

International Journal of Informatics and Applied Mathematics e-ISSN:2667-6990 Vol. 6, No. 2, 8-19

A Class of LCD Codes Through Cyclic Codes Over $\mathbb{Z}_p R$

Zineb Hebbache^{1,2} and Amit Sharma³

¹ National School of Built and Ground Works Engineering NSBGWE (ENSTP), Street of Sidi Garidi, B.P. 32, Kouba, 16051, Algiers, Algeria $^2\,$ Laboratory of Algebra and number theory, Faculty of Mathematics, U.S.T.H.B.,

B.P. 32, 16111 El-Alia, Algiers, Algeria.

z.hebbache@enstp.edu.dz

³ Department of Mathematics and Humanities, S.V. National Institute of Technology Surat, Surat, India.

apsharmaiitr@gmail.com

Abstract. In recent time, some mixed types of alphabets have been considered for constructing error correcting codes. These constructions include $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes, $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes et cetera. In this paper, we studied a class of codes over a mixed ring $\mathbb{Z}_p R$ where R = $Z_p + vZ_p + v^2 Z_p, v^3 = v$. We determined an algebraic structure of these codes under certain conditions. We have also constructed a class of LCD cyclic codes over $\mathbb{Z}_p R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.

Keywords: Linear Cyclic Codes · Codes Over Mixed Alphabets · Gray $Map \cdot LCD$ Codes.

Received: 03 December 2022 | Revised: 03 August 2023 | Accepted: 10 September 2023

1 Introduction

As we know, cyclic codes possess a nice algebraic structures as they are easy to understand and implement. In recent time, linear codes, or in particular cyclic codes, have been studied over mixed alphabets. In 1973, Delsarte [1] introduced additive codes which can be viewed as subgroups of the underlying abelian group of the form $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. Later, many scholars paid more attention to additive codes. Abualrub *et al.* [2] and Borges *et al.* [3] introduced $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes. They investigated the generator matrix and the duality of the family of codes. Aydogdu *et al.* [4],[5] generalized $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes to $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes and $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes. Afterwards, some papers focused on additive codes appeared, such as [6],[7],[8], [9].

LCD codes were first introduced by Massey [10]. This family of codes have shown effectiveness against side-channel attacks(SCA) and fault injection attacks(FIA) to improve the security related information on sensitive devices [11]. Authors have explored properties of LCD codes with various conditions and structures in [12], [13], [14]. To the best of our knowledge, there is no study yet on linear cyclic codes over $\mathbb{Z}_p \times (\mathbb{Z}_p + v\mathbb{Z}_p + v^2\mathbb{Z}_p)$ with $v^3 = v$. Unlike the finite chain ring $\mathbb{Z}_p + u\mathbb{Z}_p + u^2\mathbb{Z}_p$ with $u^3 = 0$, the ring $\mathbb{Z}_p + v\mathbb{Z}_p + v^2\mathbb{Z}_p$ with $v^3 = v$ is a non-chain ring, and hence many algebraic properties of $\mathbb{Z}_p(\mathbb{Z}_p + u\mathbb{Z}_p + u^2\mathbb{Z}_p)$ and $\mathbb{Z}_p(\mathbb{Z}_p + v\mathbb{Z}_p + v^2\mathbb{Z}_p \text{ vary.})$ We have chosen an other approach to define this class in this paper and then a class of LCD codes have been constructed.

The paper is organized as follows. In Section 2, we give some basic results about the ring $R = \mathbb{Z}_p + v\mathbb{Z}_p + v^2\mathbb{Z}_p, v^3 = v$, and linear codes over \mathbb{Z}_pR . In Section 3, we study some structural properties of cyclic codes over R. In Section 4, cyclic codes over \mathbb{Z}_pR are studied. In Section 5, necessary and sufficient conditions for cyclic codes to be LCD codes over \mathbb{Z}_p are given. Finally, we construct some LCD codes from \mathbb{Z}_pR -linear cyclic codes.

2 Preliminaries

Let R be a commutative ring with characteristic p defined as $Z_p + vZ_p + v^3Z_p = \{a+vb+v^2c \mid a, b, c \in \mathbb{Z}_p\}, v^3 = v$. The ring R can be considered as the quotient ring $Z_p[v]/\langle v^3 - v \rangle$. It can be easily checked that R is a principal ideal ring but not a finite chain ring.

Define $\epsilon_1 = 1 - v^2$, $\epsilon_2 = \frac{v+v^2}{2}$ and $\epsilon_3 = \frac{v^2 - v}{2}$. Then $\epsilon_i^2 = \epsilon_i, \epsilon_i \epsilon_j = 0$ and $\sum_{i=1}^{3} \epsilon_i = 1$ for $i \neq j$ and $i, j \in \{1, 2, 3\}$. By Chinese remainder theorem, we have $R = \epsilon_1 \mathbb{Z}_p \oplus \epsilon_2 \mathbb{Z}_p \oplus \epsilon_3 \mathbb{Z}_p$.

We define a Gray map on R as follows:

 $\phi: R \to \mathbb{Z}_p^3$

$$a + vb + v^2c \mapsto (a, a + b + c, a - b + c);$$

Recall the following definitions.

Definition 1. [15] Let $\mathbf{x} = (x \mid r) \in \mathbb{Z}_p^{\alpha} \times \mathbb{R}^{\beta}$, where $x = (x_0, \ldots, x_{\alpha-1}) \in \mathbb{Z}_p^{\alpha}$ and $r = (r_0, \ldots, r_{\beta-1}) \in \mathbb{R}^{\beta}$. Then the Lee weight of \mathbf{x} is defined as

$$w_L(\mathbf{x}) = w_H(\phi(\mathbf{x})),$$

where w_H denotes the Hamming weight.

Definition 2. Let $(\mathbf{x}, \mathbf{w}) \in \mathbb{Z}_p^{\alpha} \times \mathbb{R}^{\beta}$. Then the Lee distance of \mathbf{x} and \mathbf{w} is defined as

$$d_L(\mathbf{x}, \mathbf{w}) = w_L(\mathbf{x} - \mathbf{w}).$$

For any element $r \in R, r$ can be expressed uniquely as $r = a + vb + v^2c$, where $a, b, c \in \mathbb{Z}_p$. We define the set

$$\mathbb{Z}_p R = \{ (x, r) \mid x \in \mathbb{Z}_p, r \in R \}.$$

The ring $\mathbb{Z}_p R$ is not an R-module under standard multiplication, but to make it an R-module, we define the following map:

$$\eta: R \to \mathbb{Z}_p$$

$$Y = a + vb + v^2 c \mapsto a.$$
(1)

Clearly the mapping η is a ring homomorphism. For any $l \in R$, we define the multiplication \star as

$$l \star (x, r) = (\eta(l)x, lr).$$

And the map \star can be naturally generalized to the ring $\mathbb{Z}_p^{\gamma} \mathbb{R}^{\beta}$ as follows. For any $l \in \mathbb{R}$ and $w = (x_0, x_1, \dots, x_{\alpha-1} \mid r_0, r_1, \dots, r_{\beta-1}) \in \mathbb{Z}_p^{\alpha} \mathbb{R}^{\beta}$ define

$$l \star w = (\eta(l)x_0, \eta(l)x_1, \dots, \eta(l)x_{\alpha-1} \mid lr_0, lr_1, \dots, lr_{\beta-1}),$$

where $(x_0, x_1, ..., x_{\alpha-1}) \in \mathbb{Z}_p^{\alpha}$ and $(r_0, r_1, ..., r_{\beta-1}) \in \mathbb{R}^{\beta}$.

1

Thus we conclude that the ring $\mathbb{Z}_p^{\alpha} R^{\beta}$ is an *R*-module under the usual addition and the multiplication just defined above.

Definition 3. A non-empty subset C of $\mathbb{Z}_p^{\alpha} \mathbb{R}^{\beta}$ is called a $\mathbb{Z}_p \mathbb{R}$ -linear code if it is an \mathbb{R} -submodule of $\mathbb{Z}_p^{\alpha} \mathbb{R}^{\beta}$.

Let C be a $\mathbb{Z}_p R$ -linear code and let C_{α} (respectively, C_{β}) be the canonical projection of C on the first α (respectively, on the last β) coordinates. Since the canonical projection is a linear map, C_{α} and C_{β} are linear codes of lengths α and β (over \mathbb{Z}_p and over R), respectively.

The Euclidean inner product on $Z_p^{\alpha} R^{\beta}$ is calculated as follows. For any two vectors

$$\mathbf{t} = (x_0, \dots, x_{\alpha-1} \mid r_0, \dots, r_{\beta-1}), \mathbf{t}' = (x'_0, \dots, x'_{\alpha-1} \mid r'_0, \dots, r'_{\beta-1}) \in \mathbb{Z}_p^{\alpha} \times \mathbb{R}^{\beta},$$

we have

$$\langle \mathbf{t}, \mathbf{t}' \rangle = (1+v) \sum_{i=0}^{\alpha-1} x_i \dot{x}_i + \sum_{j=0}^{\beta-1} r_j \dot{r}_j.$$

Let C be a $\mathbb{Z}_p R$ -linear code. The dual of C is defined by

$$C^{\perp} = \{ \mathbf{t}' \in \mathbb{Z}_p^{lpha} imes R^{eta}, \, \langle \mathbf{t}, \mathbf{t}'
angle = 0 ext{ for all } \mathbf{t} \in C \}.$$

A linear code is called an Euclidean LCD (linear complementary dual) code if $C \cap C^{\perp} = \{0\}.$

Note that the Euclidean dual of a linear code C of length α over \mathbb{Z}_p is defined as $C^{\perp} = \{x \in \mathbb{Z}_p^{\alpha} \mid \forall y \in C, \langle x, y \rangle = 0\}$ where for x, y in $\mathbb{Z}_p^{\alpha}, \langle x, y \rangle = \sum_{i=1}^{\alpha} x_i y_i$ is the scalar product of x and y.

3 Cyclic codes over R

This section deals with some structural properties of cyclic codes over R. All codes are assumed to be linear unless otherwise stated.

A code of length β over R is a nonempty subset of R^{β} . A code C_{β} is said to be linear if it is a submodule of the R-module R^{β} .

Let C_{β} be a linear code over R, define:

$$C_{\beta,1} = \{ a \in \mathbb{Z}_p^\beta \mid \epsilon_1 a + \epsilon_2 b + \epsilon_3 c, \forall a, b, c \in C_\beta \}$$

$$C_{\beta,2} = \{ b \in \mathbb{Z}_p^\beta \mid \epsilon_1 a + \epsilon_2 b + \epsilon_3 c, \forall a, b, c \in C_\beta \}$$

$$C_{\beta,3} = \{ c \in \mathbb{Z}_p^\beta \mid \epsilon_1 a + \epsilon_2 b + \epsilon_3 c, \forall a, b, c \in C_\beta \}.$$
(2)

Then $C_{\beta,1}, C_{\beta,2}$ and $C_{\beta,3}$ are linear codes of length β over \mathbb{Z}_p . Moreover C_β can be uniquely expressed as $C_\beta = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ with $|C_\beta| = |C_{\beta,1}||C_{\beta,2}||C_{\beta,3}|$ and $d_L(C_\beta) = \min \{d_H(C_{\beta,i}), i = 1, 2, 3\}.$

Let G_j be generator matrices of linear codes $C_{\beta,j}$, j = 1, 2, 3 respectively, then the generator matrix of C_β is

$$G = \begin{pmatrix} \epsilon_1 G_1 \\ \epsilon_2 G_2 \\ \epsilon_3 G_3 \end{pmatrix}$$

and the generator matrix of $\phi(C_{\beta})$ is

$$\phi(G) = \begin{pmatrix} \phi(\epsilon_1 G_1) \\ \phi(\epsilon_2 G_2) \\ \phi(\epsilon_3 G_3) \end{pmatrix}.$$

The following proposition is straightforward from the definition of the Gray map ϕ .

Proposition 1. Let C_{β} be a linear code of length β over R with $|C_{\beta}| = M$ and minimum Lee distance $d_L(C_{\beta}) = d$. Then $\phi(C_{\beta})$ is a linear code with parameters $(3\beta, M, d)$.

A code C_{β} is said to be a cyclic, if C_{β} is closed under the cyclic shift defined as: $\rho: R^{\beta} \to R^{\beta}.$

$$\rho(a_0, a_1, \dots, a_{\beta-1}) = (a_{\beta-1}, a_0, \dots, a_{\beta-2}).$$

Lemma 1. A linear code C_{β} of length β over R is cyclic code if and only if C_{β} is a R[x]-submodule of $R[x]/\langle x^{\beta}-1\rangle$.

Proof. Straightforward.

Now we present some results on cyclic codes over R that are necessary to further study the cyclic codes over over $\mathbb{Z}_p R$.

Theorem 1. Let $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ be a linear code of length β over R. Then C_{β} is a cyclic code of length β over R if and only if $C_{\beta,j}$ are cyclic codes of length β over Z_p for j = 1, 2, 3.

Proof. For any $s = (s_0, s_1, \ldots, s_{\beta-1}) \in C_\beta$, we can write its components as $s_i = \epsilon_1 a_i + \epsilon_2 b_i + \epsilon_3 c_i$, where $a_i, b_i, c_i \in \mathbb{Z}_p, 0 \le i \le \beta - 1$. Let $a = (a_0, a_1, \ldots, a_{\beta-1})$, $b = (b_0, b_1, \ldots, b_{\beta-1}), c = (c_0, c_1, \ldots, c_{\beta-1})$. Then $a \in C_{\beta,1}, b \in C_{\beta,2}$ and $c \in C_{\beta,3}$. If $C_{\beta,j}$ is a cyclic code for j = 1, 2, 3. This implies that

$$\rho(a) = (a_{\beta-1}, a_0, \dots, a_{\beta-2}) \in C_{\beta,1},
\rho(b) = (b_{\beta-1}, b_0, \dots, b_{\beta-2}) \in C_{\beta,2},
\rho(c) = (c_{\beta-1}, c_0, \dots, c_{\beta-2}) \in C_{\beta,3}.$$
(3)

Thus $\epsilon_1 \rho(a) + \epsilon_2 \rho(b) + \epsilon_3 \rho(c) = \rho(s) \in C_\beta$, i.e., C_β is a cyclic code of length β over R.

Conversely, suppose that C_{β} is a cyclic code of length β over R. Let $s_i = \epsilon_1 a_i + \epsilon_2 b_i + \epsilon_3 c_i$, where $a = (a_0, a_1, \ldots, a_{\beta-1}), b = (b_0, b_1, \ldots, b_{\beta-1})$ and $c = (c_0, c_1, \ldots, c_{\beta-1})$. Then $a \in C_{\beta,1}, b \in C_{\beta,2}$ and $c \in C_{\beta,3}$. Now for $s = (s_0, s_1, \ldots, s_{\beta-1}) \in C_{\beta}$, we have

$$\rho(s) = (s_{\beta-1}, s_0, \dots, s_{\beta-2}) \in C_{\beta}.$$

This gives

 $\rho(a) \in C_{\beta,1}, \rho(b) \in C_{\beta,2}, \rho(c) \in C_{\beta,3}$, i.e., $C_{\beta,j}$ is a cyclic code of length β over \mathbb{Z}_p for all j = 1, 2, 3.

Theorem 2. Let $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ be a cyclic code of length β over R. Suppose $g_j(x)$ are the monic generator polynomials of cyclic code $C_{\beta,j}$ such that $g_j(x)$ divides $x^{\beta} - 1$ for all j = 1, 2, 3. Then

(i)

$$C_{\beta} = \langle \epsilon_1 g_1(x), \epsilon_2 g_2(x), \epsilon_3 g_3(x) \rangle$$

and $|C_{\beta}| = p^{3\beta - (\deg (g_1(x)) + \deg (g_2(x)) + \deg (g_3(x)))}$.

- (ii) There exists a polynomial $g(x) \in R[x]$ such that $C_{\beta} = \langle g(x) \rangle$, where $g(x) = \langle \epsilon_1 g_1(x) + \epsilon_2 g_2(x) + \epsilon_3 g_3(x) \rangle$ which is a divisor of $x^{\beta} 1$.
- *Proof.* (i) Let $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ be a cyclic code of length β over R. Then by Theorem 1, $C_{\beta,j}$ is cyclic code of length β over \mathbb{Z}_p for all j = 1, 2, 3. Since $g_j(x)$ is the monic generator polynomial of $C_{\beta,j}$, we have $C_{\beta,j} = \langle g_j(x) \rangle \subseteq \mathbb{Z}_p[x]/\langle x^{\beta} 1 \rangle$ for all j = 1, 2, 3. Therefore C_{β} has the following form:

$$C_{\beta} = \langle \epsilon_1 g_1(x), \epsilon_2 g_2(x), \epsilon_3 g_3(x) \rangle.$$

Also, since $|C_{\beta}| = |\phi(C_{\beta})| = |C_{\beta,1}| |C_{\beta,2}| C_{\beta,3}|$, we have

$$|C_{\beta}| = p^{3\beta - (\deg (g_1(x)) + \deg (g_2(x)) + \deg (g_3(x)))}.$$

(ii) The first part gives,

$$C_{\beta} = \langle \epsilon_1 g_1(x), \epsilon_2 g_2(x), \epsilon_3 g_3(x) \rangle.$$

Let $g(x) = \epsilon_1 g_1(x) + \epsilon_2 g_2(x) + \epsilon_3 g_3(x)$. Then it can easily be seen that $\langle g(x) \rangle \subseteq C_\beta$. Moreover, $\epsilon_1 g_1(x) = \epsilon_1 g(x), \epsilon_2 g_2(x) = \epsilon_2 g(x)$ and $\epsilon_3 g_3(x) = \epsilon_3 g(x)$, which concludes $C_\beta \subseteq \langle g(x) \rangle$ and hence $C_\beta = \langle g(x) \rangle$. Now for all j = 1, 2, 3, suppose $g_j(x)$ is the monic generator polynomials of $C_{\beta,j}$. Thus $g_j(x)$ divides $x^\beta - 1$ such that $x^\beta - 1 = h_j(x)g_j(x)$, which further implies that $\epsilon_j(x^\beta - 1) = \epsilon_j h_j(x)g_j(x)$. So that, $x^\beta - 1 = (\epsilon_1 + \epsilon_2 + \epsilon_3)x^\beta - (\epsilon_1 + \epsilon_2 + \epsilon_3)$. $= \epsilon_1(x^\beta - 1) + \epsilon_2(x^\beta - 1) + \epsilon_3(x^\beta - 1)$ $= \epsilon_1 h_1(x)g_1(x) + \epsilon_2 h_2(x)g_2(x) + \epsilon_3 h_3(x)g_3(x)$ $= (\epsilon_1 h_1(x) + \epsilon_2 h_2(x) + \epsilon_3 h_3(x))(\epsilon_1 g_1(x) + \epsilon_2 g_2(x) + \epsilon_3 g_3(x))$ (because $\epsilon_i^2 = \epsilon_i, \epsilon_i \epsilon_j = 0$ where i = 1, 2, 3 and $i \neq j$). $= (\epsilon_1 h_1(x) + \epsilon_2 h_2(x) + \epsilon_3 h_3(x))g(x)$.

Therefore, g(x) is a divisor of $x^{\beta} - 1$.

Corollary 1. Let $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ be a cyclic code of length β over R. Then $C_{\beta}^{\perp} = \epsilon_1 C_{\beta,1}^{\perp} \oplus \epsilon_2 C_{\beta,2}^{\perp} \oplus \epsilon_3 C_{\beta,3}^{\perp}$ is also a cyclic code of length β over R, where $C_{\beta,j}^{\perp}$ is a cyclic code of length β over Z_p for all j = 1, 2, 3.

Corollary 2. Let $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$ be a cyclic code of length β over R. Suppose $g_j(x)$ is the monic generator polynomial of the cyclic code $C_{\beta,j}$, which divides $x^{\beta} - 1$ for all j = 1, 2, 3. Then

1.
$$C_{\beta}^{\perp} = \langle \epsilon_1 h_1^*(x), \epsilon_2 h_2^*(x), \epsilon_3 h_3^*(x) \rangle$$
 and $|C_{\beta}^{\perp}| = p^{\sum_{j=1}^3 (\deg(g_j(x)))}$.
2. $C_{\beta}^{\perp} = \langle h^*(x) \rangle$, where $h^*(x) = \langle \epsilon_1 h_1^*(x) + \epsilon_2 h_2^*(x) + \epsilon_3 h_3^*(x) \rangle$,

where $x^{\beta} - 1 = h_j(x)g_j(x)$ for some $h_j(x) \in \mathbb{Z}_p[x]$, and $h_j^*(x)$ are the reciprocal polynomials of $h_j(x)$, that is, $h_j^*(x) = x^{\deg(h_j(x))}h_j(x^{-1})$ for j = 1, 2, 3.

4 Cyclic codes over $\mathbb{Z}_p R$

In this section, we study some structural properties of cyclic codes over $\mathbb{Z}_p R$. Recall that a linear code of length (α, β) over $\mathbb{Z}_p R$, we mean a submodule of R-module $\mathbb{Z}_p^{\alpha} \times \mathbb{R}^{\beta}$.

Definition 4. A linear code C over $\mathbb{Z}_p^{\alpha} \mathbb{R}^{\beta}$ is called cyclic code if C satisfies the following two conditions.

(i) C is an R-submodule of
$$\mathbb{Z}_p^{\alpha} \mathbb{R}^{\beta}$$
, and
(ii)
 $(c_{\alpha-1}, c_0, \dots, c_{\alpha-2} \mid c'_{\beta-1}, c'_0, \dots, c'_{\beta-2})$

whenever

$$(c_0, c_1, \dots, c_{\alpha-1} \mid c'_0, c'_1, \dots, c'_{\beta-1}) \in C.$$

 $\in C$,

Let $R_{\alpha,\beta} = \frac{\mathbb{Z}_{p}[x]}{\langle x^{\alpha}-1 \rangle} \times \frac{R[x]}{\langle x^{\beta}-1 \rangle}$. In polynomial form, each codeword $a = (c_0, c_1, \dots, c_{\alpha-1} \mid c'_0, c'_1, \dots, c'_{\beta-1})$ of a cyclic code can be represented by a pair of polynomials as:

$$a(x) = (c_0 + c_1 x + \dots + c_{\alpha-1} x^{\alpha-1} \mid c'_0 + c'_1 x + \dots + c'_{\beta-1} x^{\beta-1})$$
$$= (c(x) \mid c'(x)) \in R_{\alpha,\beta}.$$

Let $f(x) = f_0 + f_1 x + \dots + f_t x^t \in R[x]$ and let $(c(x) \mid c'(x)) \in R_{\alpha,\beta}$. Then the multiplication is defined by the basic rule

$$f(x) \star (c(x) \mid c'(x)) = (\eta(f(x))c(x) \mid f(x)c'(x)),$$

where $\eta(f(x)) = \eta(f_0) + \eta(f_1)x + \dots + \eta(f_t)x^t$.

Lemma 2. A code C of length (α, β) over $\mathbb{Z}_p R$ is a cyclic code if and only if C is left R[x]-submodule of $R_{\alpha,\beta}$.

Proof. Since xa(x), in $R_{\alpha,\beta}$, represents the cyclic shift of the codeword $a \in C$ whose polynomial form is a(x) = (c(x) | c'(x)), the remaining part of the proof is straightforward.

We now extend the result of Theorem 2 to the ring $\mathbb{Z}_p R$ as follows.

Theorem 3. Let C be a cyclic code of length (α, β) over $\mathbb{Z}_p R$. Then

$$C = \langle (f(x) \mid 0), (\ell(x) \mid g(x)) \rangle,$$

where $f(x), \ell(x) \in \mathbb{Z}_p[x]/\langle x^{\alpha} - 1 \rangle, f(x)$ is a divisor of $x^{\alpha} - 1$ and g(x) is a divisor of $x^{\beta} - 1$.

A $\mathbb{Z}_p R$ -linear code C of length (α, β) is called a separable code if $C = C'_{\alpha} \otimes C'_{\beta}$, while considering C'_{α} and C'_{β} as punctured codes of C by deleting the coordinates outside the α and β components, respectively.

Proposition 2. Let $C = \langle (f(x) \mid 0), (\ell(x) \mid g(x)) \rangle$ be a linear cyclic code of length (α, β) over $\mathbb{Z}_p R$. Then,

1. $\deg(\ell(x)) < \deg(f(x)) \text{ and } f(x) \mid g_3(x)\ell(x).$ 2. $C'_{\alpha} = \langle \gcd(f(x), \ell(x)) \rangle \text{ and } C'_{\beta} = \langle g(x) \rangle.$

Lemma 3. Let $C = \langle (f(x) \mid 0), (\ell(x) \mid g(x)) \rangle$ be a linear cyclic code of length (α, β) over $\mathbb{Z}_p R$. Then, $f(x) \mid \ell(x)$ if and only if $\ell(x) = 0$.

The following Lemma is a direct consequence of Lemma 3.

Lemma 4. Let $C = \langle (f(x) \mid 0), (\ell(x) \mid g(x)) \rangle$ be a linear cyclic code. Then the following assertions are equivalent:

(i) C is a separable, (ii) $f(x) \mid \ell(x)$, (iii) $C = \langle (f(x) \mid 0), (0 \mid g(x)) \rangle$. Thus, for a separable code, we obtain

$$C'_{lpha} = \langle gcd(f(x),0)
angle = \langle f(x)
angle = C_{lpha}, \ and \ C'_{eta} = \langle g(x)
angle = C_{eta}.$$

Theorem 4. Let $C = C_{\alpha} \otimes C_{\beta}$ be a linear code over $\mathbb{Z}_p R$ of length (α, β) , where C_{α} is linear code over \mathbb{Z}_p of length α and C_{β} is linear code over R of length β . Then C is a cyclic code if and only if C_{α} is a cyclic code over \mathbb{Z}_p and C_{β} is a cyclic code over R.

Proof. Let $(c_0, c_1, \ldots, c_{\alpha-1}) \in C_{\alpha}$ and let $(c'_0, c'_1, \ldots, c'_{\beta-1}) \in C_{\beta}$. If $C = C_{\alpha} \otimes C_{\beta}$ is a cyclic code over $\mathbb{Z}_p R$, then

$$(c_{\alpha-1}, c_0, \dots, c_{\alpha-2}, c'_{\beta-1}, c'_0, \dots, c'_{\beta-2}) \in C,$$

which implies that

$$(c_{\alpha-1}, c_0, \ldots, c_{\alpha-2}) \in C_{\alpha}$$

and

$$(c'_{\beta-1}, c'_0, \dots, c'_{\beta-2}) \in C_{\beta}.$$

Hence, C_{α} is a cyclic code over \mathbb{Z}_p and C_{β} is a cyclic code over R.

On the other hand, suppose that C_{α} is a cyclic code over \mathbb{Z}_p and C_{β} is a cyclic code over R. Note that

$$(c_{\alpha-1}, c_0, \dots, c_{\alpha-2}) \in C_{\alpha}$$

and

$$(c'_{\beta-1},c'_0,\ldots,c'_{\beta-2})\in C_{\beta}.$$

Since $C = C_{\alpha} \otimes C_{\beta}$, then

$$(c_{\alpha-1}, c_0, \dots, c_{\alpha-2}, c'_{\beta-1}, c'_0, \dots, c'_{\beta-2}) \in C,$$

so C is a cyclic code over $\mathbb{Z}_p R$.

By Theorems 1 and 4, we have the following corollary.

Corollary 3. Let $C = C_{\alpha} \otimes C_{\beta}$ be a linear code over $\mathbb{Z}_p R$ of length (α, β) , where C_{α} is linear code over \mathbb{Z}_p of length α and C_{β} is linear code over R of length β . Then C is a cyclic code if and only if C_{α} is a cyclic code over \mathbb{Z}_p and $C_{\beta,j}$ is a cyclic code over \mathbb{Z}_p , where j = 1, 2, 3.

In Theorem 3, we have studied the generator polynomial for a cyclic code over $\mathbb{Z}_p R$ of length (α, β) . Now here we study the generator polynomial for a separable cyclic code over $\mathbb{Z}_p R$ of length (α, β) as follows.

Theorem 5. Let $C = C_{\alpha} \otimes C_{\beta}$ be a cyclic code over $\mathbb{Z}_p R$ of length (α, β) , where $C_{\alpha} = \langle f(x) \rangle$ and $C_{\beta} = \langle g(x) \rangle$. Then $C = \langle f(x) \rangle \otimes \langle g(x) \rangle$.

5 Conditions for complementary duality

A linear complementary dual (LCD) code is a linear code C whose dual C^{\perp} satisfies the condition $C \cap C^{\perp} = \{0\}$. In this section, we obtain some conditions on cyclic codes and negacyclic codes over $\mathbb{Z}_p R$ to be LCD codes.

It is proved in paper [16] that if $gcd(\beta, p) = 1$, then $x^{\beta} - 1$ factorizes uniquely into distinct monic pairwise co-prime basic irreducible polynomials over \mathbb{Z}_{p} . Let

$$x^{\beta} - 1 = f_1(x), f_2(x), \dots f_l(x).$$
(4)

By setting $g_i = f_i$ for $i = \{1, 2, ..., m\}$ and $h_j h_j^* = f_{s+j}$ for $j = \{1, 2, ..., r\}$ in (4), we obtain the following factorization

$$x^{\beta} - 1 = g_1(x) \dots g_m(x) \left(h_1(x)(h_1^*)(x) \dots h_r(x)(h_r^*)(x) \right).$$
(5)

Lemma 5. Let β be an integer such that $gcd(\beta, p) = 1$. Then if g(x) is a generator polynomial for a cyclic code of length β over R, C is an LCD code if and only if $gcd(g(x), h^*(x)) = 1$, where h^* is the monic reciprocal polynomial of $h(x) = \frac{x^{\beta}-1}{g(x)}$.

Proof. Let h^* be the generator polynomial of C^{\perp} . Therefore, the polynomial $\tilde{g} = \operatorname{lclm}(g(x), h^*(x))$ is the generator polynomial of the cyclic code $C \cap C^{\perp}$. Now $C \cap C^{\perp} = \{0\}$ if and only if $\tilde{g}(x)$ has degree β and $x^{\beta} - 1$ is divisible by g(x) and $h^*(x)$, $\operatorname{deg}(g(x)) = \beta - k$ and $\operatorname{deg}(h^*(x)) = k$. This implies that $\operatorname{deg}(\tilde{g}(x)) = \beta$ if and only if $gcd(g(x), h^*(x)) = 1$.

Theorem 6. If g(x) is the generator polynomial of a q-ary cyclic code C of length β , then C is an LCD code if and only if g(x) is self-reciprocal and all the monic irreducible factors of g(x) have the same multiplicity in g(x) and in $x^{\beta} - 1$.

Proof. Let $gcd(\beta, p) = 1$. Now suppose that C is an LCD code by Lemma 5. Then we have that $gcd(g(x), h^*(x)) = 1$. Since

$$x^{\beta} - 1 = g(x)h(x) = g^{*}(x)h^{*}(x), \tag{6}$$

then we must have that g(x) divides $g^*(x)$. Hence $g(x) = g^*(x)$; which means that g(x) is self-reciprocal. Thus $gcd(g(x), h^*(x)) = 1$ implies that $gcd(g^*(x), h^*(x)) = 1$, and hence gcd(g(x), h(x)) = 1. As

$$x^{\beta} - 1 = g(x)h(x), \tag{7}$$

we have that all the irreducible factors of g(x) must have multiplicity p^s .

Conversely, suppose that g(x) is not self-reciprocal so then g(x) does not divide $g^*(x)$. From (6), $gcd(g(x), h^*(x)) \neq 1$ and by Lemma 5, we have that C is not an LCD code. Finally, suppose that g(x) is self-reciprocal, so is $h(x) = \frac{x^{\beta}-1}{g(x)}$. Now suppose that some monic irreducible factor of g(x) has multiplicity less than p^s . From (7), it follows that $1 \neq gcd(g(x), h(x)) = gcd(g(x), h^*(x))$, so then by Lemma 5, C is not an LCD code.

Theorem 7. Consider $gcd(\beta, p) = 1$. Then the cyclic LCD code C of length β over R is generated by

$$g(x) = g_1^{a_1}(x) \dots g_m^{a_m}(x) \left(h_1^{b_1}(x) h_1^{*b_1}(x) \dots h_r^{b_r}(x) h_r^{*b_r}(x) \right),$$
(8)

where $a_i, b_i \in \{0, p^s\}$ for all $1 \le i \le m, 1 \le j \le r$.

Proof. Let C be an LCD cyclic code with generator polynomial g(x), so then g(x) divide $x^{\beta} - 1$. Furthermore, suppose that

$$g(x) = g_1^{a_1}(x) \dots g_m^{a_m}(x) \left(h_1^{b_1}(x) h_1^{*c_1}(x) \dots h_r^{b_r}(x) h_r^{*c_r}(x) \right), \tag{9}$$

where for $1 \le i \le m, a_i \le p^s$, for $1 \le i \le r, b_i, c_i \le p^s$. From Theorem 6, C is an LCD code if it satisfies

$$g(x) = g^*(x) = g_1^{*a_1}(x) \dots g_m^{*a_m}(x) \left(h_1^{*b_1}(x) h_1^{c_1}(x) \dots h_r^{*b_r}(x) h_r^{c_r}(x) \right).$$
(10)

Since all the factors g_i are self-reciprocal, then the equality (10) is true if and only if $b_i = c_i$ for all $1 \le i \le r$.

6 Linear complementary dual cyclic codes over $\mathbb{Z}_p R$

In this section, we briefly discuss the cyclic codes to be LCD codes over $\mathbb{F}_q R$, and give some examples for better understanding of our study.

Proposition 3. Let C_{α} be a cyclic code over \mathbb{Z}_p . Then C_{α} is an LCD code if and only if g(x) is a self-reciprocal polynomial, i.e., $g^*(x) = g(x)$.

Proof. Suppose that C_{α} is an LCD code. Then by Lemma 3, we have $gcd(g, h^*) = 1$, which further implies that g(x) must divide g^* since

$$x^{\alpha} - 1 = g(x)h(x) = g^{*}(x)h^{*}(x).$$
(11)

Conversely, suppose that g(x) is not a self-reciprocal polynomial, i.e., g(x) does not divides $g^*(x)$. It follow from (11) that $gcd(g, h^*) \neq 1$, and hence by Lemma 3, C is not LCD code over \mathbb{Z}_p .

Theorem 8. Let $C_{\beta} = \langle \epsilon_1 g_1(x), \epsilon_2 g_2(x), \epsilon_3 g_3(x) \rangle$ be a cyclic code over R. Then C_{β} is a LCD code over R if and only if $g_i(x)$ is a self-reciprocal polynomial over Z_p for all j = 1, 2, 3.

Proof. Let $g_j(x)$ is the monic generator polynomial of $C_{\beta,j}$ for j = 1, 2, 3, respectively. Then by Proposition 3, $C_{\beta,j}$ is an LCD code over \mathbb{Z}_p , i.e., $C_{\beta,j} \cap C_{\beta,j}^{\perp} =$ $\{0\}$. Thus, as $C_{\beta} = \epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}$, we have C

$$\begin{split} C_{\beta} \cap C_{\beta}^{\perp} &= (\epsilon_1 C_{\beta,1} \oplus \epsilon_2 C_{\beta,2} \oplus \epsilon_3 C_{\beta,3}) \\ \cap \left(\epsilon_1 C_{\beta,1}^{\perp} \oplus \epsilon_2 C_{\beta,2}^{\perp} \oplus \epsilon_3 C_{\beta,3}^{\perp} \right) \\ &= \epsilon_1 (C_{\beta,1} \cap C_{\beta,1}^{\perp}) \oplus \epsilon_2 (C_{\beta,2} \cap C_{\beta,2}^{\perp}) \oplus \epsilon_3 (C_{\beta,3} \cap C_{\beta,3}^{\perp}) \\ &= \{0\}. \text{ Hence } C_{\beta} \text{ is LCD code over } R. \end{split}$$

Conversely, assume that C_{β} is LCD code over R, i.e., $C_{\beta} \cap C_{\beta}^{\perp} = \{0\}$. Also

 $C_{\beta} \cap C_{\beta}^{\perp} = \epsilon_1(C_{\beta,1} \cap C_{\beta,1}^{\perp}) \oplus \epsilon_2(C_{\beta,2} \cap C_{\beta,2}^{\perp}) \oplus \epsilon_3(C_{\beta,3} \cap C_{\beta,3}^{\perp}).$ Therefore $C_{\beta,j} \cap C_{\beta,j}^{\perp} = \{0\}$ only if $C_{\beta} \cap C_{\beta}^{\perp} = \{0\}$. Hence $C_{\beta,j}$ is an LCD code over \mathbb{Z}_p for all j = 1, 2, 3.

Proposition 4. Let C be a cyclic code of length (α, β) over $\mathbb{Z}_p R$. Then C = $C_{\alpha} \otimes C_{\beta,j}$ is an LCD code of length (α, β) if and only if C_{α} and $C_{\beta,j}$ are LCD codes of length α and β over \mathbb{Z}_p , for j = 1, 2, 3.

Proof. By noting that $C \cap C^{\perp} = (C_{\alpha} \otimes C_{\beta,j}) \cap (C_{\alpha}^{\perp} \otimes C_{\beta,j}^{\perp}) = (C_{\alpha} \cap C_{\alpha}^{\perp}) \otimes (C_{\beta,j} \cap C_{\alpha})$ $C_{\beta,j}^{\perp}$), we have $C \cap C^{\perp} = \{0\}$ if and only if $C_{\alpha} \cap C_{\alpha}^{\perp} = \{0\}$, and $C_{\beta,j} \cap C_{\beta,j}^{\perp} = \{0\}$. Hence C is an LCD codes if and only if C_{α} and $C_{\beta,j}$ are LCD codes over \mathbb{Z}_p for all j = 1, 2, 3.

7 Conclusion

In this paper, we have given the new structure of cyclic codes over a new mixed alphabet ring $Z_p R$ where $R = Z_p + vZ_p + v^2 Z_p, v^3 = v$. We have also constructed a class of LCD cyclic codes over $\mathbb{Z}_p R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.

References

- 1. P. Delsarte. An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain, 1973.
- 2. T. Abualrub, I. Siap, and N. Aydin. $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes. *IEEE Trans.* Inf. Theory, 3:1508–1514, 2014.
- 3. J. Borges, C. Fernández-Córdoba, and R. Ten-Valls. Z₂Z₄-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
- 4. I. Aydogdu and T. Abualrub. The structure of $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
- 5. I. Aydogdu and I. Siap. On $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.

- I. Aydogdu and T. Abualrub. The structure of Z₂Z₂[u]-cyclic and constacyclic codes. *IEEE Trans. Inf. Theory*, 63(8):4883–4893, 2017.
- 7. L. Diao and J. Gao. $\mathbb{Z}_p\mathbb{Z}_p[u]$ -additive cyclic codes. Int. J. Inf. Coding Theory, 1:1–17, 2018.
- 8. B. Srinivasulu and B. Maheshanand. $\mathbb{Z}_2(\mathbb{Z}_2 + u\mathbb{Z}_2)$ -additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027–1650045, 2016.
- 9. Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $\mathbb{Z}_q + u\mathbb{Z}_q$. Discrete Mathematics Algorithms and Applications, 2022.
- J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337– 342, 1992.
- 11. C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
- X. Liu and H. Liu. Lcd codes over finite chain rings. *Finite Fields Appl.*, 34:1–19, 2015.
- C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. *IEEE Trans. Inf. Theory*, 63:4344–4356, 2017.
- X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. *Discrete Math.*, 126:391–393, 1994.
- L. Diao, J. Gao, and J. Lu. Some results on Z_pZ_p[v]-additive cyclic codes. Adv. Math. Commun., 4:555–572, 2020.
- M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over Z_p.. Appl. Algebra Engrg. Comm. Comput., 20:459–480, 2009.