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Abstract  
 

In this paper we use the super-statistics theory to obtain three q-exponential type Boltzmann factors. We apply three 

types of effective Boltzmann factors to the kinetic theory of an ideal gas. We also compute the most probable 

speeds, average speeds and averages of squared velocity and discuss the q-deformed equipartition theorem for three 

types Boltzmann factors. 
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1. Introduction 

Super-statistics is a superposition of two or more 

different statistics: One given by ordinary Boltzmann 

factors, and another one given by the fluctuations of the 

intensive parameter such as the inverse temperature. 

Nonlinear dynamical processes often create a fluctuating 

environment for a given mesoscopic system [1]. As an 

effective theory for this complex system, the super-statistics 

concept arose. In this direction, much work has been 

accomplished for further theoretical elaboration [2-10]. 

In 2003, the super-statistics was first introduced by 

Beck and Cohen [1]. In the equilibrium thermodynamic 

system, the Boltzmann factor 𝑒−𝛽𝐸  plays an important role 

for computing the macroscopic quantities such as the 

entropy, internal energy and Helmholtz free energy. Here 𝛽 

is regarded as an inverse temperature = 1/𝑘𝐵𝑇 , where 𝑘𝐵  

is a Boltzmann constant. However, in the non-equilibrium 

thermodynamical system, Boltzmann factor dose not 

preserve its shape in the long time evolution any more. This 

means that 𝛽 may fluctuate around 1/𝑘𝐵𝑇 , so it is not an 

inverse temperature but a random variable. Thus, in this 

system, we need the effective Boltzmann factor which is an 

average of the ordinary Boltzmann factor. 

The effective Boltzmann factor B(E) is defined as 
 

B E =  𝑒−𝛽′𝐸𝑓 𝛽′ , 𝛽 𝑑𝛽′
∞

0
       (1) 

 

where 𝑓 𝛽′ , 𝛽  is an probability density obeying 

 

 𝑓 𝛽′ , 𝛽 𝑑𝛽′
∞

0
= 1        (2) 

 

There has been a growing interest in generalizing the 

Boltzmann-Gibbs statistical mechanics. Because the 

entropy plays a fundamental role in the statistical physics, 

the entropy should be deformed so as to construct a new 

(deformed) theory. The first attempt has been accomplished 

by Tsallis [11, 12]. Based on the fact that Boltzmann-Gibbs 

theory is not adequate for various complex, natural, 

artificial and social system, he introduced the non-extensive 

entropy is given by  

𝑆𝑞 = 𝑘  𝑝𝑖
1−𝑞

− 1𝑊
𝑖  /𝑞, (𝑞 > 0). The non-extensive 

Boltzmann-Gibbs entropy has attracted much interest 

among mathematicians and physicists who study 

thermodynamics of complex system [13-15]. When the 

deformation parameter 𝑞 goes to 1, the non-extensive 

entropy reduces to the ordinary one. Tsallis entropy can be 

written as 

 

𝑆𝑞 = −𝑘  𝑝𝑖
1−𝑞

ln𝑞 𝑝𝑖
𝑊
𝑖=1 = 𝑘 𝑝𝑖 ln𝑞

1

𝑝𝑖

𝑊
𝑖=1       (3) 

 

where 𝑊 is a number of microstates and the q-
logarithmic function is defined as 
 

ln𝑞 𝑡 =  
𝑥𝑞−1

𝑞
,    (𝑥 > 0, 𝑞 ≠ 0)

ln 𝑥    (𝑞 = 0)

        (4) 

 

and its inverse is given by 
 

e𝑞 𝑥 =  
 1 + 𝑞𝑥 1/𝑞 ,   (𝑥, 𝑞 ∈ 𝑅, 𝑞 ≠ 0)

𝑒𝑥    (𝑞 = 0)
                 (5) 

 

This entropy gives the following probability 

distribution: 

 

𝑝𝑖 =
1

𝑍𝑞
 𝑒𝑞(−𝛽𝐸𝑖) 

−1
              (6) 

 

where 

 

𝑍𝑞 =   𝑒𝑞(−𝛽𝐸𝑖) 
−1𝑊

𝑖                                  (7)
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Here we have a question: Is there any other choice of 

the deformed exponential? We can say yes. For example, 

we can introduce the following two cases instead of the 

Eq.(5): 

𝑝𝑖 =
1

𝑍𝑞
 𝑒𝑞(−𝛽𝐸𝑖) 

𝛽
         (8) 

 

𝑝𝑖 =
1

𝑍𝑞
 𝑒𝑞(−𝛽) 

𝐸𝑖         (9) 

 

Now we will denote the probabilities given in the 

Eq.(6), Eq.(8) and the Eq.(9) by Type I , Type II and Type 

III, respectively. In this paper we use the super-statistics 

theory to obtain three q-exponential type Boltzmann 

factors. We apply three types of effective Boltzmann 

factors to the kinetic theory of an ideal gas. We also 

compute the most probable speeds, average speeds and 

averages of squared velocity and discuss the q-deformed 

equipartition theorem for three types Boltzmann factors. 

 

2. Three q-Exponential Type Boltzmann Factors 

In this section we choose suitable probability 

distributions β  to obtain three q-exponential type 

Boltzmann factors designated by Type I, II and III. For the 

choice of 𝑓 𝛽′ , 𝛽 = 𝛿 𝛽′ − 𝛽 , we have 

 

B E = 𝑒−𝛽𝐸                               (10) 

 

However, different choices of 𝑓 𝛽′ , 𝛽  yield various 

effective Boltzmann factor B E . In the following 

subsections we discuss some choices of 𝑓 𝛽′ , 𝛽  which 

give three types of Boltzmann factors. 

 

2.1 Type I 

Now let us consider the following distribution: 

 

f 𝛽 = 𝐶𝑒−𝑎𝛽𝛽𝑏                 (11) 

where the normalization constant 𝐶 is given by: 

 

𝐶−1 = 𝑎−1−𝑏Γ 𝑏 + 1                               (12) 

and  𝑎 > 0, 𝑏 > 0 is assumed. The average  𝛽 = 𝛽0 is 

defined as 

 

𝛽0 =  𝛽𝑓 𝛽 𝑑𝛽
∞

0
= 𝑎−1(1 + 𝑏)      (13) 

 

and the variance 𝜎0
2 is 

  

𝜎0
2 = 𝑎−2 𝑏 + 1           (14) 

 

Thus, we have 

 

a =
𝛽0

𝜎0
2  , b =

𝛽0
2

𝜎0
2 − 1       (15) 

 

For 𝑞 < 1, we can set b = −1 + 1/𝑞, 𝑎−1 = 𝑞𝛽0, 

which gives an effective Boltzmann factor derived from the  

Tsallis entropy: 

 

𝐵(𝐸) =  𝑒𝑞(−𝛽0𝐸) 
−1

        (16) 

 

Expanding the Eq. (16) for small 𝛽0𝐸 , we have 

 

B E = 𝑒−𝛽0𝐸  1 −
1

2
𝑞𝛽0

2𝐸2 −
1

3
𝑞2𝛽0

3𝐸3 + ⋯     (17) 

 

2.2 Type II 

If we choose f 𝛽 = δ β − 𝛽0 , the effective Boltzmann 

factor reduces to the ordinary   Boltzmann factor. In this 

case 𝛽0 is regarded as an equilibrium inverse temperature. 

In a non-equilibrium situation we assume that the peak of 

the Dirac delta distribution does not appear at 𝛽0 but at the 

slightly deformed inverse temperature 𝑔𝑞 𝛽0 , where 

𝑔𝑞 𝛽0  is an smooth function depending on the parameter 

q. In this case the distribution becomes 

 

f 𝛽 = δ  β − 𝑔𝑞 𝛽0           (18) 

 

where q > 0 is assumed. The average is given by 

 

 𝛽 = 𝑔𝑞 𝛽0         (19) 

 

and the variance becomes zero. The interesting choice for 

this distribution is 

 

𝑔𝑞 𝛽0 = −
1

𝑞
ln 1 − 𝑞𝛽0        (20) 

 

where we assumed that 1 − 𝑞𝛽0 ≥ 0. Then, the effective 

Boltzmann factor reads 

 

B E =  𝑒𝑞(−𝛽) 
𝐸

=  1 − 𝑞𝛽 𝐸/𝑞       (21) 

 

If we demand that  1 − 𝑞𝛽0 ≥ 0, we have 𝑇 ≥ 𝑇𝑚𝑖𝑛 , 

where 𝑇𝑚𝑖𝑛 = 𝑞/𝑘𝐵 is a minimum temperature. Unless 

𝑞 = 0, the minimum temperature of the system is not zero 

and is determined in terms of q. 

Expanding the Eq. (21) for small𝛽0𝐸, we have 

 

B E = 𝑒−𝛽0𝐸  1 −
1

2
𝑞𝛽0

2𝐸 −
1

3
𝑞2𝛽0

3𝐸 + ⋯     (22) 

 

2.3 Type III 

Now let us consider the following distribution 

 

f 𝛽 = C 𝑒−𝑎𝛽𝛽𝑏            (23) 

 

where the normalization constant C is given by 

 

𝐶−1 = 𝑎−1−𝑏Γ 𝑏 + 1        (24) 

 

and 𝑎 > 0, 𝑏 > 0 is assumed. For 𝑞 > 0, we can setb =

−1 +
𝛽0

𝑞
,  𝑎−1 = 𝑞, which gives an effective Boltzmann 

factor derived from the  Tsallis entropy: 

 

B E =  𝑒𝑞(𝐸) 
−𝛽0

       (25) 

 

Expanding the Eq. (25) for small  𝛽0, we have 

 

B E = 𝑒−𝛽0𝐸  1 +
1

2
𝑞𝛽0𝐸

2 −
1

3
 𝑞2𝛽0 𝐸

3 + ⋯        (26) 

 

3. Kinetic Theory of Ideal Gas 

Now let us apply three types of effective Boltzmann 

factors to the kinetic theory of an ideal gas. First let us 

consider the Maxwell-Boltzmann distribution of molecular 

speeds in a gas which is actually a probability density 
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function of a continuous variable, v =  𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2, the 

speed of a molecule. Then, the probability of finding a 

particle with speed 𝑣 is given by 

 

p 𝑣 =
1

𝑍𝑣
𝐵  

1

2
𝑚𝑣2 4𝜋𝑣2𝑑𝑣         (27) 

 

where 

 

𝑍𝑣 =  𝐵  
1

2
𝑚𝑣2 4𝜋𝑣2𝑑𝑣

∞

0
      (28) 

The most probable speed 𝑣𝑚 is found by finding the 

maximum of  (𝑣) : 

 
𝑑

𝑑𝑡
 𝑝(𝑣) 𝑣=𝑣𝑚

= 0        (29) 

The average speed 𝑣𝑎𝑣  is defined as 

 

𝑣𝑎𝑣 =  𝑣𝑝(𝑣)𝑑𝑣
∞

0
       (30) 

We also break the velocity 𝑣  down into its 

components 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 . Then, the probability of finding a 

particle with components 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  in the range 

d𝑣𝑥 , d𝑣𝑦 , d𝑣𝑧  is given by 

 

P 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 d𝑣𝑥 , d𝑣𝑦 , d𝑣𝑧 =
1

𝑍
𝐵  

1

2
𝑚𝑣2      (31) 

where the effective partition function for velocity is given 

by  

 

Z =    d𝑣𝑥 , d𝑣𝑦 , d𝑣𝑧
∞

−∞

∞

−∞

∞

−∞
𝐵  

1

2
𝑚𝑣2          (32) 

 

The averages of squared velocity components are 

 

 𝑣𝑖
2 =    𝑣𝑖

2P 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 d𝑣𝑥 , d𝑣𝑦 , d𝑣𝑧
∞

−∞

∞

−∞

∞

−∞
    (33) 

 

3.1 Type I 

In this case the probability of finding a particle with 

speed 𝑣 is given by 

 

p v = 4π𝑣2 1

𝑍𝑣
 𝑒𝑞  

1

2
𝛽0𝑚𝑣

2  
−1

      (34) 

 

where, 

 

𝑍𝑣 =  
 𝐵  

1

2
𝑚𝑣2 4𝜋𝑣2𝑑𝑣

∞

0
   𝑖𝑓  0 < 𝑞 < 1

 𝐵  
1

2
𝑚𝑣2 4𝜋𝑣2𝑑𝑣

∞

0
   𝑖𝑓  𝑞 < 0

     (35) 

 

where 𝑣0 =  
2

 𝑞 𝑚𝛽0
. The most probable speed 𝑣𝑚  is given 

by  

 

𝑣𝑚 =

 
 

  
2

(1−𝑞)𝑚𝛽0
   for   0 < 𝑞 < 1

 
2

(1+ 𝑞 )𝑚𝛽0
   for   𝑞 < 0

             (36) 

 

The average speed 𝑣𝑎𝑣  is then given by 

 

𝑣𝑎𝑣 =

 
 

  
8

𝑞𝜋𝑚 𝛽0
 
Γ 1/𝑞−2 

Γ 1/𝑞−3/2 
  𝑓𝑜𝑟   0 < 𝑞 < 1

 
8

 𝑞 𝜋𝑚 𝛽0
 
Γ 1/ 𝑞 +5/2 

Γ 1/ 𝑞 +1 
 𝑓𝑜𝑟   𝑞 < 0

      (37) 

 

For 0 < 𝑞 < 1, the averages of squared velocity 

components are 

 

 𝑣𝑥
2 =  𝑣𝑦

2 =  𝑣𝑧
2 =

2

𝑚𝛽0(2−5𝑞)
      (38) 

 

Hence, 

 

 
1

2
𝑚𝑣𝑥

2 =  
1

2
𝑚𝑣𝑦

2 =  
1

2
𝑚𝑣𝑧

2 =
𝑘𝑇

2−5𝑞
     (39) 

 

which is the q-deformed equipartition theorem. 

For q < 1, the averages of squared velocity components 

are 

 

 𝑣𝑥
2 =  𝑣𝑦

2 =  𝑣𝑧
2 =

2

𝑚𝛽0(2+5 𝑞 )
      (40) 

Hence, 

 

 
1

2
𝑚𝑣𝑥

2 =  
1

2
𝑚𝑣𝑦

2 =  
1

2
𝑚𝑣𝑧

2 =
𝑘𝑇

2+5 𝑞 
     (41) 

 

which is the q-deformed equipartition theorem. 

 

3.2 Type II 

In this case the probability of finding a particle with 

speed 𝑣 is given by 

 

p 𝑣 = 4𝜋𝑣2 1

𝑍𝑣
 𝑒𝑞 −𝛽0  

−
1

2
𝑚𝑣2

      (42) 

 

where, 

 

𝑍𝑣 =  4𝜋𝑣2 𝑒𝑞 −𝛽0  
−

1

2
𝑚𝑣2

𝑑𝑣
∞

0
         (43) 

 

The most probable speed 𝑣𝑚  is given by 

 

𝑣𝑚 =  −
2𝑞

𝑚 ln 1−𝑞𝛽0 
                (44) 

 

The average speed 𝑣𝑎𝑣  is then given by 

 

𝑣𝑎𝑣 =  −
8𝑞

𝑚 ln 1−𝑞𝛽0 
           (45) 

 

The averages of squared velocity components are 

 

 𝑣𝑥
2 =  𝑣𝑦

2 =  𝑣𝑧
2 = −

𝑞

𝑚 ln 1−𝑞𝛽0 
      (46) 

  

which is the q-deformed equipartition theorem. 

 

3.3 Type III 

In this case the probability of finding a particle with 

speed 𝑣 is given by 

 

p 𝑣 = 4𝜋𝑣2 1

𝑍𝑣
 1 +

1

2
𝑞𝑚𝑣2 

−𝛽0/𝑞

     (47) 

where,
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𝑍𝑣 =  4𝜋𝑣2  1 +
1

2
𝑞𝑚𝑣2 

−𝛽0/𝑞

𝑑𝑣
∞

0
        (48) 

 

The most probable speed 𝑣𝑚  is given by 

 

𝑣𝑚 =  
2

𝑚(1−𝑞𝛽0)
                (49) 

 

The average speed 𝑣𝑎𝑣  is then given by 

 

𝑣𝑎𝑣 =  
8

𝑞𝜋𝑚

Γ 𝛽0/𝑞 

 𝛽0/𝑞−2  𝛽0/𝑞−1 Γ 𝛽0/𝑞−3/2 
         (50) 

 

The averages of squared velocity components are 

 

 𝑣𝑥
2 =  𝑣𝑦

2 =  𝑣𝑧
2 = −

2

𝑚(2𝛽0−5𝑞)
      (57) 

  

which is the q-deformed equipartition theorem. 

 

4. Concluding Remarks 

In this paper we used the super-statistics theory to 

obtain three q-exponential type Boltzmann factors which 

we call Type I, II and III. We found that Type I Boltzmann 

factor is well defined for 𝑞 < 1, Type II Boltzmann factor 

is well defined for 0 <  𝑞 < 1/𝛽0 and Type III Boltzmann 

factor is well defined for 𝑞 > 0. We applied three types of 

effective Boltzmann factors to the kinetic theory of an ideal 

gas which implies that the Maxwell-Boltzmann distribution 

of molecular speed is q-deformed in three ways. We also 

computed the most probable speeds, average speeds and 

averages of squared velocity for three types Boltzmann 

factors. Finally we reached the q-deformed equipartition 

theorem for three types Boltzmann factors. 
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