
International Journal of Informatics and Applied Mathematics
e-ISSN:2667-6990 Vol. 6, No. 1, 57-69

A Two-Step Rule for Backpropagation

Ahmed Boughammoura

Department of Mathematics, Higher Institute of Informatics and Mathematics
Monastir, Tunisia

ahmed.boughammoura@gmail.com

Abstract. We present a simplified computational rule for the back-
propagation formulas for artificial neural networks. In this work, we
provide a generic two-step rule for the back-propagation algorithm in
matrix notation. Moreover, this rule incorporates both the forward and
backward phases of the computations involved in the learning process.
Specifically, this recursive computing rule permits the propagation of the
changes to all synaptic weights in the network, layer by layer, efficiently.
In particular, we use this rule to compute both the up and down partial
derivatives of the cost function of all the connections feeding into the
output layer.

Keywords: Artificial Neural Network · Feed-Forward · Backpropagation
· Delta Rule

58 A. Boughammoura

1 Introduction

An Artificial Neural Network (ANN) is a mathematical model which is
intended to be a universal function approximator which learns from data (cf.
McCulloch and Pitts, [5]). In general, an ANN consists of a number of units called
artificial neurons, which are a composition of affine mappings, and non-linear
(activation) mappings (applied element wise), connected by weighted connections
and organized into layers, containing an input layer, one or more hidden layers,
and an output layer.The neurons in an ANN can be connected in many different
ways. In the simplest cases, the outputs from one layer are the inputs for the
neurons in the next layer. An ANN is said to be a feedforward ANN, if outputs
from one layer of neurons are the only inputs to the neurons in the following
layer. In a fully connected ANN, all neurons in one layer are connected to all
neurons in the previous layer (cf. page 24 of [2]). An example of a fully connected
feedforward network is presented in Figure 1.

In the present work we focus essentially on feed-forward artificial neural
networks, with L hidden layers and a transfer (or activation) function σ, and
the corresponding supervised learning problem. Let us define a simple artificial
neural network as follows:

Xout
0 = x, Y out

h =Wh.X
out
h−1, X

out
h = σ(Y out

h), h = 1, · · · , L (1)

where x ∈ Rn is the input to the network, h indexes the hidden layer and Wh

is the weight matrix of the h-th hidden layer. In what follows we shall refer to
the two equations of (1) as the two-step recursive forward formula. The two-
step recursive forward formula is very useful in obtaining the outputs of the
feed-forward deep neural networks.

A major empirical issue in the neural networks is to estimate the unknown
parametersWh with a sample of data values of targets and inputs. This estimation
procedure is characterized by the recursive updating or the learning of estimated
parameters. This algorithm is called the backpropagation algorithm. As reviewed
by Schmidhuber [7], back-propagation was introduced and developed during the
1970’s and 1980’s and refined by Rumelhart et al. [6]. In addition, it is well known
that the most important algorithms of artificial neural networks training is the
back-propagation algorithm. From mathematical point view, back-propagation is
a method to minimize errors for a loss/cost function through gradient descent.
More precisely, an input data is fed to the network and forwarded through
the so-called layers ; the produced output is then fed to the cost function to
compute the gradient of the associated error. The computed gradient is then
back-propagated through the layers to update the weights by using the well
known gradient descent algorithm (see the diagram in Figure 5).

As explained in [6]), the goal of back-propagation is to compute the partial
derivatives of the cost function J . In this procedure, for each hidden layer h is
assigned an error term δh, then each error term δh is derived from error terms
δk, k = h+1, · · ·L; thus the concept of error back-propagation. The output layer
L is the only layer whose error term δL has no error dependencies and it is given

A Two-Step Rule for Backpropagation 59

by the following equation

δL =
∂J

∂WL
� σ′(Y out

L), (2)

where � denotes the element-wise matrix multiplication (the so-called Hadamard
product, which is exactly the element-wise multiplication ” ∗ ” in Python). For
h ∈ {(L− 1), · · · , 1} the error term δh is derived from matrix multiplication of
δh+1 and the weight transpose matrix (Wh+1)> then multiplying (element-wise)
the obtained vector by the function σ′ with respect to the preactivation Y out

h .
Thus, one has the following equation

δh = (Wh+1)
>δh+1 � σ′(Y out

h), h = (L− 1), · · · , 1. (3)

Once the layer error terms have been assigned, the partial derivative ∂J
∂Wl

can be
computed by

∂J

∂Wh
= δh+1(Xout

h)>. (4)

In particular, we deduce that the back-propagation algorithm is uniquely respon-
sible for computing weight partial derivatives of J by using the recursive equation
(3) with the initialization data given by (2). The key question to which we address
ourselves in the present work is the following: how could one reformulate the
back-propagation in a similar manner as in the forward pass ? Equivalently,
how could one reformulate the back-propagation in two-step recursive backward
formula as in (1) ?

In order to provide a first answer to this question, we shall introduce the
following up and down delta’s terms

δupL :=
∂J

∂Xout
L

, δdown
h = δuph �σ

′(Y out
h), δuph−1 = (Wh)

>δdown
h , h = L, · · · , 1. (5)

Once the δdown
h term have been computed, the partial derivative ∂J

∂Wh
can be

evaluated by
∂J

∂Wh
= δdown

h (Xout
h−1)

>. (6)

Now, we shall give an answer by proving in the section 3 that one has the two-step
recursive backward formula given by (5).

It is interesting to cite related works which have some connections with ours.
To the best of our knowledge, in literature, the related works to this paper are [1]
and [4]. In particular, in the first paper the authors uses some decomposition of the
partial derivatives of the cost function, similar to the two-step formula (cf. (5)), to
replace the standard back-propagation. In addition, they show (experimentally)
that for specific scenarios, the two-step decomposition yield better generalization
performance than the one based on the standard back-propagation. But in the
second article, the authors find some similar update equation similar to the one
given by (5) that report similarly to standard back-propagation at convergence.
Moreover, this method discovers new variations of the back-propagation by

60 A. Boughammoura

learning new propagation rules that optimize the generalization performance
after a few epochs of training. More recently, in [3] the author have investigated
the two-step rule for backpropagation from a theoretical viewpoint, and showed
that the backpropagation algorithm is completely characterized by the F-adjoint
of the F-propagation through the corresponding deep neural network architecture.

The rest of the paper is organized as follows. Section 2 outlines some notations,
setting and ANN framework. Section 3 state and proof the main mathematical
result of this work. Section 4 application of this method to study some simple
cases. In Section 5 conclusion.

2 Notations, Setting and the ANN

Let us now precise some notations. Firstly, we shall denote any vector X ∈ Rn,
is considered as columns X = (X1, · · · , Xn)

> and for any family of transfer
functions σi : R→ R, i = 1, · · · , n, we shall introduce the coordinate-wise map
σ : Rn → Rn by the following formula

σ(X) := (σ1(X1), · · · , σn(Xn))
>
. (7)

This map can be considered as an “operator” Hadamard multiplication of columns
σ = (σ1, · · · , σn)> and X = (X1, · · · , Xn)

>, i.e., σ(X) = σ �X.
Secondly, we shall need to recall some useful multi-variable functions deriva-

tives notations. For any n,m ∈ N∗ and any differentiable function with respect
to the variable x

F : R 3 x 7→ F (x) =
(
Fij(x)

)
1≤i≤m
1≤j≤n

∈ Rm×n (8)

we use the following notations associated to the partial derivatives of F with
respect to x

∂F

∂x
=

(
∂Fij(x)

∂x

)
1≤i≤m
1≤j≤n

(9)

In adfdition, for any n,m ∈ N∗ and any differentiable function with respect
to the matrix variable

F : Rm×n 3 X =
(
Xij

)
1≤i≤m
1≤j≤n

7→ F (X) ∈ R (10)

we shall use the so-called denominator layout notation (see page 15 of [8])
for the partial derivative of F with respect to the matrix X

∂F

∂X
=

(
∂F (X)

∂Xij

)
1≤i≤m
1≤j≤n

(11)

In particular, this notation leads to the following useful formulas: for any
q ∈ N∗ and any matrix W ∈ Rq×m we have

∂(WX)

∂X
=W>, (12)

A Two-Step Rule for Backpropagation 61

when X ∈ Rn with Xn = 1 one has

∂(WX)

∂X
=W>] (13)

where W] is the matrix W whose last column is removed (this formula is highly
useful in practice). Moreover, for any matrix X ∈ Rm×n we have

∂(WX)

∂W
= X>. (14)

Then, by the chain rule one has for any q, n,m ∈ N∗ and any differentiable
function with respect to the matrices variables W,X :

F : (W,X) 7→ Z :=WX ∈ Rq×n 7→ F (Z) ∈ R

∂F

∂X
=W>

∂F

∂Z
and

∂F

∂W
=
∂F

∂Z
X>. (15)

Furthermore, for any differentiable function with respect to Y

F : Rn 3 Y 7→ X := σ(Y) ∈ Rn 7→ F (X) ∈ R

we have
∂F

∂Y
=
∂F

∂X
� σ′(Y). (16)

Throughout this paper, we consider layered feedforward neural networks and
supervised learning tasks. Following [2] (see (2.18) in page 24), we will denote
such an architecture by

A[N0, · · · , Nh, · · · , NL] (17)

where N0 is the size of the input layer, Nh is the size of hidden layer h, and NL
is the size of the output layer; L is defined as the depth of the ANN , then the
neural network is called as Deep Neural Network (DNN). We assume that the
layers are fully connected, i.e., neurons between two adjacent layers are fully
pairwise connected, but neurons within a single layer share no connections.

For the rest of the paper, we will adopt some simplified notations by replacing
some subscripts and superscripts.

Now, let αhij denote the weight connecting neuron j in layer h− 1 to neuron
i in hidden layer h and let the associated transfer function denoted σhi . In general,
in the application two different passes of computation are distinguished. The
first pass is referred to as the forward pass, and the second is referred to as the
backward pass. In the forward pass, the synaptic weights remain fixed throughout
the network, and the output Xh

i of neuron i in hidden layer h is computed by
the following recursive-coordinate form :

Xh
i := σhi (Y

h
i) where Y hi :=

Nh−1∑
j=1

αhijX
h−1
j

62 A. Boughammoura

X0
1

X0
2

...

X0
N0

X1
1

X1
2

...

X1
N1

. . .

. . .

. . . XL−1
1

XL−1
2

...

XL−1
NL−1

XL
1

XL
2

...

XL
NL

Input
layer

1st Hidden
layer

(L−1)th Hidden
layer Output

layer

Fig. 1: Example of an A[N0, · · · , NL] architechture.

In two-step recursive-matrix form, one may rewrite the above formulas as

Xh = σh(Y h)where Y h =WhXh−1, σh := (σh1 , · · · , σhNh
)>,

Wh := (αhij) ∈ RNh×Nh−1 .

Remark 1.
It is crucial to remark that, if we impose the following setting on Xh,Wh

and σhNh
:

1. all input vectors have the form Xh = [Xh
1 , · · · , Xh

Nh−1, 1]
> for all 0 ≤ h ≤

(L− 1);
2. the last functions σhNh

in the columns σh for all 1 ≤ h ≤ (L− 1) are constant
functions equal to 1.

Then, the A[N0, · · · , NL] neural network will be equivalent to a (L− 1)-layered
affine neural network with (N0 − 1)-dimensional input and NL-dimensional
output. Each hidden layer h will contain (Nh − 1) “genuine” neurons and one
(last) “formal”, associated to the bias; the last column of the matrix Wh will be
the bias vector for the h-th layer (For more details, see the examples given in
Section 4).

This forward pass computation between the two adjacent layers h− 1 and
h may be represented mathematically as the composition of the following two
maps:

RNh−1 −−−→ RNh −−−→ RNh

Xh−1 Wh

7−−→WhXh−1 = Y h
σh

7−−→ σh(Y h) = Xh

A Two-Step Rule for Backpropagation 63

It could be presented as a simple mapping diagram with Xh−1 as input and
the corresponding successive preactivation and activation Y h =WhXh−1, Xh =
σh(Y h) as outputs (see Figure 2).

Xh−1 Y h Xh
Wh

σh

Fig. 2: Mapping diagram associated to the forward pass between two adjacent
layers.

As consequence, the simplest neural network can be defined as a sequence of
matrix multiplications and non-linearities:

X0 = x, Y h =WhXh−1, Xh = σh(Y h), h = 1, 2, · · · , L.

where x ∈ RN0 is the input to the network, h indexes the layer and Wh is the
weight matrix of the h-th layer. To optimize the neural network, we compute
the partial derivatives of the cost J(.) w.r.t. the weight matrices ∂J(.)

∂Wh . This
quantity can be computed by making use of the chain rule in the back-propagation
algorithm. To compute the partial derivative with respect to the matrices variables
{Xh, Y h,Wh}, we put

δuph =
∂J(.)

∂Xh
, δdown

h =
∂J(.)

∂Y h
, δWh =

∂J(.)

∂Wh
. (18)

Now, by using the two-step rule for back-propagation, introduced in the
previous section, one could rewrite the backward propagated values of the partial
derivatives of J w.r.t. weight as follows :

δupL =
∂J(.)

∂XL
, δdown

h = δuph � σ
′(Y h), δWh = δdown

h (Xh−1)>,

δuph−1 = (Wh)>δdown
h , h = L, · · · , 2.

(19)

The backward computation between the two adjacent layers h and h− 1 may
be represented mathematically as follows:

RNh−1 × (RNh × RNh−1)←−−−−−− RNh ←−−−−−− RNh

(
δuph−1, δWh

)
=

(
(Wh)>︸ ︷︷ ︸
Nh−1×Nh

δdown
h︸ ︷︷ ︸
Nh×1

, δdown
h︸ ︷︷ ︸
Nh×1

(Xh−1)>︸ ︷︷ ︸
1×Nh−1

)
(.)(Xh−1)>←−−−−−−−
(Wh)>(.)

[δdown
h

= δuph � σ
h′(Y h)

(�)σh′(Y h)←−−−−−−−[δuph

64 A. Boughammoura

δuph−1 δWh δdown
h δuph

(�)σh′(Y h)(.)(Xh−1)>

(Wh)>(.)

Fig. 3: Mapping diagram associated to the two-step backward pass between two
adjacent layers.

The simple mapping diagram below shows the two-step rule for computing
the partial derivatives of the cost function w.r.t. weights (see Figure 3).

One may refine the above diagram to show the similarity between both the
forward and backward two-step passes as follows

δuph−1 δdown
h δuph

(�)σh′(Y h)

(Wh)>(.)

Fig. 4: Refined mapping diagram associated to the two-step backward pass
between two adjacent layers.

Note that Figure 2 and Figure 4 are adjoint to each other in both computa-
tional phases. Moreover, one could combine the forward and backward passes
by the following diagram, which shows clearly the two-step rule for the entire
back-propagation process (see Figure 5).

Fig. 5: Mapping diagram associated to the entire back-propagation process.

A Two-Step Rule for Backpropagation 65

3 Main mathematical result

In this section we state our main result in the following Proposition.

Proposition 1 (The gradient backward propagation).
Let L be the depth of a Deep Neural Network and Nh the number of neurons

in the h-th hidden layer. We denote by X0 ∈ RN0 the inputs of the network,
Wh ∈ RNh×Nh−1 the weights matrix defining the synaptic strengths between the
hidden layer h and its preceding h− 1. The output Y h of the hidden layer h are
thus defined as follows:

X0 = x, Y h =WhXh−1, Xh = σ(Y h), h = 1, 2, · · · , L. (20)

Where σ(.) is a point-wise differentiable activation function. We will thus denote by
σ′(.) its first order derivative, x ∈ RN0 is the input to the network and Wh is the
weight matrix of the h-th layer. To optimize the neural network, we compute the
partial derivatives of the loss J(f(x), y) w.r.t. the weight matrices ∂J(f(x),y)

∂Wh , with
f(x) and y are the output of the DNN and the associated target/label respectively.
This quantity can be computed similarly by the following two-step rule:

δupL =
∂J(f(x), y)

∂XL
, δdown

h = δuph � σ
′(Y h), δuph−1 =

(
Wh

)>
δdown
h , h = L, · · · , 1.

(21)
Once δdown

h is computed, the weights update can be computed as

∂J(f(x), y)

∂Wh
= δdown

h

(
Xh−1)> . (22)

Proof of the Proposition 1

Firstly, for any h = 1, · · · , L let us recall the simplified notations introduced
by (18):

δuph =
∂J(f(x), y)

∂Xh
, δdown

h =
∂J(f(x), y)

∂Y h
.

Secondly, for fixed h ∈ {1, · · · , L}, Xh = σ(Y h), then (16) implies that

∂J(f(x), y)

∂Y h
=
∂J(f(x), y)

∂Xh
� σ′(Y h)

thus
δdown
h = δuph � σ

′(Y h). (23)

On the other hand, Y h =WhXh−1, thus

∂J(f(x), y)

∂Xh−1 = (Wh)>
∂J(f(x), y)

∂Y h

by vertue of (15). As consequence,

66 A. Boughammoura

δuph−1 = (Wh)>δdown
h . (24)

Equations (23) and (24) implies immediately (21). Moreover, we apply again (15)
to the cost function J and the relation Y h =WhXh−1, we deduce that

∂J(f(x), y)

∂Wh
=
∂J(f(x), y)

∂Y h
(Xh−1)> = δdown

h (Xh−1)>.

This end the proof of the Proposition 1. Furthermore, in the practical setting
mentioned in Remark 1, one should replace Wh by Wh

] by vertue of (13). Thus,
we have for all h ∈ {L, · · · , 2}

δuph−1 = (Wh
])
>δdown

h ,

and then the associated two-step rule is given by

δupL =
∂J(f(x), y)

∂XL
, δdown

h = δuph � σ
′(Y h), δuph−1 =

(
Wh
]

)>
δdown
h , h = L, · · · , 1.

(25)

4 Application to the two simplest cases A[1, 1, 1] and
A[1, 2, 1]

The present section shows that in the following four simplest cases associated
to the DNN A[1, N1, 1] with N1 = 1, 2, we shall apply the two-step rule for back-
propagation to compute the partial derivative of the elementary cost function J
defined by J(f(x), y) = f(x)− y for any real x and fixed real y. In this particular
setting, we have the two simplest cases A[1, 1, 1] and A[1, 2, 1]: one neuron and
two neurons in the hidden layer (see Figures 6 and 7).

4.1 The first case: A[1, 1, 1]

The first simplest case corresponds to A[1, 1, 1] architecture is shows by the
Figure 6. Let us denote by a W 1 =

(
α1
11 α

1
12

)
and W 2 =

(
α2
1 α

2
2

)
the weights in

the first and second layer. We will evaluate the δW 1 and δW 2 by the differential
calculus rules firstly and then recover this result by the two-step rule for back-
propagation.

The two-step forward pass : For clarity, let us denote

y1 := α1
11x+ α1

12 and y2 := α2
1σ(y

1) + α2
2.

Obviously, one has

X0 =

(
x
1

)
W 1

7−−−−→
σ

 Y 1 =W 1X0 = y1

X1 =

(
σ(Y 1)

1

)
=

(
σ(y1)
1

)
W 2

7−−−−→
σ

{
Y 2 =W 2X1 = α2

1σ(y
1) + α2

2 = y2

X2 = σ(Y 2) = σ(y2)

}

A Two-Step Rule for Backpropagation 67

X0
1 =x

X0
2 =1

X1
1

X1
2 =1

X2

α1
11

α
1
12

α2
1

α
2
2

Input
layer

Hidden
layer

Output
layer

Fig. 6: The DNN associated to the case 1.

Hence, by using the differential calculus rules one gets

δW 2 =

(
σ′(y2)σ(y1)

σ′(y2)

)>
and δW 1 =

(
σ′(y2)σ′(y1)α2

1x

σ′(y2)σ′(y1)α2
1

)>
.

The two-step backward pass :

α2
1σ
′(y2)σ′(y1) = δdown

1
σ′←−[

{
σ′(y2) = δup2 � σ′(Y 2) = δdown

2

α2
1σ
′(y2) = (W 2

])
>δdown

2 = δup1

}
σ′←−−−−

(W 2
])
>

[δup2 = 1

Hence, by using the two-step rule (25) one gets

δW 2 = δdown
2 (X1)> =

(
σ′(y2)σ(y1)

σ′(y2)

)>
and δW 1 = δdown

1 (X0)> =

(
σ′(y2)σ′(y1)α2

1x

σ′(y2)σ′(y1)α2
1

)>
.

4.2 The second case: A[1, 2, 1]

The second simplest case corresponds to A[1, 2, 1] architecture is shows by the

Figure 7. In this case we have W 1 =

(
α1
11 α

1
12

α1
21 α

1
22

)
and W 2 =

(
α2
1 α

2
2 α

2
3

)
. Thus,

one deduce immediately that

The two-step forward pass : As in the previous case, we shall denote

y111 := α1
11x+ α1

12, y
1
21 := α1

21x+ α1
22 and y2 := α2

1σ(y
1
11) + α2

2σ(y
1
21) + α2

3.

68 A. Boughammoura

X0
1 =x

X0
2 =1

X1
1

X1
2

X1
3 =1

X2

α
1
11

α 1
21

α
1
12

α1
22

α 2
1

α
2
2

α
2

3

Input
layer

Hidden
layer

Output
layer

Fig. 7: The DNN associated to the case 2.

Obviously, one has,

X0 =

(
x
1

)
W 1

7−−−−→
σ

Y 1 =

(
y111
y121

)

X1 =

σ(y111)σ(y121)
1

W 2

7−−−−→
σ

{
Y 2 = y2

X2 = σ(y2)

}

Hence, by using the differential calculus rules one gets

δW 2 =

σ′(y2)σ(y111)

σ′(y2)σ(y121)

σ′(y2)

>

and

δW 1 =

(
α2
1xσ

′(y111)σ
′(y2) α2

1σ
′(y111)σ

′(y2)

α2
2xσ

′(y121)σ
′(y2) α2

2σ
′(y121)σ

′(y2)

)
.

The two-step backward pass :(
α2
1σ
′(y2)σ′(y111)

α2
2σ
′(y2)σ′(y121)

)
=δdown

1
σ′←−[

σ′(y2)=δdown

2(
α2
1σ
′(y2)

α2
2σ
′(y2)

)
=δup1

 σ′←−−−−
(W 2

])
>

[δup2 =1

A Two-Step Rule for Backpropagation 69

Hence, by using the two-step rule (25) one gets

δW 2 = δdown
2 (X1)> =

σ′(y2)σ(y111)

σ′(y2)σ(y121)

σ′(y2)

>

and

δW 1 = δdown
1 (X0)> =

(
α2
1xσ

′(y111)σ
′(y2) α2

1σ
′(y111)σ

′(y2)

α2
2xσ

′(y121)σ
′(y2) α2

2σ
′(y121)σ

′(y2)

)
.

5 Conclusion

In conclusion, we have provided a two-step rule for back-propagation similar to
the one for forward propagation. We hope that it serve as a pedagogical material
for data scientists, and may also inspire the exploration of novel approaches for
optimizing some artificial neural networks training algorithms. As future work,
we envision to explore some experimental issues to compare the performance of
this two-step rule for back-propagation and the standard one.

Acknowledgement

The author would like to thank two anonymous reviewers for pointing out
several useful comments and suggestions that helped improve this manuscript.

Conflicts of Interest

The author declare no conflict of interest.

References
1. Alber, M., Bello, I., Zoph, B., Kindermans, P. J., Ramachandran, P., & Le, Q. (2018).

Backprop evolution. Preprint at https://arxiv.org/abs/1808.02822.
2. Baldi, P. (2021). Deep learning in science. Cambridge University Press.
3. Boughammoura, A. (2023). Backpropagation and F-adjoint. Preprint at

https://arxiv.org/abs/2304.13820.
4. Hojabr, R., Givaki, K., Pourahmadi, K., Nooralinejad, P., Khonsari, A., Rahmati,

D., & Najafi, M. H. (2020, October). TaxoNN: A Light-Weight Accelerator for Deep
Neural Network Training. In 2020 IEEE International Symposium on Circuits and
Systems (ISCAS) (pp. 1-5). IEEE.

5. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5, 115-133.

6. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323 (6088), 533-536.

7. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks, 61, 85-117.

8. Ye, J. C. (2022). Geometry of Deep Learning. Springer Singapore.

	A Two-Step Rule for Backpropagation

