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Abstract 

Buckling of axially loaded cantilever nanobeams with intermediate support have been studied in the current study. 
Higher order size dependent strain gradient theory has been utilized to capture the scale effect in nano dimension. 
Minimum total potential energy formulation has been used in modeling of nanobeam. Approximate Ritz method 
has been applied to the energy formulation for obtaining critical buckling loads. Position of the intermediate 
support has been varied and its effect on the critical buckling load has been investigated in the analysis. Mode 
shapes in critical buckling loads have been shown for various intermediate support positions. Present results could 
be useful in design of carbon nanotube resonators. 
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1. Introduction 

Carbon nanotubes (CNTs) have had an increasing popularity over the last three decades in 
academia and industry. Superior properties like thermal, electromagnetic, strength, etc. have 
enriched the possible usage areas of CNTs [1–3].  

Statics and dynamics of nanoscale structures can be achieved with higher order size dependent 
continuum mechanics theories: strain gradient [4], stress gradient [5,6], couple stress[7], 
doublet mechanics[8] and peridynamics [9]. It has been presented in earlier works that classical 
elasticity theory is inadequate in the modelling of CNTs due to its size independent 
characteristics. 

Basis of the higher order size dependent theories went back to a century ago. Cauchy [10], 
Voigt [11] and Cosserat brothers [12] had constituted the higher gradient elasticity theory. 
Kunin [13] , Toupin [14], Mindlin [15], Kröner [16], Green and Rivlin [17] improved the higher 
order elasticity theories with including microstructural effects. 

Eringen [18] proposed the nonlocal elasticity theory which is a stress gradient model. After 
Eringen, Aifantis and coworkers [19–22], proposed a higher order strain gradient elasticity 
theory for finite and infinitesimal deformations. Theories of Eringen and Aifantis are 
comparatively simple and includes less number of higher order gradient terms than previous 
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ones. Higher order strain gradient models have been applied to the buckling problem of nano 
structures in several papers [23–32] . Over the last 20 years, higher order stress and strain driven 
continuum mechanics theories have been used in many studies [33–46]. 

In the present study, strain gradient nanobeam model has been developed for the buckling of 
axially loaded cantilever nanobeam with intermediate support. Higher order governing equation 
of motion for nanobeam have been obtained with minimum total potential energy formulation. 
Approximate Ritz Method has been used in the solution of the governing equation of motion. 
Effect of the position of intermediate support to the critical buckling load of nanobeam. Mode 
shapes at critical buckling loads for the first three modes have been depicted in various position 
of intermediate support. Differently from the previous studies, position of the intermediate 
support has been investigated in buckling case using strain gradient theory. 

2. Analysis 

A nanobeam of hollow tube with length L is considered (Fig. 1). x and z axes define the axial 
length direction and transverse direction of nanobeam, respectively. P is the external axial load 
and position of the intermediate support is defined as ηL.  

 

Fig. 1. Axially Loaded Nanobeam with Intermediate Support 

2.1. Strain Gradient Theory 

Refined form of the strain gradient elasticity theory can be interpreted for stress-strain relation 
as below [19–22]: 

 𝜎"# = 𝜆𝜀''𝛿"# + 2𝜇𝜀"#			,			𝜀"# = 𝜀"# − 𝑙∇1𝜀"# (1) 

where σ and ε are the stress and strain tensors for elastic deformation respectively, ∇ is the 
Laplacian, λ and µ are the standard Lame constants and l is the strain gradient parameter. 

If the constituve equation is reformulated for one dimensional structures, the stress strain 
relation for the nanobeam can be obtained: 

 𝜎22 = 1 − 𝑙 4
5

425
𝐸𝜀22  (2) 

Total potential energies for the nanobeam can be defined as below: 

 𝑇 = 8
1

𝑃 4:
4;

1<
= 𝑑𝑥 (3) 
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where I is moment of inertia for the nanobeam, T defines the work done by external axial load 
and U defines the potential energy of nanobeam. It should be noted that there is no kinetic 
energy in the present static buckling problem. 

2.2. Ritz method 

Analytical solution of the higher order governing equation of motions becomes complicated 
and time consuming with increasing number of boundary conditions and integration constants. 
Ritz method is a useful approximate variational method can be used in the solution of the 
mentioned problem [47–49]. Also discrete singular convolution method [50–53] and finite 
element modelling [54] can be used as an approximate solution.  

Displacement function can be defined as in the below form for the Ritz method [55]: 

 𝑤 𝑥 = 𝐴#𝜓#(𝑥)
H
#I#J  (5) 

where 𝑥 is the dimensionless nanobeam length 𝑥 = 2
<

, 𝐴#’s are the unknown coefficients and 
𝜓#(𝑥) is a function which satisfies geometric boundary conditions of the beam. Convergence 
of this function is satisfied if this function is mathematically complete set. To determine the 
critical buckling of nanobeam, next functional is defined: 

 𝐹 = 𝑇LM2 − 𝑈LM2  (6) 

This functional should be minimized with respect to unknown coefficients given in Eq. (5): 

 4N
4OP

= 0			,			𝚥 = 𝚥=, … , 𝐽	 (7) 
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where Pcr is the dimensionless critical buckling load of nanobeam and defined as below: 

 𝑃UV =
X<5

YZ
  (9) 

Eq. (8) gives a total of J×J simultaneous, linear, homogeneous equations in an equal number 
of unknowns 𝐴#. Those equations can be described as an eigen-value problem for critical 
buckling load. The mode shapes corresponding to any Pcr is found by substituting that value 
into Eq. (7) and solving for the eigenvector components 𝐴#/𝐴8. Inserting these components into 
Eq. (7) gives mode shape of nanobeam. 

𝜓#(𝑥) polynomial can be assumed as below in general form.  

 𝜓# = 𝑥 − 0 \] 𝑥 − 𝜂 \5 𝑥 − 1 \B 𝑥#_8  (10) 
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where b1, b2 and b3 parameters define the boundary conditions and should be selected as 0, 1, 2 
for the free, simply supported and clamped boundary conditions, respectively. For the present 
clamped-simply supported-free nanobeam case, Eq. (10) turns into: 

 𝜓# = 𝑥 1 𝑥 − 𝜂 𝑥#_8  (11) 

3. Numerical Results 

Buckling analysis of the axially loaded nanobeam has been carried out for position of 
intermediate support and strain gradient parameter in this section. Analysis has been made 
independent from the material properties, except the nanobeam length which is assumed 5nm. 
Interested readers can look to previous paper [56] about selection of the length scale parameter. 

Convergence of the Ritz method is seen in Table 1 for the first three critical buckling loads on 
local(l=0) clamped-free and clamped-simply supported beams. Ritz method converges to 
literature works when J is assumed as 7. 

Table 1. Validation of the Ritz Solution 

Mode 
Number 

Clamped-Free Clamped-Simply 
Supported	

𝑃𝑐𝑟 =
𝜋1

4  Ritz Method 𝑃𝑐𝑟 =
𝜋1

0.71
 Ritz Method 

1 2.4674 2.4674 20.1907 20.1907 
2 22.2066 22.2066 59.6795 59.6803 
3 61.6850 61.7017 118.9000 119.0870 

In Table 2, strain gradient parameter effect on critical buckling load can be seen. Strain gradient 
theory exhibits stiffening effect on structure. Growing rigidity increases the critical buckling 
load. Position of the intermediate support should be investigated with using both Table 2 and 
Figure 2. Critical buckling load increases when intermediate support approaches to the free end 
at the first mode. On the other hand, second and third mode critical buckling loads firstly 
increase, then goes constant little bit and decreases after that. Third mode buckling load also 
initially increases than start to decrease. Cause of this behavior should be related with the nodal 
points of mode shapes which can be seen in Figures 3 and 4. If the intermediate support is 
placed after a nodal point, nanobeam can buckle more easily.     

Table 2. Strain Gradient Theory Effect on Critical Buckling Loads 

Mode 
Number 

Local Theory (l=0) Strain Gradient Theory 
(l=0.1nm2) 

η=0.1 η =0.5 η =1 η =0.1 η =0.5 η =1 
1 2.8912 6.2714 20.1907 3.2152 6.6923 21.7518 
2 26.0184 52.2509 59.6803 31.0665 62.4753 72.4724 
3 72.2408 120.7560 119.0870 97.9405 171.5440 169.417 
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Fig. 2. Variation of Critical Buckling Load with Position of Intermediate Support 

 

In Figures 3 and 4, mode shapes of nanobeam at the first three critical buckling loads are seen. 
Increasing critical buckling load enhances the relative amplitude of displacements. Position of 
the intermediate support has an important effect on mode shapes. Also, strain gradient theory 
increases the amplitudes in mode shapes as a result of increasing critical buckling load.  

 

 

Fig. 3. Mode Shapes of Nanobeam at Various Intermediate Support Positions (l=0) 
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Fig. 4. Mode Shapes of Nanobeam at Various Intermediate Support Positions (l=0.1nm2) 

4. Conclusion 

Present study has been investigated the buckling of axially loaded clamped-simply supported-
free nanobeams with using strain gradient theory. Minimum total potential energy formulation 
has been applied to the nanobeam to obtain the static equilibrium equation. Ritz method has 
been used on the energy formulation for obtaining of critical buckling load. Effects of the 
position of the intermediate support and strain gradient parameter to the critical buckling load 
has been investigated. Mode shapes in critical buckling loads have been depicted for local and 
strain gradient models in various intermediate support positions. 

Strain gradient model increases the critical buckling load for nanobeam and normalized 
amplitudes with the stiffening effect. Position of the intermediate support increase or decrease 
the critical buckling load depending on the nodal points of adjacent mode numbers. 

Present results could be useful in design of carbon nanotube resonators. 
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