
International Journal of Informatics and Applied Mathematics
e-ISSN:2667-6990 Vol. 3, No. 2, 35-52

Exploring Specifications and Monitoring
Execution Data of Business Processes

Ali Khebizi1, Hassina Seridi-Bouchelaghem2

1 Department of computer science, LabSTIC Laboratory, 8 May 1945 University,
P.O. Box 401, 24000 Guelma, Algeria- khebizi.ali@univ-guelma.dz,

ali.khebizi@gmail.com
2 LabGed, Badji Mokhtar University, Annaba -Algeria- seridi@labged.net

Abstract. The large proliferation of software environments supporting
enterprises business processes has lead to a massive data that is receiving
a great deal of enthusiasm from the IT managers for its exploitation for
various management purposes. Although a lot of work in the business
processes field has focused mainly on the modelling and automation as-
pects, little effort has been done regarding the analysis, optimization and
monitoring concerns.
In this paper, a new formal approach for analysing business processes
specifications and for exploring their associated execution data is sug-
gested. It exhibits two main complementary features: (i) formal specifi-
cations describing business processes, expressed as finite state machines,
are extracted in order to satisfy useful users needs, (ii) a parametriz-
able model supporting selection rules that enables querying execution
traces of business processes is formalized and illustrated. A real-word
scenario is used throughout the paper to illustrate the introduced con-
cepts and formalizations and the proposed approach is implemented and
experimented in a software tool.

Keywords: Business processes · Finite state machine· Specification pat-
tern· Process instance· Execution path· Data analysis.

36 A. Khebizi and H. Seridi-Bouchelaghem

1 Introduction

Modern organizations invest colossal sums and a valuable budget for modelling,
managing and monitoring their business processes.
A business process (in the sequel BP for short) is usually defined as a collection
of coordinated activities undertaken by one or more organizations in pursuit of
some particular business goals [1]. Its specification must describe how business
logics are performed and how they should be conducted under real organizational
constraints.

In parallel, Business Process Management (BPM) technology is recently
recognized as a comprehensive discipline that promote a process-centred ap-
proach to align organizations business processes with clients needs and to con-
tinuously improve business effectiveness and efficiency.

Nowadays, BPM is intensively used to automate execution of most compa-
nies’ business logics, to improve processes and to align the needs of customers
with company objectives. An immediate consequence of the large adoption of
the BPM technology, corroborated by the proliferation of environments sup-
porting different phases of the life cycle of BPs (e.g.; development, deployment,
execution, monitoring), consists to multiple execution by different users of the
activities contained in the deployed BPs. These multiple invocations leave var-
ious kinds of temporary or permanent traces in enterprises persistent storage
systems. Thereby, over the time a large size of data requiring more attention by
IT managers, is generated and stored in the underlying enterprise database(s).
Although a lot of work in the field of BPs has focused mainly on business pro-
cess modelling and automation, little effort has been done regarding the analysis,
optimization and monitoring of BPs. An important omission in current devel-
opment practice for business process management systems (BPMS) consists of
analysing specifications for searching particular patterns of interest and compar-
ing relationships of BPs descriptions, including similarities’ search and checking
inclusions of sub-structures. Another shortcoming is related to querying and ex-
ploring generated execution data in the underlying enterprise database(s) that
take into account the particular nature of BPs executions traces. Indeed, pro-
cesses’ data are very relevant in the contexts of automated BPs substitution and
for maintenance and monitoring tasks, while giving organizations control over
their processes and making businesses more efficient and more competitive.
This article addresses such concerns, by presenting a comprehensive approach
that allows analysing BPs data. The main goal is to extract relevant knowledge
contained in BPs’ data storage systems, such as: relationships between activities
and BPs, BPs that can replace failed ones, the most-executed activities or the
followed paths, instances status, achieved activities . . .

We propose a formal approach for BPs data analysis that provides a sound
theoretical foundation and an operational dashboard for protocol managers. In
this perspective, BPs’ relationships are formally specified and handled (inclu-
sion, simulation , . . .). Furthermore, to explore instances of BPs meeting users
requirements, a generic query model is specified and evaluated.
The salient feature of the proposed work lies in a rigorous formalism based on

Exploring Specifications and Monitoring Execution Data... 37

high level specifications to support the analysis and exploration of BP data. BPs
are described by means of Finite State Machines (FSM), descriptive structures
are represented with regular expressions and relationships between BP are for-
mally specified. At the execution level, execution paths followed by process in-
stances are expressed as path expressions and a selection rule model is proposed.
The conceived approach is implemented via a software prototype.
Paper organization: We start by positioning the problem and motivating our
work in section 2. Section 3 presents the different facets of the proposed approach
for BPs data analysis and exploration. In section 4, the system architecture
is illustrated and the implementation of a software prototype supporting the
approach is depicted. Finally, conclusion and potential directions for future works
are drawn at section 5.

2 Problem statement and motivations

Given its importance, analysis of BPs data has recently received great atten-
tion and interest from both the research and industry communities [2–5], as
effectively accomplishing any business process management tasks requires un-
derstanding the behaviour of the processes. This behaviour is manifested by the
descriptive specifications and reflected by real execution data. Thus, BP data
analysis, monitoring and exploration become a critical task for any organization.
This need is felt on the two following distinct levels.

At the formal specification level, the main objective of BPs analysis is to
allow, on the one hand, the continuous improvement of the already deployed
BPs, by taking into account events and factors that arise in their execution
environment, such as executions failures induced by network and communica-
tion reasons or needs for BPs substitution due to evolution constraints, when
new regulations and laws occur [6]. On the other hand, handling BP structures’
analysis enables recovery and maintenance actions to be carried out on schemes
which manifest errors, anomalies or overloads related to activities’ invocation.

Contrary, at the execution data level, the concerns are of a different nature.
In fact, once a BP is deployed (as a Web service, for example), it is seen as a
large public application, for which a huge number of customers may be invoking
it at a same time. Each invocation by a given user corresponds to an execution
of a separated instance of the BP and over the time, a large volume of data is
being generated on a continuous basis. Exploring such generated data is a major
asset for evaluating and monitoring BPs and, thus enhancing the organization’s
resources and its position in the market.
Due to the particular nature of BPs data, the previous requirements can’t be
easily expressed -or not at all- by using only traditional querying languages.

2.1 Motivating scenarios

First, we present the purchase-order BP, then we illustrate its usage with two
concrete scenarios.

38 A. Khebizi and H. Seridi-Bouchelaghem

Example 1. A real-world example of a purchase-order BP, called Order, is de-
picted in Fig. 1 and it’s used for managing sales and strengthening customers
relationships. This BP could be deployed on the web by a network of companies
(as a Web service), by publishing its interface and its protocol [7, 8].

Start

Send Order (SO)

Confirm Order (CO)

Order Satisfied

R
e
je
c
t
O
rd
e
r
(R
O
)

Search External
Supplier (SE)

Order
Rejected

Check Local
Stock (LS)

Customer Identified

Order Validated
Order

Submitted

Customer
Logged (CL)

Update Information (UI)

Archived
Order

Local Stock Checked

Order Payed

Order
Payment (OP)

Archiving
Order (AO)

Goods Delivery (GD)

External Supplier
Asked

Order proceeded

Supplier
Response (SR)

Goods
Delivery (GD)

Unavailable Products (UP)

Fig. 1. The purchase-order business protocol (Order)

The business logic behind this protocol is described in what follows. Initially, a
new instance of the Purchase-Order protocol is created at the Start state, when
a given customer logs to the system. Then, the instance moves to the state Cus-
tomer Identified when the user fills and submits an application identification form
(activity Customer Logged (CL)). Once the customer is authenticated, he can ei-
ther update his information iteratively, (activity Update Information (UI), e.g., to
change the delivery address or the payment method), or he can send the purchase
order to the supplier (activity Send Order (SO)). This last activity makes the
BP instance moving to the state Order submitted and it continues its execution
according to the specification described by the protocol.

Scenario 1: Exploring BP structures First we focus on BP models by
analysing their descriptive specifications. For example, we can check the exis-
tence of particular sub-procedures (sequence of activities) or, filter out the most
typical BP that can ensure the same activities as those of a failed or overloaded
one, or further more, ask for the set of activities allowed from a reached state
in the current BP. Thus, some questions, such as: which active BP contains a
particular critical activities’ sequence ? The current BP can be replaced by which
other ones ? What are the remaining activities for accomplishing a procedure ?,
are examples of frequent concerns to be addressed at the specification level.

Exploring Specifications and Monitoring Execution Data... 39

Scenario 2: Exploring BP execution data Now, assume that a BP manager
wants to filter out instances of the previous BP Order satisfying particular re-
sources constraints and specific management requirements. As an illustration, he
may be interested by questions such as: Are there any bottlenecks in the ordering
process? Who proceeded it and what are the most followed procedures? What are
the historical traces of instances and their reached states? as well as displaying
instances with their completed activities and those in progress.
Other management concerns can be addressed. For instance, Is there some un-
reachable BP states or execution paths that are never taken by instances? What
are process instances having not yet executed a particular activity? What activi-
ties have been completed by a given customer? Those in progress?
Answering the previous questions helps considerably protocol managers improv-
ing the efficiency and the effectiveness of the deployed processes and facilitates
the monitoring tasks. However, formulating such queries by known query lan-
guages, such SQL, is far from trivial and can’t be often easily expressed with
traditional query languages.

2.2 Motivations

By extracting relevant information stored in enterprises systems, organizations
can improve the quality of their BP and enhance services provided to partners.
Thus, analysing BP data aims to achieve to following three goals.

- Managing BPs substitution with respect to historical execution traces.
Many situations, such as processes failure or best performances and costs
reduction needs, require to replace the concerned protocol with another ad-
equate one which offers, at least, the same functionalities. In such contexts,
it’s imperative to analyse protocol’s specification and the accurate progres-
sion level of each instance in order to ensure its execution continuation.

- Handling BP evolution induced by changes in laws, regulation and policies.
In fact, change management requirements imposes to processes’ manager
comparing old and new protocols and analysing the exact progression level
of each process instance in order to handle change impact on execution traces
by deploying the suitable migration strategy;

- Extracting decisions metrics (number of pending instances, accomplished
steps, activities and process instances duration, rate of achieved instances,
instances that have been blocked for an elapsed time, . . .).

From a strategic perspective, exploiting existing BP data constitutes an efficient
management tool supporting growth and competitiveness of modern organiza-
tions. To meet this goal, techniques, methods and tools are inevitable.
In what follows, we expose our approach for BP data analysis.

3 Analysing and monitoring business processes data

We present below the different facets of our approach for BP data analysis and
we expose the underlying models. (i) First, we introduce the explicit choices on

40 A. Khebizi and H. Seridi-Bouchelaghem

formal models used for representing business processes and execution traces, as
well as some basic notations and definitions useful for formalizing the approach.
(ii) Structural analysis of BP is addressed at the abstract specification level. (iii)
A formal query model for exploring BP instances is described and formalized.
In what follows, these steps are deeply discussed and illustrated.

3.1 Business processes and execution traces specification

The formal protocol model manipulated throughout the proposed approach and
the associated notations, as well as basic definitions are introduced bellow.

3.1.1 The business protocol model A business protocol, (shortly the pro-
tocol), describes the external visible behaviours of a given business process, by
specifying the constraints (e.g., ordering of activities, . . .) that partners must
comply with in order to correctly interact with the process [9–11].
In our work a basic version of the model basing on automaton is used. It de-
scribes the ordering constraints that govern the activities’ execution [9, 11, 12]
and it’s considered as sufficient to illustrate our approach. More formally.

Definition 1 A business protocol is a tuple P = (S, s0,F ,M,R); where: S is
a finite set of states; s0 ∈ S is the initial state of the protocol; F ⊆ S is the
set of final states; M is a finite set of abstract activities; R ⊆ S × S ×M is a
transition relation. Each element (s, s′,m) ∈ R represents a transition from a
source state s to a target one s′ upon the execution of the abstract activity m.

According to this definition, states of the FSM represent the different phases
that a BP may go through, while transitions represent activities that a BP can
perform to move from one step to another according to the BP logic [10, 12].
The choice of finite state machines to represent protocols of BPs is motivated
by the important role of this formalism to represent the behaviour of dynamic
systems [13]. Further, this formalism has been extensively used in the field of
process theory, BPM and web services to support formal analysis [14]. Such
a model is very adequate for our purposes since it enables to express the ab-
stract activities and to specify constraints required by users to correctly interact
with the BP. Although our approach uses such models, other existing models
such PetriNets, BPMN or UML diagrams can be translated to FSM by using
adequate transformation techniques [15, 16].

3.1.2 Basic definitions and notations regarding the BP model Each
invocation of a deployed business process corresponds to an execution of a sep-
arated instance of the considered process. This execution generates an execution
trace which is recorded in adequate databases (log files). In the following we
introduce the concept of execution path which is necessary for expressing execu-
tion traces of process instances.
Let P = (S, s0,F ,M,R) be a business process.

Exploring Specifications and Monitoring Execution Data... 41

An execution path e(P) of P is an alternating sequence of states and activities
of P, i.e., e(P) = sk.mk.sk+1.mk+1 . . . sn.mn.sn+1, that (i) starts at a state sk
of P, (ii) ends at a state sn+1 of P, and (iii) is consistent with the transition
relationship of P, i.e., (si, si+1,mi) ∈ R,∀i ∈ [0, n].
Each instance I interacting with the business process P generates an execu-
tion trace Ti(P), which is made of a finite sequence of activities m0.m1 . . .mn

obtained by removing state names from the associated execution path e(P) =
s0.m0.s1 . . . sn.mn.sn+1 ∈ P followed by the instance I.
According to the previous definition, an execution trace Ti(P) of an instance I
represents the sequence of historical activities performed by I in P, from the
beginning of the process invocation to the current state reached by the instance.
We denote by T (P), the set of all execution traces T of a business protocol P
and |T (P)| designates the cardinality of this set. Each element in T (P) is ex-
pressed with Ti(P), for i = 1 . . . |T (P)| and the length of a trace Ti(P) is noted
|Ti(P)|, i.e., the number of activities contained in the trace Ti(P).

Example 2. Table 1 bellow shows nine execution traces; T1(Order), . . . , T9(Order)
associated to nine separate instances of the purchase-order protocol of Fig.1. At
a given time, the considered execution traces have different status and are at
different execution levels.

Table 1. Examples of execution traces of the purchase-order business protocol.

ID Trace Name Execution Trace Start-date Start-time T-stamp Length Status

100 T1(Order) CL.SO.CO 28/06/20 19:11:17 320 s 3 A
110 T2(Order) CL.UI.UI.SO.CO.RO 30/06/19 20:15:14 56 s 6 C
153 T3(Order) CL.SO.CO.LS.SE 15/07/20 10:05:11 200 s 5 A
288 T4(Order) CL.UI.SO.CO.LS.GD.OP.AO 16/02/18 22:53:08 3600 s 8 C
28 T5(Order) CL.SO.CO.LS 15/03/20 09:33:11 5000 s 4 A
88 T6(Order) CL.UI.UI.UI.UI 10/10/20 01:15:22 78 s 5 B
115 T7(Order) CL.SO.CO.LS.SE.SR.GD 23/02/20 16:17:18 3456 s 7 A
214 T8(Order) CL.UI.SO.CO.LS.GD.OP 11/04/20 23:51:45 300 s 7 B
171 T9(Order) CL.UI.UI.SO.CO.LS.GD.OP.AO 08/03/20 10:08:00 6000 s 9 C

It’s important to notice that execution traces are characterized by other at-
tributes related to execution data, such as the state reached by the process
instance, the needed resources and the incurred costs. For example, the instance
with the Trace Name= T7(Order) and having executed the activities sequence
CL.SO.CO.LS.SE.SR.GD is at the current state Order Satisfied, it needs 1000 mon-
etary units and a network connection as resources, while the already engaged
cost is about 20 units. Due to lack of space we focus only on the properties
presented in Table 1 which are sufficient for illustrating our approach.
Regarding the progression level of execution, an execution trace Ti(P) is com-
plete if it has reached a final state, else it’s called incomplete and it’s still
active. Contrary, some instances may be at a blocked state due to network

42 A. Khebizi and H. Seridi-Bouchelaghem

problems or lack of resources reasons. In Table 1, the abbreviations A: Active,
B: Blocked and C: Complete are used to designate instance status.
Finally, we introduce the notion of sub-protocol which is very important in
our future developments.

Definition 2 Let P = (S, s0,F ,M,R) be a FSM representing a business pro-
tocol and let s ∈ S a state of P. The sub-protocol CSP(P, s) of P is the protocol
CSP(P, s) = (S′S , s

′
0S ,F ′S ,M′S,R′S) obtained from P as follows :

- s is the initial state of CSP(P, s), s′0S = s.
- S′S ⊆ S contains all states of S reachable from s by using the transition

relation R of P,
- F ′S = S′S ∩ F ,
- R′S = {(s, s′,m) ∈ R | {s, s′} ⊆ S′S},
- M′S ⊂M is constituted of messagesM appearing in the transitions of R′S.

Thus, the sub-protocol CSP(P, s) allows to capture all the behaviours of P start-
ing from the state s. For instance, the protocol CSP (Order, Local Stock Checked)
of the Purchase Order protocol of Fig. 1 corresponds to the sub-protocol start-
ing at the initial state s′0S=Local Stock Checked and including all the states
reachable from this initial state.

(the sub-protocol is highlighted with dashed lines in Fig. 1).

Consequently, a sub-protocol specification represents a business logic with its
constraints and it corresponds to a particular working sub-procedure.
We now recall the notion of simulation relationship which is very useful for
comparing two protocols based on their behaviours [10].

Definition 3 Let P = (S, s0,F ,M,R) and P ′ = (S′, s′0,F ′,M′,R′) be two
FSM representing two business protocols, such that:
A state s1 ∈ s is simulated by a state s′1 ∈ S’, noted: s1 � s′1, Iff the following
two conditions holds:

- ∀ m ∈ M and ∀ s2 ∈ S with :(s1, s2,m) ∈ R , there exists (s′1, s
′
2,m) ∈ R′

such as: s2 � s′2.
- If s1 ∈ F , then s′1 ∈ F ′.
P is simulated by P ′, noted: P � P ′ Iff: s0 � s′0.

3.2 Analysing business processes specifications

BP data analysis at the descriptive level, (i.e., the model level), deals with spec-
ifications’ properties expressed in BP models, by exploring the contained struc-
tures in order to seek patterns of interest. In fact, over the time a large volume of
BP descriptive data is being generated and stored in adequate databases. Since
these data are, generally, based on W3C standards, especially the XML format,
it is so possible to process them in order to extract the knowledge hidden in
BP models and the potential relationships among them. In this sense, protocol

Exploring Specifications and Monitoring Execution Data... 43

managers are often interested by examining particular execution paths with their
allowed and forbidden activities’ sequences. Also, in many situations they want
to check the existence of specific sub-procedures. Such concerns express useful
management needs and are deeply studied in what follows.

3.2.1 Specification patterns deployment Generally, protocol managers
explore and analyse protocols’ models for searching descriptions that express
particular management constraints. The aim is to check if the current protocol
offers particular functionalities reflecting behaviours relating to a specific busi-
ness rules. This is the scenario, for example, when they want ensure that the
business process allows operating a repetitive selection of articles ? if it’s possi-
ble to cancel the purchase order after having operated the payment ? or at which
steps the protocol logic tolerate to withdraw the purchase order ?
More generally, patterns’ search aims to explore protocols specifications in order
to analyse relationships between activities of the BP models. The most frequent
relations between BPs operations that can offer a major and frequent interest
are the following.

- Succession rule: What is (are) the activity (ies) that follows (follow) a
given activity X ?

- Precedence rule: A given activity X is preceded by which activity (ies) ?
- Iteration rule: Does the business process tolerate the repetitive execution

of a given activity X ?

To face to such concerns, we suggest using the concept of Specification Pat-
tern (SP), which is an abstract tool used to express generic situations that can
occur repeatedly during BP executions. According to the used formal description
for representing BP as automaton, a SP is formally expressed by using regular
expressions representing the executions paths of the corresponding protocol.
In what follows, we denote by L(P) the language of P, i.e., the set of all complete
execution paths of P, while w0 and w1 designate two valid activities sequences.
We give now the formal definition of a specification pattern.

Definition 4. Let P = (S, s0,F ,M,R) be a FSM representing a BP. A spec-
ification pattern SP(P) is an activities’ sequence of P, noted λ ∈ P, for which
∃w ∈ L(P), and such that w = w0.λ.w1, (i.e, λ ⊂ w ∈ L(P)).

According to this definition, a specification pattern ensures that the activities
sequence (concatenated symbols) λ is contained in a word satisfying the regular
expression associated to the automaton P. The activities sequence λ is made of
a finite sequence of activities labels m0,m1, . . . ,mn ∈ P which are aggregated
with the concatenation operator ”.” This operator consists of joining names of
activities end-to-end (e.g: CL.UI.SO).
We recall bellow the classical quantifiers used to formalize regular expressions.

- ? which defines an expression that exists zero or one time, e.g., (a.b)? corre-
sponds to the empty execution path ε or a.b,

44 A. Khebizi and H. Seridi-Bouchelaghem

- ∗ which defines an expression that exists zero, one or more times, e.g., (a.b)∗

corresponds to the empty execution path ε or a.b, a.b.a.b, a.b.a.b.a.b, . . .,
- + which defines an expression that exists one or more times, e.g., (a.b)+

corresponds to a.b or a.b.a.b or a.b.a.b.a.b, . . .,

Example 3. Using specification patterns
Basing on the protocol model of Fig.1, the following three SP express different
management needs.

- Activities succession (SP1): Does the activity Supplier Response (SR)
follows directly the activity Check Local Stock (LS) ? the SP answering
such a need is formalized with: SP1(Order)=w0.LS.SR.w1 (w0, w1 are two
valid activities’ sequences and λ = LS.SR), which is an expression that
is not recognized by the automaton depicted in Fig.1. Thus, the pattern
SP1(Order)=w0.LS.SR.w1 does not satisfy the protocol specification and the
answer is negative.
However, if we want to know if the customer have to confirm his purchase or-
der, just after having sent it ? the adequate pattern (SP1’(Order)=w0.SO.CO.w1),
which leads to a positive response is used.
As another illustration: The protocol permits delivering the ordered goods
(activity GD) before order payment (activity OP)?
The SP answering such a requirement is expressed with:
SP1”(Order)=w0.GD.OP.w1, which is an expression recognized by the au-
tomaton describing the BP, i.e., the activity GD precedes OP;

- Activities precedence (SP2): What are the possible executions leading
to the state ”Order Satisfied” ? .
To reach the target state Order Satisfied, the activity Goods Delivery (GD)
must be executed in one of the two possible paths. Backward activities pre-
ceding the activity GD are expressed with the following patterns:
SP2(Order)=CL.UI∗.SO.CO.LS.GD and
SP2’(Order)=CL.UI∗.SO.CO.LS.SE.SR.GD. Thus, two separate paths lead-
ing to the target state Order Satisfied are obtained. Hence, the activities LS
and SR precede GD.

- Iteration (SP3): Can the customer update his information (activity UI) in
several sessions ? can he proceed to order payment (activity OP) on several
instalments ? Such requirements are expressed, respectively, with the follow-
ing specification patterns SP3(Order)=w0.UI∗.w1 and SP3’(Order)=w0.OP ∗.w1.
As it can be observed in Fig.1, the first pattern is a sequence that satisfies
the protocol specifications. However, the second one isn’t recognized by the
protocol. Therefore payment must be made in a single transaction.

3.2.2 Processing complete execution paths Instead of dealing with sim-
ple specification patterns, as exposed above, the protocol manager can be inter-
ested in a complete management procedure that reflects an entire business goal.
Such a requirement is described by an execution path that starts at the initial

Exploring Specifications and Monitoring Execution Data... 45

state of the BP and it ends at one of its possible final states. We call such an
execution path a complete execution path, which is formalized as follows.

Definition 5. Let P = (S, s0,F ,M,R) be a business protocol.
An execution path e(P) = sk.mk.sk+1.mk+1 . . . sn.mn.sn+1 is complete if: (i):
sk is the initial state of the automaton P, i.e, sk = s0 and (ii): sn+1 is a final
state of P, i.e, sn+1 ∈ F .

As an illustration, in the protocol of Fig. 1 the path e(Order) =Start.CL.Customer
Identified.UI.Customer Identified.SO.Order Submitted.CO.Order Validated.RO. Or-
der Rejected is a complete execution path starting from the initial state s0=Start,
followed by an alternating sequence of activities and states and which terminates
at the final state Order Rejected ∈ F .
The notion of complete execution path is useful in the following situations.

- Substitution requirements: if an obsolete procedure is to be replaced by a
more elaborate one or when a business logic improvement must be operated;

- Evolution requirements: changes that arise in the organization’s environ-
ment require updating existing tasks and procedures. For example, due to
changes in laws and regulations;

- Business processes maintenance: The detection of anomalies in the de-
ployed specifications of BP requires a continuous control to address execution
bugs and deadlocks by operating corrective actions;

- Compatibility reasons: BPs integration involves several stakeholders and
needs composing different processes [17]. In this context, procedures to be
integrated must be compatible and compliant. If this not the case, adequate
improvements and adjustments must be made.

Example 4. As an illustration, assume that the protocol manager decides to im-
prove the BP depicted in Fig. 1, in a manner that it allows customers updating
their purchase order in an iterative fashion. Thus, a new activity Update Purchase
Order (UO) is to be inserted after the activities Confirm Order (CO) in the proto-
col specification. This improvement involves to create a cycle on the state Order
Validated. To achieve the previous business goal, the protocol manager must
substitute the complete execution path e1(Order) =Start.CL.Customer Identi-
fied.UI.Customer Identified.SO.Order Submitted.CO.Order Validated.RO. Order Re-
jected with the improved one: e′1(Order) =Start.CL.Customer Identified.UI.Customer
Identified.SO.Order Submitted.CO.Order Validated.(UO.OrderV alidated)∗.RO.Order
Rejected. (It’s the same for the other possible execution paths)

3.2.3 Ensuring sub-procedures achievement As explained previously in
§ 3.1.2, the notion of sub-protocol specifies management sub-procedures which
handle, at the same time, a set of working constraints, while allowing different
execution paths starting from a particular state s. The concept of sub-protocol
is very useful, for example, to ensure that some critical activities (e.g., Payment,
Validation, Canceling, . . .) are still available in the future executions. It could also
be used to ensure that some commitments of a BP provider are still satisfied after

46 A. Khebizi and H. Seridi-Bouchelaghem

having operated changes on the BP description (e.g., the ability for a customer
to cancel the current execution after reaching a particular state). Thus, the sub-
protocol concept is a powerful formal tool that can be used in the following
management scenarios.

- After a failure event. In order to ensure that all the executions from the
failure state s are still allowed by the replacing protocol. This last one must
perform, at least, the same activities which were allowed from the state s of
the old protocol.

- It serves as a tool for facilitating BPs integration. In fact, inserting a sub-
protocol SP1 ⊂ P in another protocol P ′ is a common action requested
during systems cooperation and interchange, for sharing common activities
and business rules. For example, during enterprises merging and buyout.

- Ensuring forward compatibility of protocols [18] by checking that the set of
future executions of an instance I, having reached a state s ∈ P, are included
in the set of forward execution paths starting from a corresponding state in
the target protocol P ′ of a partner, i.e., s′ ∈ P ′.

- In the BPs evolution context, sub-protocols are used to ensure that changes
are transparent to customers interacting with the evolved BP. Hence, users
are unawareness of changes between protocol versions P and P ′.

In all the previous situations, two versions P and P ′ of the used protocol, with
their sub-protocols CSP(P, s) and CSP′(P ′, s′)) are manipulated. To answer the
previous requirements, the sub-protocol CSP′(P ′, s′) can reproduce the same
behaviour of the sub-protocol CSP(P, s), if and only if the old sub-protocol
CSP(P, s) is simulated by the new one CSP′(P ′, s′). More formally.

Is(P)→ Is′(P ′); iff : CSP(P, s)� CSP′(P ′, s′)) (1)

The semantics of the previous equation is interpreted as follows. An instance I
having an execution path e(P) and a current state s ∈ P, can continue its execu-
tion from a corresponding state s′ ∈ P ′, if when starting from s′ the instance I
can execute each execution that was possible from s. Thus, the simulation rela-
tion CSP(P, s)� CSP′(P ′, s′) makes it possible to ensure that s′ can reproduce
all the behaviours that were possible from the state s.

3.3 Querying business processes instances

Having in the same hand: (i) a process specification (business protocol) and (ii)
its running instances (followed execution paths), in what follow we propose a
mapping formalism that enables writing high-level specifications, called selec-
tion rules, that allow querying process instances in order to filter those instances
that satisfy a set of user constraints.
To achieve this goal, generalized path expressions (or simply path expressions in
the sequel), originally introduced to query semi-structured or schema-less data
[19], are used to define selection rules. In fact, path expressions allow expressing
navigational paths with (i) regular expression operators and (ii) path variables

Exploring Specifications and Monitoring Execution Data... 47

(i.e., variables that take as values paths). More precisely.
Let P be a protocol specification. A selection rule of the form: σ(P) uses a path
expression δe as a query to select instances of P that satisfy a given constraint.
Thus, a query on BP instances is simply a path expression, i.e., σ(P) = δe.
We introduce these notions formally in the sequel.
Let Σ be the alphabet expressing business activities of P. We denote by Σ∗ the
infinite set of paths obtained by the concatenations of the activities in Σ and
Exec(P) designates the set of all possible execution paths of P.
First, we introduce the notions of path variables and path expressions. We de-
note by V a set of variables, called path variables (i.e., variables that take as
values execution paths). A valuation over V and Σ is a mapping µ : V → Σ∗

that associates to each variable v ∈ V, a path µ(v) ∈ Σ∗.
A path expression δe is a regular expression formed by using constants (i.e.,
names of activities), path variables and the classical quantifiers ”?”, ” ∗ ” and
” + ”.
We extend the notion of valuations to path expressions by requiring that any
valuation µ has to satisfy the following two constraints: (i) µ is the identity
function on the elements of Σ, i.e., µ(a) = a, ∀ a ∈ Σ, and (ii) for any path
expressions a and b, we have µ(a.b) = µ(a).µ(b).
As an illustration, δe = CL.UI∗SO.CO.LS.v. is a path expression representing
three distinguished execution paths of the BP of Fig. 1, i.e.,
δ1 = CL.UI.SO.CO.LS.GD.OP.AO, δ2 = CL.UI.SO.CO.LS.SE.SR.UP and
δ3 = CL.UI.SO.CO.LS.SE.SR.GD.OP.AO, corresponding respectively, to three
separate valuations of the variable v, (i) v = GD.OP.AO, (ii) v = SE.SR.UP
and (iii) v = SE.SR.GD.OP.AO.
We say that an execution path δ satisfies a path expression δe, noted δ |= δe,
if there is a valuation µ such that µ(δe) = δ. In our example, the execu-
tion path δ1 = CL.UI.SO.CO.LS.GD.OP.AO satisfies the path expression
δe = CL.UI.SO.CO.LS.v.
Now, let Exec(P) be the set of all possible execution paths of P, then we define
a selection rule over P as a path expression δe(P) that can be used to query
instances of the protocol P. In this case, the set of answers of δe(P) includes
the execution paths (traces) of P that satisfy δe. Hence, the selection rule is
expressed as follows.

δe(P) = {δ ∈ Exec(P) | δ |= δe}. (2)

As an example, let P be a business protocol, v a path variable and a an activity.
The selection rule σ(P) formalized with the path expression v.a corresponds to
any execution path ending with a. Hence, v could for example take as value the
execution path b.c.d and the selection rule σ(P) = v.a returns the execution path
b.c.d.a. This is obtained by a valuation µ that assigns to v the value µ(v) = b.c.d
and hence we obtain µ(v.a) = µ(v).µ(a) =b.c.d.a.
As another illustration, the selection rule σ(P)=a.v.b∗.c, with v ∈ V a path vari-
able, enables to select any path starting with a and ending with an arbitrary
sequence of b followed by c (e.g., the path a.e.f.g.b.b.c).

48 A. Khebizi and H. Seridi-Bouchelaghem

Example 5. Basing on execution traces of Table 1, we can filter out instances
having accomplished correctly the BP (the two activities Goods delivered (GD)
and Order Payment (OP) were performed and the last activity in the execution
trace is Archiving Order (AO). Such a query is formalized with the following selec-
tion rule: σ(Order) = v.AO and its valuation returns the two instances T4(Order)
and T9(Order) of Table 1.
Assume now that we are interested to select instances of the BP of Fig. 1 having
executed the activity Update Information (UI) at most once and for which the
last activity is (Goods Delivery (GD)). Such a query can be expressed with the
selection rule: σ(Order) = CL.(UI)?.v.GD.
Two valuations µ that assign to v the values µ(v) = SO.CO.LS and µ(v) =
SO.CO.LS.SE.SR are possible. These valuations lead to two distinguished ex-
ecution paths, respectively:
CL.(UI)?.SO.CO.LS.GD and CL.(UI)?.SO.CO.LS.SE.SR.GD.
From Table 1, only T7(Order)=CL.SO.CO.LS.SE.SR.GD, with (UI)? = ε, meets
the constraints imposed by the previous selection rule.

4 Implementation and Experiments

This section briefly describes a prototype, named Business Processes Data
Analyzer (BPDA) which implements the proposed approach. First, we present
the architecture and the functionalities performed by the system, then we give
some examples of Cypher queries allowing to query execution data.

4.1 System Architecture and functionalities

Java language with the Eclipse development environment are used to implement
the proposed approach. Further, the graph database management system Neo4j
[20, 21], using Cypher [22, 23] as a query language, is deployed for analysing BP
specifications and for querying execution data. Cypher is based on the Property
Graph Model, which organizes data into nodes and edges, called “relationships”.
Such a graph model is perfectly suited to our process model (an automaton can
be perceived as a graph) and, thus it’s very suitable for the suggested formaliza-
tion and developments.

As illustrated in Fig. 2, the prototype BPDA is organized around four main
components (A,B,C and D) interacting with the conceived graph database
(Protocols and Traces).
The first component(A) of BPDA is the Business Protocol Manager module
which allows describing BP specifications as automaton (FSM). A graphical
tool-box performs creating and updating the considered specifications and stor-
ing the generated descriptive data in the protocols database as a graphs (graph
database). Furthermore, this module offers a conformance-checking tool which
enables ensuring the verification of a set of correctness criteria (existence of ini-
tial state, final states, absence of unreachable states . . .).

Exploring Specifications and Monitoring Execution Data... 49

Business Protocol
Manager in AFD

format
-A1

Execution
Traces
Generator
-B1

Protocols and
Traces

Databases

Viewing
Protocols

-XML2 AFD24441

Patterns
Search

Processing
Complete paths

Handling
sub3protocols

v

6 5

2

v

63

2

4

5Selecting and Loading protocol
models for generating execution traces

Execution traces generation
and storage in the Database

Cypher connection to the databases

Quering and Managing execution
Data -execution traces1

Viewing and analysing
protocols specifications

Transfert of BP descriptives data to
the database

Cypher

4

B
P
S
tru
ctu
res

A
n
alyser

(C
)

Execu
tion

Traces
Exp

lorer
(D
)

Querying
Execution
Data

3

Fig. 2. Arhitecture and functionalities of the prototype BPDA

The second module Execution Traces Generator (B) is dedicated to execution
traces generation. Thus, after having selected and loaded a BP protocol from
the database, the system user can either generate individual traces by choosing
activities to be performed or he can configure the number of instances to be gen-
erated randomly. These actions ensure populating the database with synthetic
data needed for experiments reasons.
The third module BP Structures Analyser (C) constitutes the system kernel.
It realizes the most contributions of the proposed approach, regarding the BP
description level. Thus, the features of pattern search, processing complete exe-
cution paths and handling sub-protocols are handled by this component.
After generating the database, a last module Execution Traces Explorer (D) can
be activated to query execution data by using path expressions (see §3.3). How-
ever, for users who are familiarized with the Cypher language, they can directly
formulate simple queries on execution data stored in the graph database.

4.2 Using Cypher for exploring BP Data

Cypher is a declarative language allowing to query and update a graph. The most
common defined functions are MATCH and WHERE. MATCH, mainly based on
relationships, is used to describe the search model. While, WHERE is used for
adding constraints to queries [24].
In what follows, we show different Cypher queries which allow querying data of
the BP model of Fig. 1 and its related execution traces of Table 1.

Example 6. Extracting complete execution paths of the protocol Order

50 A. Khebizi and H. Seridi-Bouchelaghem

MATCH p = (n:Etat type:’initial’)-[rs:TRANSITION*]→(m:Etat type:’final’)
WHERE (:Protocole nom: ”Order”) -[:CONTIENT]→(n)

RETURN extract(n IN rs — n.nom)

The previous query returns the following four complete execution paths:
[”CL”, ”UI”, ”SO”, ”CO”, ”RO”]
[”CL”, ”UI”, ”SO”, ”CO”,”LS”, ”SE”, ”SR”, ”UP”]
[”CL”, ”UI”, ”SO”, ”CO”,”LS”, ”GD”, ”OP”, ”AO”]
[”CL”, ”UI”, ”SO”, ”CO”,”LS”, ”SE”, ”SR”, ”GD”, ”OP”, ”AO”]

Now, we give some cypher queries for exploring data contained in Table 1.

Example 7. Various queries for exploring execution data
• R1 : The number of instances that are still running (Status=”A”).

MATCH (i:Instance { Status: ’A’ })
RETURN count(i)
- The answer: 4.

• R2 :: Which instances have started before 23/02/2020 ?
MATCH (i:Instance)
WHERE i.Start-date 6’23-02-2020’
RETURN i

-The query answer:
- {”ID”:110, ”Trace Name”:”T2(Order)”, ”Execution Trace”:”CL.UI.UI.SO.CO.RO”,

”Start-date”:”30/06/19”,”Start-time”: ”20:15:14”, ”T-stamp”:”56”, ”Length”:”6”,
”Status”:C}

- {”ID”:288, ”Trace Name”:”T4(Order)”, ”Execution Trace”:”CL.UI.SO.CO.LS.GD.OP.AO”,
”Start-date”:”16/02/18 ,”Start-time”: ”22:53:08”, ”T-stamp”:”3600”, ”Length”:”8”,
”Status”:C}

- {”ID”:115, ”Trace Name”:”T7(Order)”, ”Execution Trace”:”CL.SO.CO.LS.SE.SR.GD”,
”Start-date”:”23/02/20”, ”Start-time”:”16:17:18”, ”T-stamp”:”3456”, ”Length”:”7”,
”Status”:A}
• R3 :: Are there instances that have performed exactly 5 activities and which
are blocked (Status=”B”)?

MATCH (i:Instance)
WHERE i.Length : ’5’ and Status: ’B’
RETURN i

-Only one instance satisfies constraints of the query: - {”ID”:88, ”Trace
Name”:”T6(Order)”, ”Execution Trace”:”CL.UI.UI.UI.UI”, ”Start-date”:”10/10/20”,
”Start-time”:”01:15:22”, ”T-Stamp”:”78”, ”Length”:”5”, ”Status”:B}

5 Conclusion and Future Work

In this work an approach for analysing BPs structures and for exploring exe-
cution data is formalized. Business processes are expressed as FSM, a set of
specifications patterns is proposed to analyse abstract models and a selection

Exploring Specifications and Monitoring Execution Data... 51

rule model is formalized to query the generated data.
Our contribution relates to two complementary aspects; (i) formal specification
of protocols’ structures allowing to convert the managers needs to the problem of
handling automata and their relationships and (ii) Exploring business execution
data by taking advantages of semi-structured and graph databases.
In future works, we plan to tackle the storage problem of data involved during
BPs life-cycle, by comparing relational and graph databases and by deploying
queries optimization techniques. As a potential direction, we project to experi-
ment the proposed approach on big data originating from social networks.

References

1. C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring business processes with
queries. In VLDB, pages 603–614, 2007.

2. W. v. Aalst. Using process mining to bridge the gap between bi and bpm. Com-
puter, 44:77–80, 12 2011.

3. Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer Publishing Company, Inc., 1st edition, 2011.

4. R. Ahmed, M. Faizan, and A. I. Burney. Process mining in data science: A lit-
erature review. In 2019 13th International Conference on Mathematics, Actuarial
Science, Computer Science and Statistics (MACS), pages 1–9, 2019.

5. Dusanka Dakic, Srdjan Sladojevic, Teodora Lolic, and D. Stefanovic. Process min-
ing possibilities and challenges: A case study. 2019 IEEE 17th International Sym-
posium on Intelligent Systems and Informatics (SISY), pages 000161–000166, 2019.

6. Jorge Saldivar, Carla Vairetti, Carlos Rodŕıguez, Florian Daniel, Fabio Casati,
and Rosa Alarcón. Analysis and improvement of business process models using
spreadsheets. Information Systems, 57:1–19, 2016.

7. Nathan D. Ryan and Alexander L. Wolf. Using event-based translation to support
dynamic protocol evolution. ICSE ’04, pages 408–417, 2004.

8. A. Azough, E Coquery, and M-S Hacid. Supporting web service protocol changes
by propagation. WI-IAT ’09, pages 438–441, 2009.

9. B. Benatallah, F. Casati, and F. Toumani. Web service conversation modeling: A
cornerstone for e-business automation. IEEE Internet Comp., 8(1):46–54, 2004.

10. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing
web service protocols. D.K.Eng., 58(3):327–357, 2006.

11. D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Automatic service compo-
sition via simulation. IJFCS, 19(2):429–451, 2008.

12. Antonio Brogi and Sara Corfini. Behaviour-aware discovery of web service compo-
sitions. Int. J. Web Service Res., 4(3):1–25, 2007.

13. C.A. Middelburg and M.A. Reniers. Introduction to process theory. Technical
report, Technische Universiteit Eindhoven, 2004.

14. K. Klai, S. Tata, and Jörg Desel. Symbolic abstraction and deadlock-freeness
verification of inter-enterprise processes. In BPM, 2009.

15. F. Cassez and Olivier-H. Roux. Structural translation from time petri nets to
timed automata. Electronic Notes in Theoretical Computer Science. AVoCS 2004.

16. Xi Wang, Huaikou Miao, and Liang Guo. Towards automatic transformation from
uml model to fsm model for web applications. JSEA, 1(1):68–75, 2008.

17. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic composition of e-services that export their behavior. In ICSOC, Dec. 2003.

52 A. Khebizi and H. Seridi-Bouchelaghem

18. S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul. Supporting
the dynamic evolution of web service protocols in service-oriented architectures.
ACM Trans. Web, 2(2):1–46, May 2008.

19. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the web: from relations
to semistructured data and XML. Morgan Kaufmann, San Francisco, 2000.

20. Justin Jay Miller. Graph database applications and concepts with neo4j. 2013.
21. Mahesh Lal. Neo4j Graph Data Modeling. Packt Publishing, 2015.
22. A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, Stefan P., M. Shus-

ter, P. Selmer, and H. Voigt. Updating graph databases with cypher. Proc. VLDB
Endow., 12(12):2242–2254, August 2019.

23. Nadime Francis, Andrés Taylor, Alastair Green, Paolo Guagliardo, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, and Petra
Selmer. Cypher: An evolving query language for property graphs. pages 1433–1445,
05 2018.

24. N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, M. Schuster, P. Selmer, and A. Taylor. Formal semantics of
the language cypher. CoRR, abs/1802.09984, 2018.

