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Abstract 
Review paper 

NiTi-based shape memory alloys (SMAs) have many applications, especially for implantation, however since they are not a passive 

material so it is important to investigate them from different biocompatible perspectives. In this study, we introduced the important physical 

characteristics of NiTi alloys, then we explained different biocompatible terminologies, including carcinogenic, genotoxic, cytotoxicity, 

mutagenic, allergic, and corrosivity. We collected some important previous works that investigated the biocompatibility of NiTi-based 

SMAs and the different techniques used for improving the alloy and diminishing the hazard due to Ni-leakages. 
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1 Introduction 
 

Smart materials are a group of engineering materials 

that have many technological applications [1, 2], besides, 

shape memory alloys (SMAs) are a special type of smart 

materials which are received more attention compared to 

other types of smart materials because they are able to 

recover and a deformed shape through some specific 

mechanisms [3-7]. SMAs have two main phases which are 

austenite and martensite phases. Austenite is stable at high 

temperatures while martensite is stable at low 

temperatures, and the phase transformation from austenite 

to martensite and vice versa can be obtained through the 

heating/cooling process [8-20]. Also, the ability of SMAs 

to return to their previous shape is specified into two 

different categories, which are shape memory effect (SME) 

and superelasticity (SE). Because of these interest 

behaviors, SMAs are widely used in modern technological 

applications, such as robotics, automotive, aerospace, and 

medical application [21]. Additionally, some SMAs, 

especially NiTi-based alloys, are used as biomedical 

materials. Biocompatibility is an ability of biomedical 

materials since they are implanting in the human body, so 

they should be passive and do not damage the living tissues 

[22]. Besides, the biocompatibility of SMAs is relative, 

therefore they can be improved by some basic techniques 

such as heat treatment and alloying process. In the past few 

decades, many studies in the literature could improve the 

biocompatibility of SMAs. For example, Jin et al. used a 

filtered arcing ion plate technique to coating NiTi alloy 

with the tin element. They reported that Sn enhanced the 

biocompatibility of their sample [23]. Likewise,  Zhang 

and coworkers improved the biocompatibility and anti-

corrosion resistance of a binary NiTi SMA by coating its 

surface with graphene [24]. Also, Tao and coworkers 

performed the oxidation treatment on a NiTi SMA using 

H2O2 solution, and they stated that the wettability, blood 

compatibility, and fibroblasts compatibility were improved 

after coating the sample with a titanium oxide layer [25].  

In this article, most studies conducted about improving 

the biocompatibility of NiTi-based shape memory alloys 

have been reviewed. Firstly, we discussed the main 

features of shape memory alloys, then we explained some 

biocompatible terminology used for biomedical materials. 

Also, the techniques used to improve and minimize the 

risks of using these smart materials are highlighted. 

 

2 General Characteristics of SMAs 
 

As we mentioned before, SMAs have two main phases 

which are austenite and martensite. Also, they can be 

transferred from one phase into the other counterpart, also 

they able to return to their previous shape only by 

manipulating temperature. This ability is based on two 

main characteristics, which are known as SME and SE. 

 

2.1 Shape Memory Effect (SME) 
 

When the SMA phase is converted from a low-

temperature phase (martensite) to a high-temperature 

phase (austenite) by thermoelastic conversion, it can return 

to its original state under the influence of the heating 

process. This behavior is called the shape memory effect 

[26]. Figure 1 depicts a stress-strain-temperature diagram 

that determines the SME mechanism. The austenite is 

phase transformed to the martensite phase under the effect 

of the stress and cooling process; firstly, the austenite phase 

transforms into twinned-martensite (1→2), and then its 
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crystal structure changes to detwinned-martensite (2→3). 

When the effect of mechanical stress is removed through 

the (3→4) process, its crystal structure stays constant, but 

under the effect of the heating process, the alloy can 

recover to its parent phase (austenite) through (4→1) [26]. 

Based on the SME, two different types of SMAs have 

been classified: one-way shape memory alloy (OWSMA) 

and two-way shape memory alloy (TWSMA). In 

OWSMA, the alloy can remember only one predetermined 

shape given in the austenite phase, while in TWSMA, the 

alloy can be trained to remember two different shapes in 

two various temperatures. Generally, OWSMAs have more 

commercial applications compared to TWSMAs [27]. 

 

 
Figure 1. Schematic diagram of SME [26] 

 

2.2 Super Elasticity (SE) 
 

SE is another unique property of SMAs, which has 

more technological applications. SE does not need 

temperature change [28], but in a specific temperature 

between austenite finish and martensite deformation, the 

superelasticity can be obtained from an SMA [28]. Figure 

2 shows the superelasticity mechanism in a stress-strain 

diagram. After the applying stress exceeds elastic (A→B) 

deformation, a martensite phase transformation takes place 

(B→C). After austenite is compactly transformed to the 

martensite phase, the crystal structure of the alloy changes 

from cubic to a detwinned martensite crystal structure. The 

stress is stored as elastic energy so after removing the 

external load, the restoring energy returns the deformed 

alloy to its original shape, however, by over-stressing the 

alloy, a slip can happen that leads to permanent 

deformation.  

 

 
Figure 2. Schematic diagram of the SE [28] 

3 Biocompatible Properties 
 

In this chapter, the main well-known biocompatible 

properties of materials, especially NiTi-based alloys were 

discussed. Table 1 lists the biocompatibility of some 

elements, includes Ni and Ti. 

 

3.1 Carcinogenic 
 

Carcinogenic is one of the most imperfections or 

harmful properties that must be taken into account for the 

substances which are used in medical treatments and 

manufacturing medical devices that are implanted into the 

human body [29]. Also, carcinogenic can increases cancer 

[30]. Chemical carcinogenic which refers to some chemical 

substances such as arsenic (As), cadmium (Cd), nickel 

(Ni), and selenium (Se), can destroy DNA that directly or 

indirectly causes a mutation in the essential oncogene or 

immune cell gene that causes cancer [31]. The NiTi-based 

shape memory alloys are the most popular ones that are 

used in biomedical applications, however, one of the big 

problems of using NiTi as a biomaterial is the release of the 

carcinogenic Ni and Ti ions into the human body [32]. 

There are more works in the literature where they were 

treated this problem by surface modifications and coating 

methods to improve the corrosion resistance by reduced the 

carcinogenicity of Ni-Ti alloy [33-36]. 

O’Brien et al. carried out the passivation process on a 

NiTi SMA; they treated samples thermally and then they 

passivated them in a nitric acid solution. They stated that 

the biocompatibility of the NiTi alloy was improved. The 

surface analysis indicated that after the passivation process 

Ni and NiO content were reduced and TiO2 increased on 

the surface. Also, they concluded that the corrosion 

resistance of the alloy was proportional to the quantity of 

nickel removed [37]. Likewise, El Abedin and coworkers 

improved the biocompatibility of a NiTi alloy by reducing 

the carcinogenic Ni content. They coated the NiTi SMA 

with a thin layer of Ta using a 3.5% NaCl solution; they 

stated that the corrosion resistance was improved after 

coating the alloy [32]. 

 

3.2 Genotoxic 
 

Genotoxic is one of the properties of chemical 

elements that are concerning in biomedical applications to 

avoid cancer due to the change in the genetic information 

of the organs and mutation by damaging the DNA of the 

cells [38]. The indirect and direct DNA damage, due to 

genotoxicity includes induction of a mutation, and direct 

DNA damage, resulting in mutations. It induces immediate 

and inherited modifications which can be transmitted to 

subsequent cell generations [39]. It is known that NiTi-

based alloys have several important and interesting 

properties such as superelasticity, shape memory, and high 

damping property, however, due to the presence of Ni 

element, the NiTi-based alloys are listed in genotoxic 

materials [38]. Assad et al. decreased the genotoxicity for 

a NiTi SMA by diminishing the amount of Nickel in a NiTi 

alloy. They found that the genotoxicity of pure Titanium is 

smaller than a binary NiTi, stainless steel, and pure nickel. 

Based on genotoxicity results, they sorted the materials as 

Ti ˂ Ni-Ti ˂ stainless steel ˂ Ni [40]. 
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3.3 Cytotoxicity 
 

Cytotoxicity is one of the important properties of 

chemical elements or materials that causes cell damage or 

cell death when a cytotoxic material is implanted inside a 

human body. The prefix (cyto) means cell, and (toxic) 

means poison. Chemotherapy is used for treating the 

damage to cancer cells caused by cytotoxic material [41]. 

Cytotoxicity testing is so important for the biomedical 

element used for implanting applications [42]. NiTi-based 

shape memory alloys are one of the biomedical materials 

that are also cytotoxicity because nickel is one of the toxic 

chemical elements. However, this issue can be treated by 

diminishing Ni or substituting Ni with a third 

biocompatible element. Tabish, et al. added Fe as the third 

element into a NiTi alloy with composition of  

Ti50Ni48Fe2, Ti50Ni47Fe3, and Ti50Ni45Fe5,. They 

implanted the samples inside the rabbit body, and they 

tested the blood and histology of various vital organs of the 

rabbit after 4, 8, and 12 weeks. Thus, they stated that the 

ternary NiTiFe alloys showed no sign of cytotoxicity and 

the alloys were passive and had no reaction with the living 

organs inside the rabbit body [43]. 

 

3.4 Mutagenic 
 

Mutagenic is another property of materials that can 

cause a permanent change in the genetic code of a host cell 

[44, 45]. The permanent change in the amount or structure 

of the genetic code and chromosome of the organism is 

called mutation [46]. Normally, the human body has 

enough immunity to these mutations and it can recognize 

and repair some of the mutations, however, some of these 

mutations are not repaired and not recognized by the 

immunity system, therefore, they may produce a tumor and 

develop cancer [47]. Although, as aforementioned, a NiTi 

SMA has high biocompatibility, Nickel as a main 

constituent of the alloy is listed in mutagen elements that 

should be taken into account [48].  

 

3.5 Allergic 
 

An allergy is an immune system reaction to a foreign 

material that is not normally dangerous to the body. These 

materials are called allergens, and allergic reactions can be 

produced when these materials enter a body. These 

materials have many types such as pollen, foods, and pet 

dander [49, 50]. Sometimes, a NiTi shape memory alloy 

can also classify as an allergen material because Ni is one 

of the five elements (Amalgam, Gold, Nickel, Chromate, 

and Platinum) that are caused to allergic, and it ranks third 

among this list [51]. Also, generally, females have more 

sensitivity to Nickel than males. Somehow, up to 20% of 

females have sensitivity to nickel, while, only 1-2% of 

males are sensitive to this element [52-54].  This allergy 

can be treated by release the amount of Nickel in the alloy 

or by surface coating to avoid Ni-leakage [55]. Kim, et al. 

coated a NiTi alloy with both nitride and epoxy and they 

subjected the samples in dissolution with 0.9% NaCl and 

neutral PH at room temperature. The result showed that 

nitride has no significant effect on decreasing the allergy 

of the NiTi because it did not affect the corrosion of the 

alloy, while, they stated that epoxy decreased the allergy of 

the NiTi alloy because the epoxy increased the corrosion 

resistance of the alloy [56]. 

 

3.6 Prone to Corrosion 
 

Despite implanting materials have more benefits in 

biomedical applications, they sometimes have side effects 

and cause additional health issues [57].  One of these side 

effects is corrosion which is the degradation of the 

implanting materials by an electrochemical attack when 

they are placed inside the host body. The implanted 

materials normally face various electrolyte environments, 

such as blood, water, chlorine, sodium, plasma, and amino 

acids, therefore, these fluids may cause corrode the 

implanted metals [58]. NiTi SMAs have comparably good 

corrosion resistance, but, they can be further improved by 

some different techniques. Jean et al. added Cu into Ni-Ti 

alloy, and they reported that the corrosion rate of the 

equiatomic NiTi is greater than the ternary NiTiCu alloy 

[59]. Likewise, Ruiz, et al. investigated the effect of both 

boron addition and heat treatment on the corrosion 

resistance of a NiTi alloy. They added 250, 500, and 1000 

ppm of B into Ni55-Ti45, at the same time, and they 

performed heat treatment on the samples at 900 ℃ for 4 

hours. Their results showed that after adding 250 and 500 

ppm of B, the corrosion rate was decreased but 1000 ppm 

B  increased the corrosivity of the alloy  [60]. Also, Iijima, 

et al. performed a surface configuration method on a NiTi 

alloy. They polished the surface alloy with 0.9% NaCl and 

1% lactic acid solutions, and they found that a thick oxide 

layer TiO2 was formed on the Ni-Ti surface by the heat 

treatment and subsequent pickling processes. Besides, they 

realized that this oxide layer improved both general and 

localized corrosion of the NiTi in [61]. 

Also, the corrosion resistance of a NiTi alloy can be 

improved by a chemical treatment method, which is called 

passivation. Passivation can be defined as the anti-

corrosion mechanism or it is a loss of electrochemical 

activity, whereby the passive layer is produced as a barrier 

between the surface of the metal and the electrolyte, 

therefore this protection layer can increase the corrosion 

resistance of the material [62-67]. 

 

4 Conclusions 
 

Since NiTi-based shape memory alloys (SMAs) are 

not a passive material, they widely are investigated from 

various biocompatible perspectives. In this review, the 

essential physical properties of the NiTi alloys were 

discussed. Additionally, the well-known biocompatible 

terms including carcinogenic, genotoxic, cytotoxicity, 

mutagenic, allergic, and corrosivity were clarified for NiTi 

alloys. Some significant studies that investigated the 

biocompatibility of NiTi-based SMAs and the various 

strategies used to improve the alloy and reduce the risk of 

Ni-leakages were reviewed. Researchers could achieve 

good results, however, there are still many issues that need 

more studies.  
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Table 1. The biocompatibility of some elements [29] 

Periodic 

position 
Element Biocompatible Carcinogenic Genotoxic Mutagenic Cytotoxic Allergenic 

Pron to 

corrosion 
Other 

3d 

Ti   X X X Med X X X 

V X       High Disputed X X 

Cr X Disputed   X High   X X 

Mn X X   X High X   X 

Fe X X   X Med X   X 

Co X       High       

Ni X       High       

Cu X X     High       

4d 

Zr   X X X Low X X X 

Nb   X X X Low X X X 

Mo X Disputed     Low       

Tc X -radioactive- 

Ru X X X X Med X X   

Rh X       High Unknown X X 

Pd X   X Disputed Med   X X 

Ag X X X X High   X   

5d 

Hf Unknown Unknown Unknown Unknown Med X X Unknown 

Ta   X X X Low X X X 

W X     X Med X   X 

Re Unknown Unknown Unknown Unknown Unknown X X Unknown 

Os X Unknown     High X   X 

Ir X X X   High X X   

Pt X       High   X X 

Au   X X X High X X X 

Other 

Al X X   X Low X X   

Zn X X X X High X X   

Sn   X X X Low X X   
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