International Journal of Informatics and Applied Mathematics e-ISSN:2667-6990
Vol. 6, No. 2, 8-19

A Class of LCD Codes Through Cyclic Codes Over $\mathbb{Z}_{p} \boldsymbol{R}$

Zineb Hebbache ${ }^{1,2}$ and Amit Sharma ${ }^{3}$
${ }^{1}$ National School of Built and Ground Works Engineering NSBGWE (ENSTP), Street of Sidi Garidi, B.P. 32, Kouba, 16051, Algiers, Algeria
${ }^{2}$ Laboratory of Algebra and number theory, Faculty of Mathematics, U.S.T.H.B., B.P. 32, 16111 El-Alia, Algiers, Algeria.
z.hebbache@enstp.edu.dz
${ }^{3}$ Department of Mathematics and Humanities, S.V. National Institute of Technology
Surat, Surat, India.
apsharmaiitr@gmail.com

Abstract

In recent time, some mixed types of alphabets have been considered for constructing error correcting codes. These constructions include $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes, $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear codes et cetera. In this paper, we studied a class of codes over a mixed ring $Z_{p} R$ where $R=$ $\mathbb{Z}_{p}+v \mathbb{Z}_{p}+v^{2} \mathbb{Z}_{p}, v^{3}=v$. We determined an algebraic structure of these codes under certain conditions. We have also constructed a class of LCD cyclic codes over $\mathbb{Z}_{p} R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.

Keywords: Linear Cyclic Codes • Codes Over Mixed Alphabets • Gray Map • LCD Codes.

1 Introduction

As we know, cyclic codes possess a nice algebraic structures as they are easy to understand and implement. In recent time, linear codes, or in particular cyclic codes, have been studied over mixed alphabets. In 1973, Delsarte [1] introduced additive codes which can be viewed as subgroups of the underlying abelian group of the form $Z_{2}^{\alpha} \times Z_{4}^{\beta}$. Later, many scholars paid more attention to additive codes. Abualrub et al. [2] and Borges et al. [3] introduced $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes. They investigated the generator matrix and the duality of the family of codes. Aydogdu et al. [4],[5] generalized $Z_{2} Z_{4}$-additive codes to $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes and $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. Afterwards, some papers focused on additive codes appeared, such as $[6],[7],[8],[9]$.

LCD codes were first introduced by Massey [10]. This family of codes have shown effectiveness against side-channel attacks(SCA) and fault injection attacks(FIA) to improve the security related information on sensitive devices [11]. Authors have explored properties of LCD codes with various conditions and structures in [12], [13], [14]. To the best of our knowledge, there is no study yet on linear cyclic codes over $\mathbb{Z}_{p} \times\left(\mathbb{Z}_{p}+v \mathbb{Z}_{p}+v^{2} \mathbb{Z}_{p}\right)$ with $v^{3}=$ v. Unlike the finite chain ring $\mathbb{Z}_{p}+u Z_{p}+u^{2} \mathbb{Z}_{p}$ with $u^{3}=0$, the ring $Z_{p}+v Z_{p}+v^{2} Z_{p}$ with $v^{3}=v$ is a non-chain ring, and hence many algebraic properties of $\mathbb{Z}_{p}\left(\mathbb{Z}_{p}+u Z_{p}+u^{2} \mathbb{Z}_{p}\right)$ and $\mathbb{Z}_{p}\left(\mathbb{Z}_{p}+v Z_{p}+v^{2} Z_{p}\right.$ vary. We have chosen an other approach to define this class in this paper and then a class of LCD codes have been constructed.

The paper is organized as follows. In Section 2, we give some basic results about the ring $R=Z_{p}+v \not Z_{p}+v^{2} \not Z_{p}, v^{3}=v$, and linear codes over $Z_{p} R$. In Section 3, we study some structural properties of cyclic codes over R. In Section 4 , cyclic codes over $Z_{p} R$ are studied. In Section 5, necessary and sufficient conditions for cyclic codes to be LCD codes over Z_{p} are given. Finally, we construct some LCD codes from $Z_{p} R$-linear cyclic codes.

2 Preliminaries

Let R be a commutative ring with characteristic p defined as $Z_{p}+v \not Z_{p}+v^{3} Z_{p}=$ $\left\{a+v b+v^{2} c \mid a, b, c \in \mathbb{Z}_{p}\right\}, v^{3}=v$. The ring R can be considered as the quotient ring $Z_{p}[v] /\left\langle v^{3}-v\right\rangle$. It can be easily checked that R is a principal ideal ring but not a finite chain ring.

Define $\epsilon_{1}=1-v^{2}, \epsilon_{2}=\frac{v+v^{2}}{2}$ and $\epsilon_{3}=\frac{v^{2}-v}{2}$. Then $\epsilon_{i}^{2}=\epsilon_{i}, \epsilon_{i} \epsilon_{j}=0$ and $\sum_{i=1}^{3} \epsilon_{i}=1$ for $i \neq j$ and $i, j \in\{1,2,3\}$. By Chinese remainder theorem, we have $R=\epsilon_{1} Z_{p} \oplus \epsilon_{2} Z_{p} \oplus \epsilon_{3} Z_{p}$.

We define a Gray map on R as follows:

$$
\begin{gathered}
\phi: R \rightarrow \mathbb{Z}_{p}^{3} \\
a+v b+v^{2} c \mapsto(a, a+b+c, a-b+c)
\end{gathered}
$$

Recall the following definitions.
Definition 1. [15] Let $\mathbf{x}=(x \mid r) \in \mathbb{Z}_{p}^{\alpha} \times R^{\beta}$, where $x=\left(x_{0}, \ldots, x_{\alpha-1}\right) \in \mathbb{Z}_{p}^{\alpha}$ and $r=\left(r_{0}, \ldots, r_{\beta-1}\right) \in R^{\beta}$. Then the Lee weight of \mathbf{x} is defined as

$$
w_{L}(\mathbf{x})=w_{H}(\phi(\mathbf{x}))
$$

where w_{H} denotes the Hamming weight.
Definition 2. Let $(\mathbf{x}, \mathbf{w}) \in Z_{p}^{\alpha} \times R^{\beta}$. Then the Lee distance of \mathbf{x} and \mathbf{w} is defined as

$$
d_{L}(\mathbf{x}, \mathbf{w})=w_{L}(\mathbf{x}-\mathbf{w})
$$

For any element $r \in R, r$ can be expressed uniquely as $r=a+v b+v^{2} c$, where $a, b, c \in \mathbb{Z}_{p}$. We define the set

$$
\mathbb{Z}_{p} R=\left\{(x, r) \mid x \in \mathbb{Z}_{p}, r \in R\right\} .
$$

The ring $Z_{p} R$ is not an R-module under standard multiplication, but to make it an R-module, we define the following map:

$$
\begin{gather*}
\eta: R \rightarrow \mathbb{Z}_{p} \\
r=a+v b+v^{2} c \mapsto a . \tag{1}
\end{gather*}
$$

Clearly the mapping η is a ring homomorphism. For any $l \in R$, we define the multiplication \star as

$$
l \star(x, r)=(\eta(l) x, l r)
$$

And the map \star can be naturally generalized to the ring $\mathbb{Z}_{p}^{\gamma} R^{\beta}$ as follows. For any $l \in R$ and $w=\left(x_{0}, x_{1}, \ldots, x_{\alpha-1} \mid r_{0}, r_{1}, \ldots, r_{\beta-1}\right) \in \mathbb{Z}_{p}^{\alpha} R^{\beta}$ define

$$
l \star w=\left(\eta(l) x_{0}, \eta(l) x_{1}, \ldots, \eta(l) x_{\alpha-1} \mid l r_{0}, l r_{1}, \ldots, l r_{\beta-1}\right)
$$

where $\left(x_{0}, x_{1}, \ldots, x_{\alpha-1}\right) \in Z_{p}^{\alpha}$ and $\left(r_{0}, r_{1}, \ldots, r_{\beta-1}\right) \in R^{\beta}$.
Thus we conclude that the ring $Z_{p}^{\alpha} R^{\beta}$ is an R-module under the usual addition and the multiplication just defined above.

Definition 3. A non-empty subset C of $Z_{p}^{\alpha} R^{\beta}$ is called a $Z_{p} R$-linear code if it is an R-submodule of $\mathbb{Z}_{p}^{\alpha} R^{\beta}$.

Let C be a $Z_{p} R$-linear code and let C_{α} (respectively, C_{β}) be the canonical projection of C on the first α (respectively, on the last β) coordinates. Since the canonical projection is a linear map, C_{α} and C_{β} are linear codes of lengths α and β (over \mathbb{Z}_{p} and over R), respectively.

The Euclidean inner product on $Z_{p}^{\alpha} R^{\beta}$ is calculated as follows. For any two vectors

$$
\mathbf{t}=\left(x_{0}, \ldots, x_{\alpha-1} \mid r_{0}, \ldots, r_{\beta-1}\right), \mathbf{t}^{\prime}=\left(x_{0}^{\prime}, \ldots, x_{\alpha-1}^{\prime} \mid r_{0}^{\prime}, \ldots, r_{\beta-1}^{\prime}\right) \in Z_{p}^{\alpha} \times R^{\beta}
$$

we have

$$
\left\langle\mathbf{t}, \mathbf{t}^{\prime}\right\rangle=(1+v) \sum_{i=0}^{\alpha-1} x_{i} \dot{x}_{i}+\sum_{j=0}^{\beta-1} r_{j} \dot{r}_{j}
$$

Let C be a $Z_{p} R$-linear code. The dual of C is defined by

$$
C^{\perp}=\left\{\mathbf{t}^{\prime} \in Z_{p}^{\alpha} \times R^{\beta},\left\langle\mathbf{t}, \mathbf{t}^{\prime}\right\rangle=0 \text { for all } \mathbf{t} \in C\right\}
$$

A linear code is called an Euclidean LCD (linear complementary dual) code if $C \cap C^{\perp}=\{0\}$.

Note that the Euclidean dual of a linear code C of length α over \mathbb{Z}_{p} is defined as $C^{\perp}=\left\{x \in Z_{p}^{\alpha} \mid \forall y \in C,\langle x, y\rangle=0\right\}$ where for x, y in $Z_{p}^{\alpha},\langle x, y\rangle=\sum_{i=1}^{\alpha} x_{i} y_{i}$ is the scalar product of x and y.

3 Cyclic codes over \boldsymbol{R}

This section deals with some structural properties of cyclic codes over R. All codes are assumed to be linear unless otherwise stated.

A code of length β over R is a nonempty subset of R^{β}. A code C_{β} is said to be linear if it is a submodule of the $R-\operatorname{module} R^{\beta}$.

Let C_{β} be a linear code over R, define:

$$
\begin{align*}
C_{\beta, 1} & =\left\{a \in \mathbb{Z}_{p}^{\beta} \mid \epsilon_{1} a+\epsilon_{2} b+\epsilon_{3} c, \forall a, b, c \in C_{\beta}\right\} \\
C_{\beta, 2} & =\left\{b \in \mathbb{Z}_{p}^{\beta} \mid \epsilon_{1} a+\epsilon_{2} b+\epsilon_{3} c, \forall a, b, c \in C_{\beta}\right\} \tag{2}\\
C_{\beta, 3} & =\left\{c \in \mathbb{Z}_{p}^{\beta} \mid \epsilon_{1} a+\epsilon_{2} b+\epsilon_{3} c, \forall a, b, c \in C_{\beta}\right\}
\end{align*}
$$

Then $C_{\beta, 1}, C_{\beta, 2}$ and $C_{\beta, 3}$ are linear codes of length β over Z_{p}. Moreover C_{β} can be uniquely expressed as $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ with $\left|C_{\beta}\right|=$ $\left|C_{\beta, 1}\right|\left|C_{\beta, 2}\right|\left|C_{\beta, 3}\right|$ and $d_{L}\left(C_{\beta}\right)=\min \left\{d_{H}\left(C_{\beta, i}\right), i=1,2,3\right\}$.

Let G_{j} be generator matrices of linear codes $C_{\beta, j}, j=1,2,3$ respectively, then the generator matrix of C_{β} is

$$
G=\left(\begin{array}{c}
\epsilon_{1} G_{1} \\
\epsilon_{2} G_{2} \\
\epsilon_{3} G_{3}
\end{array}\right)
$$

and the generator matrix of $\phi\left(C_{\beta}\right)$ is

$$
\phi(G)=\left(\begin{array}{l}
\phi\left(\epsilon_{1} G_{1}\right) \\
\phi\left(\epsilon_{2} G_{2}\right) \\
\phi\left(\epsilon_{3} G_{3}\right)
\end{array}\right)
$$

The following proposition is straightforward from the definition of the Gray map ϕ.

Proposition 1. Let C_{β} be a linear code of length β over R with $\left|C_{\beta}\right|=M$ and minimum Lee distance $d_{L}\left(C_{\beta}\right)=d$. Then $\phi\left(C_{\beta}\right)$ is a linear code with parameters $(3 \beta, M, d)$.

A code C_{β} is said to be a cyclic, if C_{β} is closed under the cyclic shift defined as:

$$
\begin{gathered}
\rho: R^{\beta} \rightarrow R^{\beta} \\
\rho\left(a_{0}, a_{1}, \ldots, a_{\beta-1}\right)=\left(a_{\beta-1}, a_{0}, \ldots, a_{\beta-2}\right)
\end{gathered}
$$

Lemma 1. A linear code C_{β} of length β over R is cyclic code if and only if C_{β} is a $R[x]$-submodule of $R[x] /\left\langle x^{\beta}-1\right\rangle$.

Proof. Straightforward.
Now we present some results on cyclic codes over R that are necessary to further study the cyclic codes over over $Z_{p} R$.

Theorem 1. Let $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ be a linear code of length β over R. Then C_{β} is a cyclic code of length β over R if and only if $C_{\beta, j}$ are cyclic codes of length β over \mathbb{Z}_{p} for $j=1,2,3$.

Proof. For any $s=\left(s_{0}, s_{1}, \ldots, s_{\beta-1}\right) \in C_{\beta}$, we can write its components as $s_{i}=$ $\epsilon_{1} a_{i}+\epsilon_{2} b_{i}+\epsilon_{3} c_{i}$, where $a_{i}, b_{i}, c_{i} \in \mathbb{Z}_{p}, 0 \leq i \leq \beta-1$. Let $a=\left(a_{0}, a_{1}, \ldots, a_{\beta-1}\right)$, $b=\left(b_{0}, b_{1}, \ldots, b_{\beta-1}\right), c=\left(c_{0}, c_{1}, \ldots, c_{\beta-1}\right)$. Then $a \in C_{\beta, 1}, b \in C_{\beta, 2}$ and $c \in$ $C_{\beta, 3}$. If $C_{\beta, j}$ is a cyclic code for $j=1,2,3$. This implies that

$$
\begin{gather*}
\rho(a)=\left(a_{\beta-1}, a_{0}, \ldots, a_{\beta-2}\right) \in C_{\beta, 1} \\
\rho(b)=\left(b_{\beta-1}, b_{0}, \ldots, b_{\beta-2}\right) \in C_{\beta, 2} \tag{3}\\
\rho(c)=\left(c_{\beta-1}, c_{0}, \ldots, c_{\beta-2}\right) \in C_{\beta, 3} .
\end{gather*}
$$

Thus $\epsilon_{1} \rho(a)+\epsilon_{2} \rho(b)+\epsilon_{3} \rho(c)=\rho(s) \in C_{\beta}$, i.e., C_{β} is a cyclic code of length β over R.

Conversely, suppose that C_{β} is a cyclic code of length β over R. Let $s_{i}=$ $\epsilon_{1} a_{i}+\epsilon_{2} b_{i}+\epsilon_{3} c_{i}$, where $a=\left(a_{0}, a_{1}, \ldots, a_{\beta-1}\right), b=\left(b_{0}, b_{1}, \ldots, b_{\beta-1}\right)$ and $c=$ $\left(c_{0}, c_{1}, \ldots, c_{\beta-1}\right)$. Then $a \in C_{\beta, 1}, b \in C_{\beta, 2}$ and $c \in C_{\beta, 3}$. Now for $s=\left(s_{0}, s_{1}, \ldots, s_{\beta-1}\right) \in$ C_{β}, we have

$$
\rho(s)=\left(s_{\beta-1}, s_{0}, \ldots, s_{\beta-2}\right) \in C_{\beta}
$$

This gives
$\rho(a) \in C_{\beta, 1}, \rho(b) \in C_{\beta, 2}, \rho(c) \in C_{\beta, 3}$, i.e., $C_{\beta, j}$ is a cyclic code of length β over \mathbb{Z}_{p} for all $j=1,2,3$.

Theorem 2. Let $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ be a cyclic code of length β over R. Suppose $g_{j}(x)$ are the monic generator polynomials of cyclic code $C_{\beta, j}$ such that $g_{j}(x)$ divides $x^{\beta}-1$ for all $j=1,2,3$. Then
(i)

$$
\begin{aligned}
& C_{\beta}=\left\langle\epsilon_{1} g_{1}(x), \epsilon_{2} g_{2}(x), \epsilon_{3} g_{3}(x)\right\rangle \\
& \text { and }\left|C_{\beta}\right|=p^{3 \beta-\left(\operatorname{deg}\left(g_{1}(x)\right)+\operatorname{deg}\left(g_{2}(x)\right)+\operatorname{deg}\left(g_{3}(x)\right)\right)}
\end{aligned}
$$

(ii) There exists a polynomial $g(x) \in R[x]$ such that $C_{\beta}=\langle g(x)\rangle$, where $g(x)=$ $\left\langle\epsilon_{1} g_{1}(x)+\epsilon_{2} g_{2}(x)+\epsilon_{3} g_{3}(x)\right\rangle$ which is a divisor of $x^{\beta}-1$.

Proof. (i) Let $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ be a cyclic code of length β over R. Then by Theorem $1, C_{\beta, j}$ is cyclic code of length β over \mathbb{Z}_{p} for all $j=1,2,3$. Since $g_{j}(x)$ is the monic generator polynomial of $C_{\beta, j}$, we have $C_{\beta, j}=\left\langle g_{j}(x)\right\rangle \subseteq \mathbb{Z}_{p}[x] /\left\langle x^{\beta}-1\right\rangle$ for all $j=1,2,3$. Therefore C_{β} has the following form:

$$
C_{\beta}=\left\langle\epsilon_{1} g_{1}(x), \epsilon_{2} g_{2}(x), \epsilon_{3} g_{3}(x)\right\rangle
$$

Also, since $\left|C_{\beta}\right|=\left|\phi\left(C_{\beta}\right)\right|=\left|C_{\beta, 1}\right|\left|C_{\beta, 2}\right| C_{\beta, 3} \mid$, we have

$$
\left|C_{\beta}\right|=p^{3 \beta-\left(\operatorname{deg}\left(g_{1}(x)\right)+\operatorname{deg}\left(g_{2}(x)\right)+\operatorname{deg}\left(g_{3}(x)\right)\right.}
$$

(ii) The first part gives,

$$
C_{\beta}=\left\langle\epsilon_{1} g_{1}(x), \epsilon_{2} g_{2}(x), \epsilon_{3} g_{3}(x)\right\rangle
$$

Let $g(x)=\epsilon_{1} g_{1}(x)+\epsilon_{2} g_{2}(x)+\epsilon_{3} g_{3}(x)$. Then it can easily be seen that $\langle g(x)\rangle \subseteq C_{\beta}$. Moreover, $\epsilon_{1} g_{1}(x)=\epsilon_{1} g(x), \epsilon_{2} g_{2}(x)=\epsilon_{2} g(x)$ and $\epsilon_{3} g_{3}(x)=$ $\epsilon_{3} g(x)$, which concludes $C_{\beta} \subseteq\langle g(x)\rangle$ and hence $C_{\beta}=\langle g(x)\rangle$.
Now for all $j=1,2,3$, suppose $g_{j}(x)$ is the monic generator polynomials of $C_{\beta, j}$. Thus $g_{j}(x)$ divides $x^{\beta}-1$ such that $x^{\beta}-1=h_{j}(x) g_{j}(x)$, which further implies that $\epsilon_{j}\left(x^{\beta}-1\right)=\epsilon_{j} h_{j}(x) g_{j}(x)$. So that,

$$
x^{\beta}-1=\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right) x^{\beta}-\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)
$$

$$
=\epsilon_{1}\left(x^{\beta}-1\right)+\epsilon_{2}\left(x^{\beta}-1\right)+\epsilon_{3}\left(x^{\beta}-1\right)
$$

$$
=\epsilon_{1} h_{1}(x) g_{1}(x)+\epsilon_{2} h_{2}(x) g_{2}(x)+\epsilon_{3} h_{3}(x) g_{3}(x)
$$

$$
=\left(\epsilon_{1} h_{1}(x)+\epsilon_{2} h_{2}(x)+\epsilon_{3} h_{3}(x)\right)\left(\epsilon_{1} g_{1}(x)+\epsilon_{2} g_{2}(x)+\epsilon_{3} g_{3}(x)\right) \text { (be- }
$$

cause $\epsilon_{i}^{2}=\epsilon_{i}, \epsilon_{i} \epsilon_{j}=0$ where $i=1,2,3$ and $i \neq j$).

$$
=\left(\epsilon_{1} h_{1}(x)+\epsilon_{2} h_{2}(x)+\epsilon_{3} h_{3}(x)\right) g(x)
$$

Therefore, $g(x)$ is a divisor of $x^{\beta}-1$.
Corollary 1. Let $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ be a cyclic code of length β over R. Then $C_{\beta}^{\perp}=\epsilon_{1} C_{\beta, 1}^{\perp} \oplus \epsilon_{2} C_{\beta, 2}^{\perp} \oplus \epsilon_{3} C_{\beta, 3}^{\perp}$ is also a cyclic code of length β over R, where $C_{\beta, j}^{\perp}$ is a cyclic code of length β over \mathbb{Z}_{p} for all $j=1,2,3$.

Corollary 2. Let $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$ be a cyclic code of length β over R. Suppose $g_{j}(x)$ is the monic generator polynomial of the cyclic code $C_{\beta, j}$, which divides $x^{\beta}-1$ for all $j=1,2,3$. Then

1. $C_{\beta}^{\perp}=\left\langle\epsilon_{1} h_{1}^{*}(x), \epsilon_{2} h_{2}^{*}(x), \epsilon_{3} h_{3}^{*}(x)\right\rangle$ and $\left|C_{\beta}^{\perp}\right|=p^{\sum_{j=1}^{3}\left(\operatorname{deg}\left(g_{j}(x)\right)\right)}$.
2. $C_{\beta}^{\perp}=\left\langle h^{*}(x)\right\rangle$, where $h^{*}(x)=\left\langle\epsilon_{1} h_{1}^{*}(x)+\epsilon_{2} h_{2}^{*}(x)+\epsilon_{3} h_{3}^{*}(x)\right\rangle$,
where $x^{\beta}-1=h_{j}(x) g_{j}(x)$ for some $h_{j}(x) \in \mathbb{Z}_{p}[x]$, and $h_{j}^{*}(x)$ are the reciprocal polynomials of $h_{j}(x)$, that is, $h_{j}^{*}(x)=x^{\operatorname{deg}\left(h_{j}(x)\right)} h_{j}\left(x^{-1}\right)$ for $j=1,2,3$.

4 Cyclic codes over $\mathbb{Z}_{p} \boldsymbol{R}$

In this section, we study some structural properties of cyclic codes over $Z_{p} R$. Recall that a linear code of length (α, β) over $Z_{p} R$, we mean a submodule of R-module $\mathbb{Z}_{p}^{\alpha} \times R^{\beta}$.

Definition 4. A linear code C over $\mathbb{Z}_{p}^{\alpha} R^{\beta}$ is called cyclic code if C satisfies the following two conditions.
(i) C is an R-submodule of $\mathbb{Z}_{p}^{\alpha} R^{\beta}$, and
(ii)

$$
\left(c_{\alpha-1}, c_{0}, \ldots, c_{\alpha-2} \mid c_{\beta-1}^{\prime}, c_{0}^{\prime}, \ldots, c_{\beta-2}^{\prime}\right) \in C
$$

whenever

$$
\left(c_{0}, c_{1}, \ldots, c_{\alpha-1} \mid c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{\beta-1}^{\prime}\right) \in C
$$

Let $R_{\alpha, \beta}=\frac{Z Z_{p}[x]}{\left\langle x^{\alpha}-1\right\rangle} \times \frac{R[x]}{\left\langle x^{\beta}-1\right\rangle}$. In polynomial form, each codeword $a=\left(c_{0}, c_{1}, \ldots, c_{\alpha-1} \mid\right.$ $\left.c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{\beta-1}^{\prime}\right)$ of a cyclic code can be represented by a pair of polynomials as:

$$
\begin{gathered}
a(x)=\left(c_{0}+c_{1} x+\cdots+c_{\alpha-1} x^{\alpha-1} \mid c_{0}^{\prime}+c_{1}^{\prime} x+\cdots+c_{\beta-1}^{\prime} x^{\beta-1}\right) \\
=\left(c(x) \mid c^{\prime}(x)\right) \in R_{\alpha, \beta}
\end{gathered}
$$

Let $f(x)=f_{0}+f_{1} x+\cdots+f_{t} x^{t} \in R[x]$ and let $\left(c(x) \mid c^{\prime}(x)\right) \in R_{\alpha, \beta}$. Then the multiplication is defined by the basic rule

$$
f(x) \star\left(c(x) \mid c^{\prime}(x)\right)=\left(\eta(f(x)) c(x) \mid f(x) c^{\prime}(x)\right)
$$

where $\eta(f(x))=\eta\left(f_{0}\right)+\eta\left(f_{1}\right) x+\cdots+\eta\left(f_{t}\right) x^{t}$.

Lemma 2. A code C of length (α, β) over $Z_{p} R$ is a cyclic code if and only if C is left $R[x]$-submodule of $R_{\alpha, \beta}$.

Proof. Since $x a(x)$, in $R_{\alpha, \beta}$, represents the cyclic shift of the codeword $a \in C$ whose polynomial form is $a(x)=\left(c(x) \mid c^{\prime}(x)\right)$, the remaining part of the proof is straightforward.

We now extend the result of Theorem 2 to the ring $\mathbb{Z}_{p} R$ as follows.
Theorem 3. Let C be a cyclic code of length (α, β) over $\mathbb{Z}_{p} R$. Then

$$
C=\langle(f(x) \mid 0),(\ell(x) \mid g(x))\rangle
$$

where $f(x), \ell(x) \in \mathbb{Z}_{p}[x] /\left\langle x^{\alpha}-1\right\rangle, f(x)$ is a divisor of $x^{\alpha}-1$ and $g(x)$ is a divisor of $x^{\beta}-1$.

A $Z_{p} R$-linear code C of length (α, β) is called a separable code if $C=$ $C_{\alpha}^{\prime} \otimes C_{\beta}^{\prime}$, while considering C_{α}^{\prime} and C_{β}^{\prime} as punctured codes of C by deleting the coordinates outside the α and β components, respectively.

Proposition 2. Let $C=\langle(f(x) \mid 0),(\ell(x) \mid g(x))\rangle$ be a linear cyclic code of length (α, β) over $\mathbb{Z}_{p} R$. Then,

1. $\operatorname{deg}(\ell(x))<\operatorname{deg}(f(x))$ and $f(x) \mid g_{3}(x) \ell(x)$.
2. $C_{\alpha}^{\prime}=\langle g c d(f(x), \ell(x))\rangle$ and $C_{\beta}^{\prime}=\langle g(x)\rangle$.

Lemma 3. Let $C=\langle(f(x) \mid 0),(\ell(x) \mid g(x))\rangle$ be a linear cyclic code of length (α, β) over $\mathbb{Z}_{p} R$. Then, $f(x) \mid \ell(x)$ if and only if $\ell(x)=0$.

The following Lemma is a direct consequence of Lemma 3.
Lemma 4. Let $C=\langle(f(x) \mid 0),(\ell(x) \mid g(x))\rangle$ be a linear cyclic code. Then the following assertions are equivalent:
(i) C is a separable,
(ii) $f(x) \mid \ell(x)$,
(iii) $C=\langle(f(x) \mid 0),(0 \mid g(x))\rangle$. Thus, for a separable code, we obtain

$$
C_{\alpha}^{\prime}=\langle\operatorname{gcd}(f(x), 0)\rangle=\langle f(x)\rangle=C_{\alpha}, \text { and } C_{\beta}^{\prime}=\langle g(x)\rangle=C_{\beta}
$$

Theorem 4. Let $C=C_{\alpha} \otimes C_{\beta}$ be a linear code over $Z_{p} R$ of length (α, β), where C_{α} is linear code over \mathbb{Z}_{p} of length α and C_{β} is linear code over R of length β. Then C is a cyclic code if and only if C_{α} is a cyclic code over \mathbb{Z}_{p} and C_{β} is a cyclic code over R.

Proof. Let $\left(c_{0}, c_{1}, \ldots, c_{\alpha-1}\right) \in C_{\alpha}$ and let $\left(c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{\beta-1}^{\prime}\right) \in C_{\beta}$. If $C=C_{\alpha} \otimes C_{\beta}$ is a cyclic code over $Z_{p} R$, then

$$
\left(c_{\alpha-1}, c_{0}, \ldots, c_{\alpha-2}, c_{\beta-1}^{\prime}, c_{0}^{\prime}, \ldots, c_{\beta-2}^{\prime}\right) \in C
$$

which implies that

$$
\left(c_{\alpha-1}, c_{0}, \ldots, c_{\alpha-2}\right) \in C_{\alpha}
$$

and

$$
\left(c_{\beta-1}^{\prime}, c_{0}^{\prime}, \ldots, c_{\beta-2}^{\prime}\right) \in C_{\beta}
$$

Hence, C_{α} is a cyclic code over Z_{p} and C_{β} is a cyclic code over R.
On the other hand, suppose that C_{α} is a cyclic code over Z_{p} and C_{β} is a cyclic code over R. Note that

$$
\left(c_{\alpha-1}, c_{0}, \ldots, c_{\alpha-2}\right) \in C_{\alpha}
$$

and

$$
\left(c_{\beta-1}^{\prime}, c_{0}^{\prime}, \ldots, c_{\beta-2}^{\prime}\right) \in C_{\beta}
$$

Since $C=C_{\alpha} \otimes C_{\beta}$, then

$$
\left(c_{\alpha-1}, c_{0}, \ldots, c_{\alpha-2}, c_{\beta-1}^{\prime}, c_{0}^{\prime}, \ldots, c_{\beta-2}^{\prime}\right) \in C
$$

so C is a cyclic code over $Z_{p} R$.
By Theorems 1 and 4, we have the following corollary.

Corollary 3. Let $C=C_{\alpha} \otimes C_{\beta}$ be a linear code over $\mathbb{Z}_{p} R$ of length (α, β), where C_{α} is linear code over \mathbb{Z}_{p} of length α and C_{β} is linear code over R of length β. Then C is a cyclic code if and only if C_{α} is a cyclic code over \mathbb{Z}_{p} and $C_{\beta, j}$ is a cyclic code over \mathbb{Z}_{p}, where $j=1,2,3$.

In Theorem 3, we have studied the generator polynomial for a cyclic code over $Z_{p} R$ of length (α, β). Now here we study the generator polynomial for a separable cyclic code over $Z_{p} R$ of length (α, β) as follows.

Theorem 5. Let $C=C_{\alpha} \otimes C_{\beta}$ be a cyclic code over $Z_{p} R$ of length (α, β), where $C_{\alpha}=\langle f(x)\rangle$ and $C_{\beta}=\langle g(x)\rangle$. Then $C=\langle f(x)\rangle \otimes\langle g(x)\rangle$.

5 Conditions for complementary duality

A linear complementary dual (LCD) code is a linear code C whose dual C^{\perp} satisfies the condition $C \cap C^{\perp}=\{0\}$. In this section, we obtain some conditions on cyclic codes and negacyclic codes over $Z_{p} R$ to be LCD codes.

It is proved in paper [16] that if $\operatorname{gcd}(\beta, p)=1$, then $x^{\beta}-1$ factorizes uniquely into distinct monic pairwise co-prime basic irreducible polynomials over \mathbb{Z}_{p}. Let

$$
\begin{equation*}
x^{\beta}-1=f_{1}(x), f_{2}(x), \ldots f_{l}(x) \tag{4}
\end{equation*}
$$

By setting $g_{i}=f_{i}$ for $i=\{1,2, \ldots, m\}$ and $h_{j} h_{j}^{*}=f_{s+j}$ for $j=\{1,2, \ldots, r\}$ in (4), we obtain the following factorization

$$
\begin{equation*}
x^{\beta}-1=g_{1}(x) \ldots g_{m}(x)\left(h_{1}(x)\left(h_{1}^{*}\right)(x) \ldots h_{r}(x)\left(h_{r}^{*}\right)(x)\right) . \tag{5}
\end{equation*}
$$

Lemma 5. Let β be an integer such that $\operatorname{gcd}(\beta, p)=1$. Then if $g(x)$ is a generator polynomial for a cyclic code of length β over R, C is an $L C D$ code if and only if $\operatorname{gcd}\left(g(x), h^{*}(x)\right)=1$, where h^{*} is the monic reciprocal polynomial of $h(x)=\frac{x^{\beta}-1}{g(x)}$.

Proof. Let h^{*} be the generator polynomial of C^{\perp}. Therefore, the polynomial $\tilde{g}=\operatorname{lclm}\left(g(x), h^{*}(x)\right)$ is the generator polynomial of the cyclic code $C \cap C^{\perp}$. Now $C \cap C^{\perp}=\{0\}$ if and only if $\tilde{g}(x)$ has degree β and $x^{\beta}-1$ is divisible by $g(x)$ and $h^{*}(x), \operatorname{deg}(g(x))=\beta-k$ and $\operatorname{deg}\left(h^{*}(x)\right)=k$. This implies that $\operatorname{deg}(\tilde{g}(x))=\beta$ if and only if $\operatorname{gcd}\left(g(x), h^{*}(x)\right)=1$.

Theorem 6. If $g(x)$ is the generator polynomial of a q-ary cyclic code C of length β, then C is an $L C D$ code if and only if $g(x)$ is self-reciprocal and all the monic irreducible factors of $g(x)$ have the same multiplicity in $g(x)$ and in $x^{\beta}-1$.

Proof. Let $\operatorname{gcd}(\beta, p)=1$. Now suppose that C is an LCD code by Lemma 5 . Then we have that $\operatorname{gcd}\left(g(x), h^{*}(x)\right)=1$. Since

$$
\begin{equation*}
x^{\beta}-1=g(x) h(x)=g^{*}(x) h^{*}(x), \tag{6}
\end{equation*}
$$

then we must have that $g(x)$ divides $g^{*}(x)$. Hence $g(x)=g^{*}(x)$; which means that $g(x)$ is self-reciprocal. Thus $\operatorname{gcd}\left(g(x), h^{*}(x)\right)=1$ implies that $\operatorname{gcd}\left(g^{*}(x), h^{*}(x)\right)=$ 1 , and hence $\operatorname{gcd}(g(x), h(x))=1$. As

$$
\begin{equation*}
x^{\beta}-1=g(x) h(x), \tag{7}
\end{equation*}
$$

we have that all the irreducible factors of $g(x)$ must have multiplicity p^{s}.
Conversely, suppose that $g(x)$ is not self-reciprocal so then $g(x)$ does not divide $g^{*}(x)$. From $(6), \operatorname{gcd}\left(g(x), h^{*}(x)\right) \neq 1$ and by Lemma 5 , we have that C is not an LCD code. Finally, suppose that $g(x)$ is self-reciprocal, so is $h(x)=\frac{x^{\beta}-1}{g(x)}$. Now suppose that some monic irreducible factor of $g(x)$ has multiplicity less than p^{s}. From (7), it follows that $1 \neq \operatorname{gcd}(g(x), h(x))=\operatorname{gcd}\left(g(x), h^{*}(x)\right)$, so then by Lemma 5, C is not an LCD code.

Theorem 7. Consider $\operatorname{gcd}(\beta, p)=1$. Then the cyclic LCD code C of length β over R is generated by

$$
\begin{equation*}
g(x)=g_{1}^{a_{1}}(x) \ldots g_{m}^{a_{m}}(x)\left(h_{1}^{b_{1}}(x) h_{1}^{* b_{1}}(x) \ldots h_{r}^{b_{r}}(x) h_{r}^{* b_{r}}(x)\right) \tag{8}
\end{equation*}
$$

where $a_{i}, b_{i} \in\left\{0, p^{s}\right\}$ for all $1 \leq i \leq m, 1 \leq j \leq r$.
Proof. Let C be an LCD cyclic code with generator polynomial $g(x)$, so then $g(x)$ divide $x^{\beta}-1$. Furthermore, suppose that

$$
\begin{equation*}
g(x)=g_{1}^{a_{1}}(x) \ldots g_{m}^{a_{m}}(x)\left(h_{1}^{b_{1}}(x) h_{1}^{* c_{1}}(x) \ldots h_{r}^{b_{r}}(x) h_{r}^{* c_{r}}(x)\right) \tag{9}
\end{equation*}
$$

where for $1 \leq i \leq m, a_{i} \leq p^{s}$, for $1 \leq i \leq r, b_{i}, c_{i} \leq p^{s}$. From Theorem $6, C$ is an LCD code if it satisfies

$$
\begin{equation*}
g(x)=g^{*}(x)=g_{1}^{* a_{1}}(x) \ldots g_{m}^{* a_{m}}(x)\left(h_{1}^{* b_{1}}(x) h_{1}^{c_{1}}(x) \ldots h_{r}^{* b_{r}}(x) h_{r}^{c_{r}}(x)\right) \tag{10}
\end{equation*}
$$

Since all the factors g_{i} are self-reciprocal, then the equality (10) is true if and only if $b_{i}=c_{i}$ for all $1 \leq i \leq r$.

6 Linear complementary dual cyclic codes over $\mathbb{Z}_{p} \boldsymbol{R}$

In this section, we briefly discuss the cyclic codes to be LCD codes over $\mathbb{F}_{q} R$, and give some examples for better understanding of our study.

Proposition 3. Let C_{α} be a cyclic code over \mathbb{Z}_{p}. Then C_{α} is an LCD code if and only if $g(x)$ is a self-reciprocal polynomial, i.e., $g^{*}(x)=g(x)$.

Proof. Suppose that C_{α} is an LCD code. Then by Lemma 3, we have $\operatorname{gcd}\left(g, h^{*}\right)=$ 1 , which further implies that $g(x)$ must divide g^{*} since

$$
\begin{equation*}
x^{\alpha}-1=g(x) h(x)=g^{*}(x) h^{*}(x) \tag{11}
\end{equation*}
$$

Conversely, suppose that $g(x)$ is not a self-reciprocal polynomial, i.e., $g(x)$ does not divides $g^{*}(x)$. It follow from (11) that $\operatorname{gcd}\left(g, h^{*}\right) \neq 1$, and hence by Lemma $3, C$ is not LCD code over Z_{p}.

Theorem 8. Let $C_{\beta}=\left\langle\epsilon_{1} g_{1}(x), \epsilon_{2} g_{2}(x), \epsilon_{3} g_{3}(x)\right\rangle$ be a cyclic code over R. Then C_{β} is a $L C D$ code over R if and only if $g_{j}(x)$ is a self-reciprocal polynomial over Z_{p} for all $j=1,2,3$.

Proof. Let $g_{j}(x)$ is the monic generator polynomial of $C_{\beta, j}$ for $j=1,2,3$, respectively. Then by Proposition $3, C_{\beta, j}$ is an LCD code over \mathbb{Z}_{p}, i.e., $C_{\beta, j} \cap C_{\beta, j}^{\perp}=$ $\{0\}$. Thus, as $C_{\beta}=\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}$, we have

$$
\begin{aligned}
C_{\beta} \cap C_{\beta}^{\perp} & =\left(\epsilon_{1} C_{\beta, 1} \oplus \epsilon_{2} C_{\beta, 2} \oplus \epsilon_{3} C_{\beta, 3}\right) \\
\cap & \left(\epsilon_{1} C_{\beta, 1}^{\perp} \oplus \epsilon_{2} C_{\beta, 2}^{\perp} \oplus \epsilon_{3} C_{\beta, 3}^{\perp}\right) \\
& =\epsilon_{1}\left(C_{\beta, 1} \cap C_{\beta, 1}^{\perp}\right) \oplus \epsilon_{2}\left(C_{\beta, 2}^{\perp} \cap C_{\beta, 2}^{\perp}\right) \oplus \epsilon_{3}\left(C_{\beta, 3} \cap C_{\beta, 3}^{\perp}\right) \\
& =\{0\} . \text { Hence } C_{\beta} \text { is LCD code over } R .
\end{aligned}
$$

Conversely, assume that C_{β} is LCD code over R, i.e., $C_{\beta} \cap C_{\beta}^{\perp}=\{0\}$. Also $C_{\beta} \cap C_{\beta}^{\perp}=\epsilon_{1}\left(C_{\beta, 1} \cap C_{\beta, 1}^{\perp}\right) \oplus \epsilon_{2}\left(C_{\beta, 2} \cap C_{\beta, 2}^{\perp}\right) \oplus \epsilon_{3}\left(C_{\beta, 3} \cap C_{\beta, 3}^{\perp}\right)$.
Therefore $C_{\beta, j} \cap C_{\beta, j}^{\perp}=\{0\}$ only if $C_{\beta} \cap C_{\beta}^{\perp}=\{0\}$. Hence $C_{\beta, j}$ is an LCD code over \mathbb{Z}_{p} for all $j=1,2,3$.

Proposition 4. Let C be a cyclic code of length (α, β) over $\mathbb{Z}_{p} R$. Then $C=$ $C_{\alpha} \otimes C_{\beta, j}$ is an $L C D$ code of length (α, β) if and only if C_{α} and $C_{\beta, j}$ are $L C D$ codes of length α and β over \mathbb{Z}_{p}, for $j=1,2,3$.

Proof. By noting that $C \cap C^{\perp}=\left(C_{\alpha} \otimes C_{\beta, j}\right) \cap\left(C_{\alpha}^{\perp} \otimes C_{\beta, j}^{\perp}\right)=\left(C_{\alpha} \cap C_{\alpha}^{\perp}\right) \otimes\left(C_{\beta, j} \cap\right.$ $C_{\beta, j}^{\perp}$), we have $C \cap C^{\perp}=\{0\}$ if and only if $C_{\alpha} \cap C_{\alpha}^{\perp}=\{0\}$, and $C_{\beta, j} \cap C_{\beta, j}^{\perp}=\{0\}$. Hence C is an LCD codes if and only if C_{α} and $C_{\beta, j}$ are LCD codes over \mathbb{Z}_{p} for all $j=1,2,3$.

7 Conclusion

In this paper, we have given the new structure of cyclic codes over a new mixed alphabet ring $Z_{p} R$ where $R=Z_{p}+v Z_{p}+v^{2} Z_{p}, v^{3}=v$. We have also constructed a class of LCD cyclic codes over $Z_{p} R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.

References

1. P. Delsarte. An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain, 1973.
2. T. Abualrub, I. Siap, and N. Aydin. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes. IEEE Trans. Inf. Theory, 3:1508-1514, 2014.
3. J. Borges, C. Fernández-Córdoba, and R. Ten-Valls. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
4. I. Aydogdu and T. Abualrub. The structure of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
5. I. Aydogdu and I. Siap. On $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.
6. I. Aydogdu and T. Abualrub. The structure of $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8):4883-4893, 2017.
7. L. Diao and J. Gao. $\mathbb{Z}_{p} \mathbb{Z}_{p}[u]$-additive cyclic codes. Int. J. Inf. Coding Theory, 1:1-17, 2018.
8. B. Srinivasulu and B. Maheshanand. $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$-additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027-1650045, 2016.
9. Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $Z_{q}+u Z_{q}$. Discrete Mathematics Algorithms and Applications, 2022.
10. J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337342, 1992.
11. C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
12. X. Liu and H. Liu. Lcd codes over finite chain rings. Finite Fields Appl., 34:1-19, 2015.
13. C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. IEEE Trans. Inf. Theory, 63:4344-4356, 2017.
14. X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. Discrete Math., 126:391-393, 1994.
15. L. Diao, J. Gao, and J. Lu. Some results on $\mathbb{Z}_{p} \mathbb{Z}_{p}[v]$-additive cyclic codes. $A d v$. Math. Commun., 4:555-572, 2020.
16. M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over \mathbb{Z}_{p}. Appl. Algebra Engrg. Comm. Comput., 20:459-480, 2009.
