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 Lately, unmanned aerial vehicle (UAV) become a prominent technology in remote sensing 
studies with the advantage of high-resolution, low-cost, rapidly and periodically achievable 
three-dimensional (3D) data. UAV enables data capturing in different flight altitudes, imaging 
geometries, and viewing angles which make detailed monitoring and modelling of target 
objects possible. Against earlier times, UAVs have been improved by integrating real-time 
kinematic (RTK) positioning and multispectral (MS) imaging equipment. In this study, 
positioning accuracy and land cover classification potential of RTK equipped MS UAVs were 
evaluated by point-based geolocation accuracy analysis and pixel-based ensemble learning 
algorithms. In positioning accuracy evaluation, ground control points (GCPs), pre-defined by 
terrestrial global navigation satellite system (GNSS) measurements, were used as the 
reference data while Random Forest (RF) and Extreme Gradient Boosting (XGBoost) 
algorithms were applied for land cover classification. In addition, the spectral signatures of 
some major land classes, achieved by UAV MS bands, were compared with reference 
terrestrial spectro-radiometer measurements. The results demonstrated that the positioning 
accuracy of MS RTK UAV is ±1.1 cm in X, ±2.7 cm in Y, and ±5.7 cm in Z as root mean square 
error (RMSE). In RF and XGBoost pixel-based land cover classification, 13 independent land 
cover classes were detected with overall accuracies and kappa statistics of 93.14% and 
93.37%, 0.92 and 0.93, respectively. 
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1. Introduction  
 

In the last decades, the unmanned aerial vehicle 
(UAV) has become one of the most demanded remote 
sensing techniques due to high resolution and accurate 
data derived from different flight altitudes. Due to the 
increasing demand for high-tech equipment in various 
applications, the technological level of UAVs is 
developing day by day. For accurate orientation of the 
collected aerial photos without using ground control 
points (GCPs), UAVs have been equipped with real-time 
kinematic (RTK) global navigation satellite system 
(GNSS) receivers [1,2]. For measuring the detailed 
physical and chemical properties of biological materials 

such as agricultural products and water bodies, the 
multispectral and hyperspectral cameras have been 
integrated [3]. Besides the advantages of new 
technologies, some limitations still exist for the UAV 
technology [4,5]. No doubt, the most significant 
limitation is the area coverage due to low altitude legal 
flights. Because of that reason, a great number of flights 
are required for large study areas and thousands of aerial 
photos complicate the photogrammetric processing. In 
addition, the contribution levels of new technologies to 
the qualities of former UAV data and products are not 
clear in the literature.  

Earth’s surface and objects reflect sunlight 
according to their spectral reflectance characteristics. 
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Different technologies and methods are utilized to 
distinguish objects from each other by capturing and 
analyzing spectral reflectance. Remote sensing is a 
prominent technology for visualizing, processing, and 
interpreting spectral reflectance values. Using an image 
classification method on remotely sensed data, land use 
and land cover (LULC) of various areas can be 
determined. Also, thematic maps can be generated for 
various purposes as detection of forest areas [6], forest 
biomass mapping [7], farmland extraction [8], soil type 
detection [9], disaster monitoring and management [10-
11], detection of land surface temperature [12], and 
monitoring of LULC change [13]. 

Image classification is one of the highly familiar 
topics in remote sensing science with decades of work on 
scientific literature. Moreover, establishing advanced 
classification techniques and improving classification 
accuracy is a hot topic [14-17]. Still, image classification 
is considered a challenging task because the 
classification performance can be affected by parameters 
such as complexity of the utilized dataset, applied image-
processing method, and preferred classification 
technique [18]. One of the most powerful image 
classification approaches is machine learning which 
enables utilization of non-parametric and abnormal 
complex datasets. Also, machine learning offers higher 
classification accuracy against conventional algorithms 
in most cases [19-21]. As a concept of machine learning 
ensemble learning method incorporates various 
classifiers to generate a combined classification 
algorithm for increasing the robustness of the 
classification [22]. Furthermore, ensemble learning 
algorithms such as Adaptive Boosting (AdaBoost), 
Random Forest (RF), and Extreme Gradient Boosting 
(XGBoost) are commonly utilized in LULC classification 
studies because of their high reliability and accuracy 
[23,24]. In addition, apart from frequently utilized RGB 
imagery, multispectral, thermal and even hyperspectral 
sensors are used in the literature for LULC studies and 
research [25-29]. 

In this study, it is aimed to investigate the potential 
of RTK GNSS positioning and multispectral imaging of the 
UAVs. Accordingly, the data derived from DJI Phantom IV 
Multispectral RTK, one of the most preferred UAVs for 
particularly agricultural purposes, was comprehensively 
investigated. The geolocation accuracy of the UAV was 
analyzed by comparing the results of image orientation 
with and without GCPs. The performances of the UAV’s 
spectral bands were analyzed by comparing spectral 
reflectance values derived from reference spectro-
radiometer measurements on the ground [30]. 
Moreover, the land cover classification potential of the 
multispectral UAV was analyzed with RF and XGBoost 
pixel-based classification algorithms using 13 
independent land cover classes [31-33]. 

 

2. Study Area and Materials 
 
2.1. Study Area 
 

The study area is a part of Gebze Technical University 
(GTU) Campus located in Kocaeli Metropolitan, Turkey. 
The size of the area is 500 m×225 m covering several 

land classes such as cultivated areas, different species of 
trees, meadow, soil and buildings. The topography is 
mostly flat and orthometric heights are between 4 m and 
20 m. Figure 1 shows the location and orthomosaic of the 
study area and an instance aerial photo in NIR (near-
infrared) imaging band. Figure coordinates are 
geographical, and the datum is WGS84 (World Geodetic 
System 1984). 
 

 
Figure 1. Location of the Kocaeli Metropolitan in Turkey 
(a), location of the GTU Campus in Kocaeli (b), an 
instance of NIR band aerial photo (c) and UAV 
orthomosaic of the study area (d) 
 
2.2. Materials 
 

In the study, UAV flights were completed with DJI 
Phantom IV Multispectral RTK UAV with six imaging 
bands as RGB, red, green, blue, red edge (RE) and NIR. For 
the spectral reflectance calibration, MAPIR Camera 
Reflectance Calibration Ground Target Package V2 which 
has four different targets in different colors as black, dark 
gray, light gray and white was utilized. Reference GCP 
surveys and spectral measurements in the field were 
completed by using CHC i80 GNSS receiver and ASD 
Fieldspec3 spectro-radiometer, respectively. Figure 2 
illustrates the utilized UAV and reflectance calibration 
target. The properties of the utilized UAV are presented 
in Table 1. The diffuse reflectance values used in spectral 
reflectance calibration of aerial photos and reflectance 
curves are displayed in Table 2 and Figure 3. The total of 
used materials is available at GTU Geomatics Engineering 
Department's Advanced Remote Sensing Technology 
Laboratory (ARTLAB). 
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Table 1. Properties of DJI Phantom IV Multispectral UAV 

Property Value 

Camera 
Six 1/2.9” CMOS sensors including one RGB and five monochromes with effective pixel resolution of 
2.08 megapixel 

Sensor wavelengths 
Blue (B): 450 nm ± 16 nm; Green (G): 560 nm ± 16 nm; Red (R): 650 nm ± 16 nm;  
Red edge (RE): 730 nm ± 16 nm; Near-infrared (NIR): 840 nm ± 26 nm 

Gimbal 3-axis as pitch, roll, yaw 

Flight duration Approx. 27 minutes 

Weight 1487 g 

Speed 14 m/s in P-mod; 16 m/s in A-mod 

Wind speed resistance Max. 10 m/s 

Operating temperature 0° to 40°C 

Outdoor positioning module GPS, GLONASS, Galileo, Beidou 

Hover accuracy range 
RTK enabled: ± 0.1 m V, ± 0.1 m H; 
RTK disabled: ± 0.1 m V, ± 0.3 m H (Vision); ± 0.5 m V, ± 1.5 m H (GPS) 

Positioning accuracy RTK 1 cm + 1 ppm Horizontal; 1.5 cm + 1 ppm Vertical 

 

 
Figure 2. Utilized DJI Phantom IV Multispectral UAV (a) 
and MAPIR Camera Reflectance Calibration Ground 
Target Package V2 (b) 
 

Table 2. Reference diffuse reflectance values for MAPIR 
camera calibration ground target  

 Camera Calibration Ground Targets 

Bands Black Dark Gray Light Gray White 

Blue 0.020136 0.182556 0.247980 0.791917 

Green 0.019630 0.193762 0.263037 0.866432 

Red 0.019371 0.198543 0.262901 0.871958 

RE 0.019563 0.212881 0.262741 0.869990 

NIR 0.021459 0.228368 0.275486 0.862524 

 

3. Methodology 
 

The used methodology has five different stages as 
UAV data acquisition and reference terrestrial surveys, 
image alignment and dense cloud generation, reflectance 
calibration and orthomosaic generation, pixel-based land 
cover classification, and accuracy validations. UAV data 
processing steps were accomplished utilizing Agisoft 
Metashape Professional, a structure from motion (SfM) 
based image matching software. Land cover 
classification using RF and XGBoost pixel-based 
classification algorithms were achieved in the RStudio 
which operates based on the R programming language. 
In Figure 4, conducted methods are shown with utilized 
software packages. 

 

 
Figure 3. Reflectance curve graph of the MAPIR reflectance calibration targets 
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Figure 4. Methods of the study including UAV data 
acquisition and terrestrial surveys (a), UAV data 
processing in Agisoft Metashape (b) and land cover 
classification using RStudio (c) 
 

3.1. UAV data acquisition and terrestrial surveys 
 

UAV data acquisition was carried out by preparing 
UAV flight plans using DJI GS (Ground Station) PRO UAV 
flight planning software. In the utilized software two UAV 
flights were designed considering coarse strip angles in 
polygonal mode to cover whole study area with the 
minimum number of photos (Figure 5). 

 
 

 
Figure 5. UAV flight plans showing the first (left) and 
second (right) polygonal flights 

 
For more realistic surface determination of terrain 

and non-terrain objects, ground sampling distance 
(GSD), definition of spatial resolution, is one of the most 
significant parameters. In UAV flights, GSD is directly 
proportional with flight altitude and minimum GSD can 
be obtained with minimum flight altitude according to 
the following equation (1). Here, an important note: 
lower altitude means more aerial photos to stereo 
coverage of the study area. That’s why, number of 
required photos should be considered when adjusting 
the flight altitude and GSD. 
 

𝑓

ℎ
=  

𝑝

𝐺𝑆𝐷
 (1) 

 
Where, f is the focal length of used digital camera, p is 

the pixel size of camera sensor and h is the flight altitude. 
During the polygonal UAV flights, the flying altitude was 
selected as 70 m considering the highest objects in flight 
plans, number of aerial photos for fully stereo coverage 
and high spatial resolution (3.66 cm GSD). In addition, 
the minimum overlap ratios for front and side were 
preferred as 80% and %60, respectively to increase the 
quality of stereo matching, depth extraction and 
generated digital surface model (DSM) used for true 
orthomosaic production. Image capture time interval and 
UAV flight speed were set to two seconds and 5 m/s, 
respectively. With UAV flights, 530 aerial photos were 
obtained. Before the flights, IMU (Inertial Measurement 

Unit), compass, gimbal and vision sensors of the UAV 
were calibrated and the photos of the MAPIR reflectance 
panel were taken. Moreover, in-situ spectro-radiometer 
surveys were conducted simultaneously with UAV flights 
to measure reflectance values in the same lighting 
conditions with captured aerial photos. Reflectance 
values obtained from the in-situ spectro-radiometer 
measurements for blue, green, red, RE and NIR bands 
were used to validate pixel-based land cover 
classification results. 

In normal conditions, RTK GNSS equipped DJI 
Phantom IV Multispectral does not require GCPs for 
image orientation. However, for point-based geolocation 
accuracy analysis, nine independent GCPs were 
established in the area and measured by utilizing 
Continuously Operating Reference Stations (CORS) RTK 
GNSS method. Figure 6 shows the distribution of 
established GCPs over the study area, an instance 
terrestrial GCP measurement and a photo captured by 
the UAV on the ground for reflectance calibration. 

When capturing a proper photo by UAV camera for 
reflectance calibration, some requirements should be 
considered. First, the calibration panel should be placed 
in a flat terrain, fully and centrally displayed on the UAV 
image and not be obstructed by any shadow or material. 
Second, the image of the calibration panel should be 
captured from a maximum height depending on the 
manufacturer recommendation. For MAPIR reflectance 
calibration panel, utilized in this study, the maximum 
height for image capturing was declared as 15 feet (~4.5 
m) [34]. For better determination of the MAPIR 
calibration panel with higher spatial resolution and more 
accurate masking process, we recommend ~1.5 m 
distance between UAV camera and the calibration panel 
for best calibration performance. 

 
 

 
Figure 6. GCP distribution over the study area (a), an 
instance terrestrial GCP measurement (b) and an 
instance photo taken for reflectance calibration (c) 
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3.2. Image alignment and dense cloud generation 
 

Image alignment procedure was done in Agisoft 
Metashape, a SfM based photogrammetric image 
matching software. The SfM algorithm operates based on 
the stereoscopic viewing principle to extract and build 
3D geometry utilizing a set of overlapping photos with an 
offset (base) value [36-41]. In other words, using the SfM 
technique, photos of an object from multiple viewpoints 
are taken to realize camera positions and orientations for 
establishing a spatial connection between common 
points. Image alignment was performed using aerial 
photos, yielding a sparse point cloud containing approx. 
3 million points. Because of the precise coordinates of the 
UAV data, the geometric correction was carried out 
without the GCPs, resulting in a shorter and more 
efficient alignment process. After the alignment process, 
a dense point cloud of approx. 38 million points was 
obtained by extracting depth maps from aerial photos. To 
eliminate the noise effects especially in the areas with 
dense trees, dense point clouds were filtered by fencing 
and classifying noisy points (Figure 7). Generated sparse 
and dense point clouds are represented in Figure 8. 
 

3.3. Reflectance calibration and orthomosaic 
production 
 

Obtaining the appropriate spectral data from the 
imagery is an essential task in land cover classification. 
Therefore, it is of utmost importance to capture the 
reflectance values of objects to make accurate analyses. 
It is required to calibrate the imagery, obtained using 
different imaging bands, using a sensor calibration 
method such as a ground reflectance target. Ground 
reflectance targets are measured in an ideally 
illuminated environment to acquire reference spectral 
values. Utilizing reference spectral reflectance data, 
aerial photos can be calibrated. Therefore, using 
calibration photos with reference diffuse reflectance 
values and sun sensor data from the UAV, the camera 
reflectance calibration process was realized. During the 
calibration process, all of the calibration targets were 
masked individually to isolate the target from the rest for 
an accurate operation (Figure 9) [42]. 

Using the dense point cloud data, a 7 cm gridded DSM 
was generated for utilizing in true-orthomosaic 
production. Finally, a 16-bit orthomosaic with a pixel 
resolution of 3.66 cm (same as the GSD) was produced 
using both calibrated aerial photos and the DSM. 
 

3.4. Land cover classification 
 

Before the land cover classification, 13 land cover 
classes were determined as concrete, coniferous, 
cultivated, deciduous, meadow, non-cultivated, olive 
trees, pasture, shadow, soil, tile-roof, water, white roof in 
the study area. Utilizing the RStudio, an open-source 
software for data science, pixel-based ensemble learning 
classification approaches RF and XGBoost were used to 
classify the calibrated UAV orthomosaic. To test the 
performance of multispectral UAV data in land cover 
classification, RE and NIR bands were utilized to 
calculate some vegetation indices (VIs) as Normalized 
Difference Vegetation Index (NDVI) and the Normalized 

Difference Red Edge Index (NDRE). Moreover, NDVI and 
NDRE data were appended to calibrated orthomosaic 
with 5-bands (red, green, blue, RE, NIR) as the 6th and 7th 
bands, respectively, by layer stacking process. A 
sufficient number of test and training data were collected 
for each land cover class during the sample gathering 
process. Table 3 shows the total training and test pixel 
counts. 

 
Figure 7. Generated sparse (a) and dense point clouds 
(b) 
 

 
Figure 8. Noisy (upper) and filtered (lower) dense point 
clouds 
 

Table 3. Total training and test pixel counts in each class 
Land Cover Class Total Training Pixel Total Test Pixel 
Concrete 5547 15139 
Coniferous 5102 15524 
Cultivated 5128 15417 
Deciduous 5176 15325 
Meadow 5270 15173 
Non-cultivated 5230 15280 
Olive trees 5088 15229 
Pasture 5390 15649 
Shadow 5034 15088 
Soil 5098 15169 
Tile-roof 5135 15003 
Water 5298 15724 
White-roof 5259 15304 

 

4. Results and Discussion 
 

Figure 10 shows the spectral signatures of 
independent land cover classes detected by in-situ 
spectro-radiometer measurements. 
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Figure 9. Masked reflectance targets: (a) white, (b) light 
gray, (c) dark gray and (d) black  

Table 4 presents the GCP-based positioning accuracy 
results of multispectral RTK UAV. In accuracy validation, 
the reference GCPs, measured by terrestrial GNSS 
measurements, were found on the generated UAV 
orthomosaic and the X, Y, Z values were compared.  The 
results demonstrated that RTK UAV positioning accuracy 
is ±1.1 cm in X, ±2.7 cm in Y, and ±5.7 cm in Z as RMSE. 
With the highest RMSE value (± 5.7 cm) in Z-direction, it 
is observed that the performance of UAV RTK GNSS is 
lower in vertical positioning in comparison with 
horizontal. 

Figure 11 displays the generated orthomosaic before 
and after spectral reflectance calibration process. The 
great importance of spectral calibration is clear in the 
Figure. Without spectral reflectance calibration the land 
cover classification results will be misleading. 
 
 
 
 

 

 
Figure 10. Spectral signatures of land cover classes determined by in-situ spectro-radiometer measurements 
 
Table 4. 3D geolocation accuracy point-based evaluation results obtained by comparing terrestrial GNSS measurements 
with GCP coordinates acquired from orthomosaic

GCP 
Terrestrial Measurements UAV RTK GNSS Errors (±) 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) ΔX (m) ΔY (m) ΔZ (m) 

1 445408.933 4520098.918 51.970 445408.944 4520098.875 51.903 0.011 0.043 0.067 

2 445322.326 4519934.340 46.441 445322.331 4519934.339 46.447 0.005 0.001 0.006 

3 445419.067 4519917.866 45.603 445419.074 4519917.866 45.646 0.007 0.000 0.043 

4 445044.946 4519962.328 53.575 445044.934 4519962.314 53.550 0.012 0.014 0.025 

5 445212.315 4520103.774 52.226 445212.326 4520103.725 52.179 0.011 0.049 0.047 

6 445259.375 4520000.639 48.369 445259.385 4520000.629 48.439 0.010 0.010 0.070 

7 445406.205 4519969.530 47.736 445406.228 4519969.528 47.800 0.023 0.002 0.064 

8 445094.118 4520060.561 54.458 445094.124 4520060.516 54.356 0.006 0.045 0.102 

9 445222.708 4519959.093 47.992 445222.710 4519959.089 48.013 0.002 0.004 0.021 
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Figure 11. Non-calibrated orthomosaic (a) and calibrated orthomosaic (b) of the study area 

 

 
Figure 12. RF (upper) and XGBoost (lower) pixel-based classification results, orthomosaic cropped for the convenience 
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Classification maps of the RF and XGboost ensemble 
learning pixel-based classifiers are given in Figure 12. 
Classification results were checked by overall accuracy, 
kappa and F-score statistics for the purpose of evaluating 
the land cover classification performance of the utilized 
MS UAV (Table 5). Also, a confusion matrix was prepared 
to interpret the classification results in detail providing 
further insight about the land cover classes (Table 6). 

The results demonstrated that both classifiers have 
high performance and have very similar results for each 
land cover class. While the XGBoost algorithm slightly 
outperformed the RF by overall accuracy, the difference 
is relatively small. Both classifiers have overall 
accuracies of more than 93% and kappa statics of greater 
than 0.9. Also, for RF and XGBoost classification methods 
minimum and maximum F-scores are relatively close, 
82.89% and 84.19%, 99.97% and 99.92%, respectively. 
The lowest accuracies exist in meadow, cultivated and 
deciduous land cover classes. The complex and dynamic 
structure of the densely forested or vegetated areas can 
have an influence on classification results. In addition, 
due to being very sensitive to changes in the 
environment as the season of the year, wind and lighting 
conditions, regions with trees or different vegetation 
covers can have differentiating spectral signatures.  

Table 5. RF and XGBoost pixel-based classification 
results showing F-scores of each land cover class, overall 
accuracy, and kappa statistic 

Measurement Land Cover Class RF XGBoost 

F-score 

Concrete 98.21 98.28 

Coniferous 85.03 85.37 

Cultivated 88.72 88.90 

Deciduous 89.03 88.89 

Meadow 82.89 84.19 

Non-cultivated 93.99 94.63 

Olive trees 91.66 92.52 

Pasture 94.36 94.65 

Shadow 97.58 97.48 

Soil 98.52 98.27 

Tile-roof 97.12 96.86 

Water 99.97 99.92 

White-roof 93.66 93.96 

Overall accuracy Whole area 93.14 93.37 

Kappa Whole area   0.92   0.93 

 
 

 
Table 6. Confusion matrix results of the RF and XGBoost classification algorithms

RF Classification 
 A B C D E F G H I J K L M UA 
A 14799 0 0 0 0 5 0 0 0 9 0 0 151 98.95 
B 0 13723 232 710 572 0 667 4 703 0 14 0 0 82.00 
C 0 1132 14444 716 320 1 423 75 0 0 0 0 3 84.50 
D 0 109 29 13366 1306 0 1 0 0 0 0 0 0 89.64 
E 0 405 91 396 12049 0 481 28 0 0 0 0 0 89.02 
F 0 0 8 0 0 14209 0 120 0 0 120 0 295 95.80 
G 0 118 122 73 320 0 13647 1 0 0 0 0 2 94.97 
H 1 2 400 0 569 229 0 15277 0 95 41 0 11 91.70 
I 0 37 0 2 0 0 0 0 14383 0 0 0 0 99.63 
J 11 0 0 0 28 4 0 52 0 15006 257 0 0 98.08 
K 0 0 54 0 9 28 0 99 2 71 14522 0 199 97.18 
L 0 0 0 0 0 0 0 0 0 0 0 15698 0 100.00 
M 340 0 2 0 0 804 0 0 0 0 49 26 14643 91.53 
PA 97.49 88.29 93.39 88.44 77.55 92.24 88.58 97.18 95.61 98.97 97.05 99.94 95.88  
XGBoost Classification 
 A B C D E F G H I J K L M UA 
A 14771 0 0 0 0 3 0 0 0 3 0 0 151 98.90 
B 0 13708 256 695 684 0 712 4 658 0 1 0 0 82.54 
C 0 1118 14365 617 363 1 462 73 0 0 0 0 1 84.40 
D 0 146 38 13498 1374 0 2 0 0 0 0 0 0 90.24 
E 0 382 109 356 11767 0 561 35 0 8 0 0 0 89.58 
F 2 0 39 0 0 14095 0 141 0 0 131 0 305 96.32 
G 0 128 159 86 340 0 13481 1 0 0 0 0 0 95.55 
H 0 2 381 0 624 235 1 15215 0 69 58 0 8 91.89 
I 0 42 0 11 0 0 0 0 14426 0 0 0 0 99.73 
J 15 0 0 0 21 6 0 54 0 15025 198 0 0 97.71 
K 0 0 28 0 0 16 0 133 4 76 14561 0 166 96.92 
L 0 0 0 0 0 0 0 0 0 0 0 15715 0 100.00 
M 363 0 7 0 0 924 0 0 0 0 54 9 14673 92.30 
PA 97.68 88.39 93.90 87.57 79.41 92.99 89.67 97.58 95.33 98.85 96.79 99.83 95.68  

Note: Class keys are A: Concrete; B: Coniferous; C: Cultivated; D: Deciduous; E: Meadow; F: Non-cultivated; G: Olive trees; 
H: Pasture; I: Shadow; J: Soil; K: Tile-roof; L: Water; M: White-roof. UA: User’s accuracy; PA: Producer’s accuracy. 
 
5. Conclusion  
 

In the study, the 3D positioning accuracy and land 
cover classification performance of one of the most 
common MS RTK equipped UAVs DJI Phantom IV MS was 
investigated. The results demonstrated that the 
positioning accuracy of the device is ±1.1 cm in X, ±2.7 cm 

in Y and ±5.7 cm in height as RMSE. The positioning 
accuracy is higher in planimetric directions in 
comparison with vertical direction. In land cover 
classification side, the overall accuracies are more than 
93% both for RF and XGBoost pixel-based ensemble 
learning classifiers. The kappa statistics are 0.92 and 0.93 
and F-scores of independent land cover classes fluctuate 
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between 82.89% - 99.97% and 84.19% - 99.92% for RF 
and XGBoost, respectively. While looking at F-scores of 
each land cover class, the lowest accuracies were 
obtained in forest and vegetated areas. 
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