up ratio in stripper  column  
Molar boil-up ratio in azeotropic  column  

Number of theoretical stages ( C1 column)  

Number of theoretical stages ( C2 column)  
Number of theoretical stages ( C3 column)  

Number of theoretical stages ( C4 column)  

Fermenters feed stage 
Azeotropic feed stage  

Pressure in the C1 column (atm)  

Pressure in the C2 column (atm)  

Pressure in the C3 column (atm)  

Pressure in the C4 column (atm )  

Pressure in the decanter (atm) 
Separating-agent feed stage  

Solvent/feed ratio (S/F)   

Feed stage of  aqueous mixture 
Compressor power requirement (kW) 

Exchanger 1 duty(kW) 

Exchanger 2 duty(kW) 
Exchanger 3 duty(kW) 

1200 

67.9 

27.3 
52 

- 

0.9899 
102 

105.15 

85 
4.8 

0.359 

0.148 
- 

30 

27 
40 

12 

15 
28 

1.0023 

17 

1.21 

1.0 

- 
3 

0.402 

- 
917.5 

25.31 

63.22 
5.21 

1200 

67.9 

36.364 
52 

- 

0.9899 
102 

105.15 

85 
4.8 

0.356 

0.149 
- 

30 

27 
48 

8 

15 
3 

1.0023 

17 

1.6 

1.6 

- 
4 

0.54 

- 
917.5 

25.31 

63.22 
4.617 

1200 

67.9 

19.5 
52 

- 

0.9899 
102 

105.15 

85 
4.8 

0.455 

0.148 
- 

30 

27 
38 

8 

15 
27 

1.0023 

17 

3.01 

3.0 

- 
3 

0.287 

- 
917.5 

25.31 

62.22 
22.19 

1200 

67.9 

14 
- 

52 

0.9899 
102 

106.14 

80 
5 

- 

0.148 
8.541 

30 

27 
70 

12 

15 
45 

1.0023 

19 

2.6 

1.12 

2.6 
7 

2E-6 

8 
958.7 

23.87 

60.29 
- 

1200 

67.9 

30.3 
- 

52 

0.9899 
102 

106.14 

80 
5 

- 

0.148 
6.973 

30 

27 
74 

8 

15 
9 

1.0023 

19 

2.55 

0.7 

1.1 
7 

0.446 

6 
958.7 

23.87 

60.29 
- 

1200 

67.9 

10.34 
- 

52 

0.9899 
102 

106.14 

80 
5 

- 

0.148 
2.95 

30 

27 
80 

9 

15 
65 

1.0023 

19 

1.12 

1.1 

1.0 
6 

0.1523 

4 
958.7 

23.87 

60.29 
- 

 

 

3. Results and Discussion 

3.1 Energy and Exergy Analysis 

Tables 3-6 show the energy and exergy analysis result for 

the six hybrid configurations selected in this work. The 

material streams and utility exergy flows in and out were 

used to carry out exergy analysis for each of the hybrid unit. 

The various streams exergy results include the contributions 

of physical and chemical exergy evaluated using Eq. (1) and 

(3). The exergy of mixing was included in physical exergy 

evaluation since the respective streams entropies were used. 

 

 

 

 

Table3. Total Input Energy, Exergy efficiency and Lost   

Work for all Hybrids  

Configuration 
Input energy  

(kW) 

Lost work 

(kW) 

Exergy 

Efficiency 

(fraction) 

THAZ1 37700 13400 0.583 

THAZ2 69700 39900 0.383 

THAZ3 47900 23000 0.466 

THEX1 39200 2644 0.927 

THEX2 42202 4010 0.901 

THEX3 36666 2730 0.918 

 

 

Table 3 shows the energy and exergy analysis results 

for the six different hybrid configurations formed by 

linking THIDC to azeotropic and extractive distillation 

units. The total input energy includes energy associated 

with material feed as well as thermal and work energy 

inputs. The THIDC-extractive sequences hybrids are 

shown to be the most efficient. The least efficient hybrid 

was THAZ2 with the highest lost work and least exergy 

efficiency.  The table also shows that THEX3 hybrid had 

the lowest energy requirement while THEX1 recorded the 

least lost work and highest exergetic efficiency of 92.7 % 

followed by THEX3.  

Table 3 shows the result of exergetic efficiency and lost 

work for the hybrid configurations. Meanwhile, Tables 4 and 

5 shows the exergy efficiency across the constituent 

equipment/devices of the hybrids. As it is expected, the 

results show that the higher the aggregate exergetic 

efficiency across the units the smaller the lost work 

(irreversibility). These values indicate the work potentials of 

the material or energy stream. Considering THEX1 which is 

the most energy efficient hybrid, the exergetic efficiency of 

most of the equipment in the flow sheet were around 99 % 

with the exception of valve, stripper (C1) and rectifier (C2). 

This trend was observed with the other five hybrids. This 

indicates a greater need for improved equipment design in 

the THIDC section.  

The least energy efficient hybrid, THAZ2, was observed 

to have the highest exergy losses at the extractive column, 

recovery column (C3), heat exchanger E2 and valve as 

shown in Table 4. Selection of heat transfer media 

possessing excellent thermal and transport properties should 

improve efficiency of heat exchanger.  

The loss of exergy in mixers and columns, particularly in 

the dehydration unit of most of the hybrids is mainly due to 

the change in composition from inlet to the outlet stream. 
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This loss resulting from exergy change of mixing can be 

addressed by blending as much as possible streams of nearly 

similar compositions.  The low exergetic efficiency of some 

columns is due to inevitable change in composition across 

these units. 

Similar values were across the hybrids investigated with 

most of the equipment of THIDC unit. This was more 

prominent in the hybrids containing extractive sequences. 

The reason for this has to do with similar operating 

conditions used with the THIDC equipment and auxiliaries. 

Meanwhile, it is different for hybrid containing azeotropic 

distillation units because of the slight interactions between 

THIDC and the dehydration unit. 

A look at the two most energy efficient hybrids 

(THEX1and THEX3), brought to the fore the possibility that 

distillation column may have high exergy loss but very high 

or low exergetic efficiency as pointed out ealier [25].  

THEX3 has higher exergy loss and lower energy 

requirement than THEX1 yet the latter is exegetically more 

efficient. The results also show that a process requiring less 

energy is not necessarily more efficient than the one with 

greater energy input if the former process is more efficient in 

its energy utilization.     

 

Table 4. Equipment Exergy Efficiency for Azeotropic 

Hybrids. 

Equipment        % Equipment Exergy Efficiency 

                                          THAZ1 THAZ2 THAZ3 

Stripper (C1)               97.64 97.64 97.33 

E1                             99.99 99.99 99.99 

Compressor               99.50 99.50 99.48 

Rectifier (C2)               93.54 93.43 93.74 

Valve                             93.24 93.24 93.35 

E2                             91.64 91.64 91.64 

Mixer                              99.53 99.96 99.87 

Column C3               88.50 47.74 81.50 

Column C4               54.00 39.21 96.91 

Splitter/Mixer                   - 99.98 99.96 

E3-condenser                   -    - 98.80 

Decanter                   -    - 99.96 

Table 5. Equipment Exergy Efficiency for Extractive    

Hybrids. 

Equipment        % Equipment Exergy Efficiency 

                           THEX1  THEX2      THEX3 

Stripper (C1)              97.65   97.65       97.65 

E1                            99.99   99.99       99.99 

Compressor              99.51    99.51       99.51 

Rectifier (C2)              93.65    93.64       93.64 

Valve                            95.81    95.81       95.81 

E2                            99.98    99.98       99.98 

E3                            99.99    99.98       99.98 

Column C3              99.49    99.55       99.27 

Column C4              99.81    96.57       95.15 

 

THIDC-extractive distillation hybrids recorded the least 

energy consumption and lost work among all the hybrids. 

The THEX1 hybrid is the most energy efficient followed by 

comparison with THEX2 and THEX3 hybrid in that order. 

Though, the energy consumption and lost work did not differ 

much among the three, but THEX3 is the least energy 

requiring. Previous works that used conventional column 

with the same extractive sequences but identified hybrid 

with Petlyuk column as the most energy efficient and least 

energy consuming [9]. Comparing the results in this work 

and other work [9] that used conventional distillation 

column (as part of the hybrid) showed energy cost savings of 

70, 71 and 58.3 % in processing a kilogram of the feed using 

THEX1, THEX2 and THEX3 respectively (see Table 6). 

The improvement recorded in this work can also be linked to 

the use of THIDC.  

The exergy analysis has placed THIDC-Conventional 

extractive distillation hybrid as the best hybrid. It has the 

least lost work (irreversibility rate) and highest exergy 

efficiency followed by THEX3 and THEX2 in that order. 

The least in term of thermodynamic potential are the hybrids 

with azeotropic dehydration units. 

Comparative analysis based on energy consumption from 

input utility streams show that a reasonable improvement 

was achieved in this work. In comparison to a previous 

 

Table 6. Comparative Energy Consumption (Present and Previous Studies) 

Current Studies Previous Studies 

% Energy cost 

savings 

 

Hybrid 

Configuration 

Energy 

Consumed 

(MJ/kg) 
 

Hybrid 

Configuration 

Energy 

Consumed 

(MJ/kg) 

Basis 

THEX 1 0.56 Conventional distillation – EX1  [9] 1.86 70 Feed 

THEX 2 0.56 Conventional distillation – EX2   [9] 1.89 71 Feed 

THEX 3 0.57 Conventional distillation – EX3   [9] 1.38 58.3 Feed 

THEX 1 5.44 Conventional distillation – EX1   [8] 10.69 49.1 Product 

THAZ 1 9.14 Conventional distillation – AZ1    [8] 
 

12.38 32.4 
 

Product 
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[8], Table 6 shows that there were 49.1 and 32.4 % cost 

savings respectively in using THEX1 and THAZ 1 hybrid to 

produce a kilogram of 99.5 wt% anhydrous fuel ethanol. The 

reduction in energy consumption achieved in all cases could 

be attributed to the use of THIDC which has been found to 

be relatively efficient distillation column type [26, 19]. This 

column used higher grade energy (work) to achieve desired 

separation enrichment of bioethanol mash to azeotropic 

mixture. However, the study of the feed thermal condition 

allowed the choice of optimal THIDC feed condition 

[19].This might be another reason for the observed 

improvement. 

 

3.2 Economic Analysis 

Figure 7 shows the various cost elements of each of the 

hybrids. Though, the feed and desired product 

specifications were the same but side products, recycle 

streams and entrainer specifications were not. This disparity 

could explain, in part, the variation in total annual products 

sales (TAPS) among the hybrids. 

   

Figure 7. Product Sales and Cost Analysis Result of Hybrid 

Configurations 

The THIDC-azeotropic sequences recorded the least 

total annual product sales (TAPS) of only $ 76.91 million 

because the by-product value was less. The hybrid with the 

highest TAPS was THEX1 with $ 87 million. THAZ3 had 

the least annual product cost of $ 29.4 million followed by 

THAZ1 and THAZ2 in that order. THAZ2 had the highest 

annual product cost. 

    Profitability analysis shows that THIDC-extractive 

sequences hybrids are the most attractive configurations for 

the refining of bioethanol to fuel grade (see Figures 8 to 

11). The profitability analysis showed THEX 3 as the most 

favorable. It had the highest return on investment (ROI), 

maximum annual and continuous discounted cash flow rate 

(ADCR and CDCR) of 114 %/year and 76.1 %/year 

respectively (Figure 8). It also has the least payback period 

(see Figure 10). The second and third best were THEX1 

and THEX2 respectively. THAZ2 is the least economic 

hybrid configuration of the six. The net present worth was 

in favor of THEX1 but THEX3 was the second best. 

The ultimate economic requirement of this kind of 

process is the maximization of profit and minimization of 

product cost. It is therefore, imperative to use return on 

investment as an economic criteria for comparison among 

all hybrid configurations.  

 

Figure 8. Return on Investment and Cash flow Rate for 

Hybrid Configurations 

 

It is necessary to consider a trade-off between exergy and 

economic efficiency to draw conclusion as to which hybrid 

configuration is the most efficient. This is because the most 

exegetically efficient hybrid may be the most economically 

efficient. Looking at both sides, economic consideration 

takes precedence because of smaller difference of 0.9 % in 

the exergetic efficiency between highest exergetic and most 

economic hybrid.  

 

 

 
 

Figure 9. Hybrid Configurations Net Present worth 

 

 
Figure10. Hybrid Configurations Pay Back Period 
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Figure 11. Hybrid Configurations Net Return 

 

Looking at energy, exergy and economic analysis together, 

THIDC-Thermally coupled extractive distillation hybrid is 

the best hybrid configuration of the six distillation hybrid 

configurations studied for bioethanol refining. This is 

because the hybrid was favoured from economic analysis 

and its energy consumption and irreversibility rate were 

very much close to the minimum obtainable among all the 

hybrid configurations. 

 

4. Conclusions 

The THIDC-extraction sequences were found to be 

better than the azeotropic distillation derived hybrids 

thermodynamically and economically. THEX1 recorded the 

highest exergy efficiency while THAZ2 was identified as 

the least efficient configuration. 

It was also observed that the less energy consuming 

process might not necessarily be the most efficient 

configuration. However, economic analysis suggested the 

less energy consuming process THEX3 as the most 

attractive configuration that guarantee the production of 

affordable and sustainable fuel grade bioethanol. 

Thermally coupled extractive distillation and THIDC 

hybrid is the preferred choice for commercial refining of 

bioethanol mash to fuel grade among all hybrid 

configurations considered in this work. Savings in energy 

cost of as much as 71 % was achieved for THEX hybrids 

over similar configurations used in an earlier work. Utility 

energy input cost improvement was as high as 49 and 32 % 

for THEX and THAZ hybrids respectively, when compared 

to reported works. 

 

Nomenclature     

APS   Annual product sales 

AZ1  Azeotropic distillation with recycle stream mixing 

and entering with organic phase  

AZ2  Azeotropic distillation with recycle stream mixing  

           and entering with feed  

AZ3  THIDC-Azeotropic distillation with recycle 

CDCFR   Continuous discounted cash flow rate 

ADCFR   Annual discounted cash flow rate 

CEPCI   Chemical engineering cost index 

Conv.  Conventional 

EX1  Conventional Extractive Distillation 

EX2  Petlyuk Extractive Distillation 

EX3  Thermally Coupled Extractive Distillation 

FCI   Fixed Capital Investment 

NR  Net Return 

NPW  Net Present Worth 

PBP  Payback Period 

ROI  Return on Investment 

TAPC   Total annual product cost 

TCI  Total capital investment 

THAZ1 THIDC-Azeotropic distillation with recycle stream 

THAZ2 THIDC-Azeotropic distillation with recycle stream 

mixing and entering with feed 

THAZ3 THIDC-Azeotropic distillation with recycle stream 

entering into decanter 

THEX1 THIDC-Conventional extractive distillation 

THEX2 THIDC-Petlyuk extractive distillation 

THEX3 THIDC Thermally Extractive Distillation 

THIDC   Totally heat integrated distillation column 

TUC   Total annual utility cost 

WC   Working capital 
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