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Abstract 

This paper describes a novel combined cycle based on a “Chemical Gas Turbine” system. 

The system consists of fuel-rich and fuel-lean combustors with their gas turbines, 

recuperators, and a steam bottoming cycle. Important features of this system are the gas 

turbine with C/C composites blades and the fuel-rich combustion techniques. These 

techniques result in no cooling of turbine blades and much higher turbine inlet 

temperature, therefore, much higher thermal efficiency. This paper analyzes the energy, 
exergy, and heat exchanger sizes of the proposed system. Furthermore, optimizations from 

pressure ratio aspects are discussed. All results are compared with a simple gas turbine 

system and a conventional combined cycle. The following results were obtained: the 
chemical gas turbine system achieves a thermal efficiency of 64%, and low exergy loss in 

the combustion processes. In addition, characteristics of the system are similar to the 

simple gas turbine system. 
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1. Chemical Gas Turbine System 

Authors have proposed a new-concept gas 

turbine system, the “Chemical Gas Turbine 

(ChGT)” system that is based on promising 

developments of advanced fuel-rich combustion 

techniques and carbon/carbon (C/C) composites 

materials for the turbine blades (Fushitani et al., 

1997; Kato et al., 1996; Arai and Kobayashi, 

1997; Lior and Arai, 1998). 

A schematic diagram of the proposed 

system is shown in Figure 1. This new system 

consists of a fuel-rich combustor, a fuel-lean 

combustor, two sets of gas turbines, a steam 

turbine, recuperators and heat recovery steam 

generators (HRSGs). An important feature of this 

system is the introduction of a fuel stoichiometry 

manipulation technique with fuel-rich 

combustion in the first combustor and fuel-lean 

combustion in the second (Yamamoto, 1997). 

We consider that C/C composites are the only 

promising materials for turbine blades operating 

at temperature above 1500
o
C without internal 

cooling. Such materials, however, are sensitive 

to high temperature oxidation. From this point of 

view, fuel-rich combustion, which results in 

significantly low concentration of oxygen in the 

exhaust stream, and coating techniques with the 

C/C composites are very well suited for this 

application. The second gas turbine is operated at 

temperature of almost 1450
o
C, where 

conventional gas turbine blade materials could be 

thus available. 
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Firstly, compressed air and fuel is mixed 

and burned with the fuel-rich condition in the 

first combustor (CB-1). Exhaust gas from the 

first gas turbine (GT-1) still contains chemical 

energy as possibly remaining methane, as well as 

hydrogen and carbon monoxide which result 

from the fuel-rich combustion, and is mixed with 

compressed air before being burned fuel-lean in 

the second combustor (CB-2). Exhaust gas from 

the second combustor drives the second gas 

turbine (GT-2). Thermal energy of the GT-2 

exhaust gas is used to generate the steam in the 

steam bottoming cycle. 

2. Simulation Conditions 

A summary of assumptions for the ChGT 

system is shown in Table.1. Isentropic 

efficiencies of compressors, gas turbines, steam 

turbine and pump are set at 91%, 92%, 90% and 

93%, respectively. No cooling is assumed for the 

fuel-rich gas turbine cycle with the C/C 

composite blades. The turbine inlet temperature 

(TIT1), assumed as 1450oC, 1600oC and 1800oC, 

is controlled by equivalence ratio at the CB-1 

only. The fuel-lean gas turbine cycle uses the air-

cooling technique and the turbine inlet 

temperature (TIT2) is assumed as 1450oC. The 

standard pressure ratios at the GT-1 and the GT-

2 are fixed at 20.  

A single pressure scheme with reheat is 

chosen for the steam bottoming cycle. Both 

steam generators produce superheated steam of 

530
o
C and 14.2MPa, which is fed into a common 

steam turbine. The minimum temperature 

approach between hot and cold streams in the 

HRSGs is assumed as 15
o
C. The following 

ambient conditions are considered: air 

temperature of 25
o
C and atmospheric pressure of 

0.1013MPa; relative humidity is not taken into 

account. It is assumed that the fuel (methane 

with a lower heating value of 50.01kJ/kg) is 

supplied at the required pressure from the gas 

pipeline, and the amount of input fuel is kept 

constant at 383kg/h (19MJ/h, based on LHV).  

The conventional combined cycle (CCC) 

and the simple gas turbine cycle (SGT), with 

which the ChGT is compared, are described in 

Figure 2 and Figure 3 respectively. 

TABLE I.  MAIN ASSUMPTIONS OF THE CHGT SYSTEM AND THE OTHER GAS 

TURBINE BASED SYSTEMS 

  Chemical gas 

turbine system 

Simple Gas 

Turbine System 

Conventional 

combined cycle 

Gas turbine cycle     

Fuel rich stage     

Turbine efficiency [%] 92.0 - - 

Compressor efficiency [%] 91.0 - - 

Pressure ratio [-] 20.0 - - 

Turbine inlet temperature [
o
C] 1450, 1600, 1800 - - 

Fuel lean stage     

Turbine efficiency [%] 92.0 92.0 92.0 

Compressor efficiency [%] 91.0 91.0 91.0 

Pressure ratio [-] 20.0 20.0 20.0 

Turbine inlet 

temperature 

[oC] 1450 1450 1450 

     

Steam turbine cycle     

Steam turbine efficiency [%] 90.0 - 90.0 

Pump efficiency [%] 92.0 - 92.0 

Condenser pressure [MPa] 0.05 - 0.05 

HRSG     

Pressure drop [%] 3.0 - 3.0 

Steam pressure [MPa] 14.0 - 14.0 
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Figure 1  Flow diagram of combined cycle based on the chemical gas turbine system 
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Figure 2.  Flow diagram of conventional combined cycle 

Exhaus t

Air

Fuel 

CP GT

CB

 

Figure 3.  Flow diagram of simple gas turbine cycle 
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3. Exergy Analysis of the Chemical Gas 

Turbine System and Other Gas Turbine 

Based Cycles 

In this study the energy and exergy analysis 

of the CCC and ChGT systems at full (100%) 

fuel input has been carried out (Waldyr, 1997; 

Oh et al., 1996; Kehohofer, 1991; Kozu and 

Tsuruno, 1994).  

Figure 4 presents the results of the energy 

analysis as a relationship between turbine inlet 

temperature and thermal efficiency. The 

maximum efficiency of the CCC system is 

61.9% (LHV base) and of SGC system is 42.3% 

for TIT=1450
o
C. On the other hand, the thermal 

efficiency of the ChGT system is 62.2% for the 

same turbine inlet temperature (TIT1=1450
o
C). 

The system TIT1 can be raised using the C/C 

composites blades, and maximum efficiency will 

reach 65%, when the TIT1 is 1800oC.  

Figure 5 shows results of the exergy 

analysis of the SGC, CCC, and ChGT systems. 

Generally speaking, the exergy loss in the 

combustion process is dominant in gas turbine 

plants. For the proposed system, the net power of 

the gas turbine cycle increases and that of the 

steam cycle decreases as the TIT1 rises. The 

CCC and the ChGT systems are compared with 

each other; the exergy loss of the ChGT system 

with two stage combustion process is suppressed 

by 1 to 3%. Thusly, the net power of the ChGT 

cycle is larger than the conventional combined 

cycle by 1 to 2%. On the other hand, the power 

of the steam cycle is smaller than that of the 

conventional combined cycle by 1%, 

approximately. 

The reason of reduction of the exergy loss 

in the combustion process of ChGT cycle is 

explained by Figure 6. It shows a typical 

relationship between the exergy loss and the 

equivalence ratio in the combustion process for 

inlet temperature 25
o
C and atmospheric pressure 

of fuel and air. The combustion exergy loss is 

expressed as a percentage of its value for 

equivalence ratio (ER) 1.0 (stoichiometric 

condition). It shows an important characteristics 

that the combustion exergy loss decreases as the 

equivalence ratio rises. Therefore, the 

combustion exergy loss in the ChGT system is 

reduced. 
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Figure 4.  Comparison between thermal efficiency of the ChGT system and that of the other gas 

turbine based systems 
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Figure 5.  Exergy analysis of the ChGT system and the other gas turbine based systems 
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4. Efficiency and Specific Power of the 

Chemical Gas Turbine System 

This study discusses the performance of the 

ChGT system and compares it with that of the 

SGC and the CCC systems in order to optimize 

(Waldyr, 1997).  

Figure 7 presents the performances of the 

SGC system. The best efficiency is TIT=1450
o
C 

and a pressure ratio 60, and shifts to higher 

pressure ratio as TIT rises. For the same TIT, the 

specific power peaks at a pressure ratio between 

20 and 30. This cycle will be the base case for 

comparisons with all other analyzed systems.  

Figure 8 presents the performances of the 

CCC system. The rising TIT increases the 

thermal efficiency and the specific power for a 

given pressure ratio. Also both the specific 

power and the thermal efficiency increase as the 

pressure ratio rises. The best performance is at a 

TIT=1450
o
C and a pressure ratio 30.  

Figure 9 presents the performances of the 

ChGT system. Both the specific power and the 

efficiency are the highest compared with other 

analyzed gas turbine cycles. The best efficiency 

is at TIT1=1800
o
C and pressure ratio 30. For the 

same TIT1, the specific power peaks at a 

pressure ratio between 15 and 20. Maximum 

specific power of ChGT is same as that of the 

SGC system. 

The results from the above analysis have 

shown that tendencies of the CCC system 

characteristics are different from the other two 

gas turbine systems. The reason for this is not 

hard to understand. It is explained as follows: 

The compressor work increases as pressure ratio 

rises. Then the compressor performance affects 

the total cycle performance significantly. Since 

there is no heat recovery in the SGC system and 

there are two compressors in the ChGT system, 

the compressor plays an important role in both 

systems. Therefore the ChGT system shows the 

same tendency as that of SGC system. 
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Figure 6.  Typical relationship between the exergy loss and the equivalence ratio in methane/air 

combustion 
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Figure 7.  Performances of the SGC system 
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Figure 8.  Performance of the CCC system 
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Figure 9.  Performance of the ChGT system 

TABLE II. THE REQUIRED (UA) OF THE HRSGS 

 (UA) of HRSGs 

[MJ/K-h] 

Percentages 

base on the CCC 

[%] 

CCC system 202.30 100.00 

 

ChGT system 

  

TIT1  1450oC 154.45 76.35 

 1600oC 152.95 75.61 

 1800
o
C 149.78 74.04 

 

5. HRSGs Size Consideration 

HRSGs are located at bottoms of the fuel-

rich and the fuel-lean stages in the ChGT system. 

Their sizes are the largest in the gas turbine 

system because they have high-pressure steam 

(over 10MPa) and high temperature gas (about 

1000oC). The total size of the HRSGs thus is an 

important factor economically in power plant 

construction. In this analysis also the total size of 

the HRSGs as a product of overall heat transfer 

coefficient ‘U’ and surface area available for 

heat transfer ‘A’ has been considered. 

The results of the analysis on HRSGs size 

of ChGT and CCC are shown in Table.2. The 

former are seen to be lower than the latter by 

around 25%, with the size slightly decreasing as 

TIT1 increases.  The explanation for this reduced 

area requirement is that (1) due to the higher 

efficiency of the ChGT system, also increasing 

with TIT1, more of the fuel energy is used for 

power production and thus less is available for 

internal heat recovery, (2) relatively less power is 

produced in the steam cycle. The reduced size of 

the HRSG needed for the ChGT system is yet 
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another advantage of this system relative to CCC 

system. 

6. Conclusion 

This paper proposes a “chemical gas 

turbine system” which is a novel gas 

turbine/steam turbine combined cycle system. 

Important features of this system are the 

combination of chemical combustion (fuel-rich) 

and the fuel-lean combustion techniques and 

high turbine inlet temperature. Turbine blades 

with C/C composites which are sensitive to high 

temperature oxidation can resist high 

temperature because of significant reduction of 

oxygen concentration by the chemical 

combustion.  

The thermodynamics energy analysis of 

this ChGT system shows that thermal efficiency 

based on LHV can be as high as 64%. This value 

is higher than that of the CCC system by 2-4%.  

As for exergy analysis, the exergy loss of 

the combustion process is dominant in each gas 

turbine systems. However, in the ChGT system, 

the combustion exergy loss is less than in the 

CCC system by 2-4%. This reduction is 

explained by the typical relationship between the 

exergy loss and the equivalence ratio in the 

methane/air combustion. 

From the performances of the gas turbine 

systems considered in this study it is found that 

the ChGT system has the same tendency as the 

characteristics of the SGC system because the 

compressor performance is dominant in both 

systems.  

This study also analyzed the product of 

overall heat transfer coefficient and surface area 

available for heat transfer ‘UA’ as the required 

size of HRSGs. As a result, the required size of 

HRSG of the ChGT system was found to be 25% 

less than that of the CCC system, and it 

decreases as TIT1 rises. Both results are 

desirable for the ChGT system economics. 

These results lead to the conclusion that the 

proposed combined cycle based on the chemical 

gas turbine system has higher performance than 

the other gas turbine based systems. However, 

the proposed system uses fuel-rich combustion 

techniques and turbine blades with the C/C 

composites which are not common. These need 

further discussion and research. 
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Nomenclature 

A  surface area [m2] 

TIT  turbine inlet temperature [
o
C] 

TIT1  inlet temperature of the 1
st
 turbine in the 

ChGT system  [
o
C] 

TIT2 turbine inlet temperature of 2nd turbine 

in the ChGT system  [
o
C] 

U  overall heat transfer coefficient 

[W/m
2
K] 

Abbreviations 

CB  the combustor of the conventional 

combined cycle 

CB-1  1
st
 combustor 

CB-2  2nd combustor 

CCC  the conventional combined cycle 

ChGT  the chemical gas turbine system 

CP the compressor of the conventional 

combined cycle 

CP-1  1
st
 compressor 

CP-2  2
nd
 compressor 

GT  the gas turbine of the conventional 

combined cycle 

GT-1  1
st
 gas turbine with the C/C composites 

blades 

GT-2 2
nd
 gas turbine  

HRSG heat recovery steam generator 

SGC the simple gas turbine cycle 

ST steam turbine 
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