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Abstract 

Transient thermal response of a functionally graded material (FGM) layer is considered and individual effects of 
inhomogeneity parameters on temperature distribution are examined. Transient conduction equation has 
variable coefficients controlling conductivity, mass density and specific heat capacitance due to the material 
property variation along the thickness of the graded layer. In order to solve the time dependent conduction 
equation for the unknown interior temperatures, computational methods are employed based on finite difference 
and finite element methods. Governing partial differential equation is discretized in space and time grids and 
computer codes are developed to implement explicit and implicit schemes. Results of explicit and implicit 
schemes are compared with those found by finite element method. A very good agreement is achieved for the 
applied boundary and initial conditions. Parametric study reveals the individual influences of various 
inhomogeneity parameters of FGM upon time dependent temperature distribution of a functionally graded layer. 
The results of the direct comparison study indicate that inhomogeneity parameters for specific heat and mass 
density have greater influence on temperature distribution than that for thermal conductivity. 

Keywords: Functionally Graded Layer, Transient Heat Conduction, Computational Methods, Material 
Inhomogeneity 

1. Introduction 

Functionally graded materials (FGMs) are advanced composites involving two or more 
constituent phases. These materials are regarded as advanced engineering composites 
designed to meet material demands with the variance of via the spatial gradation in the 
structure. Originally considered as thermal barrier coatings for aerospace structures and fusion 
reactors, FGMs were also used as structural components in transportation, energy, electronics 
and biomedical engineering for the general use in high temperature environment in the last 
decade [1]. Generally, there are three different methods to obtain compositional gradient in 
the material which includes gas based, liquid phase and solid phase methods. Hence, 
physically or chemically tailored properties are obtained in the structure. Chemical Vapor 
Deposition (CVD), Physical Vapor Deposition (PVD), ion plating, plasma spraying and ion 
mixing are some examples of gas-based methods to fabricate FGMs. Methods such as 
centrifugal casting, slip casting, chemical solution deposition (CSD), electrochemical 
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gradation are some liquid phase examples to product FGMs. Furthermore, spark plasma 
sintering and powder metallurgy techniques can be given for examples of solid phase methods 
[2]. Bellur-Ramaswamy et al. [3] developed an algorithm to optimize continuous quench 
process parameters to produce functionally graded aluminum alloy extrudes. The gradual 
changes in volume fraction of the constituents and non-homogenous structure provides 
continuous graded macroscopic properties, such as hardness, wear resistance, corrosion 
resistivity, thermal conductivity, specific heat and mass density that are critical for thermal 
barrier coatings (TBCs) as well as thermal protection of the re-entry capsule, furnace liners, 
body armour, piezoelectric actuators and electromagnetic sensors [4-7]. Therefore, there have 
been many studies related with the thermal properties of these materials and their interaction 
with their structural behavior. Numerical methods are frequently applied to investigate such 
properties to understand their thermal behavior in the design stage. It was reported that 
repeated hot gas flow tests indicated that utilization of FGM thermal barrier coatings (TBCs) 
enhanced the resistance to cracking and delamination at high temperatures when compared to 
conventional coatings. For example, ZrO2/Ni functionally graded material (FGM) was used as 
TBC for the rocket engine and no delamination was observed after 550 seconds of 
combustion. ZrO2 stabilized with Y2O3 functionally graded material (FGM) was used as TBC 
for turbine blades and it was seen that this material performed excellent resistance to erosion 
and thermal shock [8-9]. Reddy and Chin [10] investigated the dynamic thermoelastic 
response of functionally graded cylinders and plates, thermomechanical coupling was 
included and a finite element model was developed. Yang [11] proposed a research based on 
finite element analysis to examine the temperature distribution, thermal stresses and failure 
criteria of a multi-dimensional functionally graded material (FGM) plate which was 
composed of ZrO2 and Ti-6Al-4V and Al2O3 under steady-state, heating and sudden cooling 
conditions. Analytical method was proposed to analyze the transient heat conduction analysis 
in a cylindrical shell made of functionally graded material where material properties vary with 
the power law through the thickness [12]. The response of a circular cylindrical thin shell 
made of the functionally graded material (FGM) based on the generalized theory of 
thermoelasticity was determined. Power law was adopted for the spatial variation of the 
thermoelastic properties [13]. Mechanical and thermal buckling of FGM conical shell panels 
made of Al/ZrO2, SUS304/Si3N4 and Al2O3/Ti-6Al-4V were investigated through an element-
free method by Zhao and Liew [14].  

Sharma et al. [15] constructed a finite element model to investigate the steady state 
temperature field in FGM layer which was composed of Zirconia and Aluminum. Through the 
thickness temperature distribution and thermal stresses in a plate which was made of 
functionally graded material were determined by Cho and Oden [16] using Crank-Nicolson-
Galerkin scheme. It was reported in the study conducted by Nemat-Alla [17] that two-
dimensional graded materials (2D-FGMs) had a great potential for minimization of 
temperatures, thermal and residual stresses under a severe thermal loading cycle that includes 
of heating followed by cooling operations. Sladdek et al. [18] proposed an advanced 
computational method based on local boundary integral equations for transient heat 
conduction analysis in continuously non-homogenous functionally graded materials (FGMs). 
Sadowski and Nakonieczny [19] focused on numerical study based on researching the FGM 
grading pattern impact on the temperature distribution in the cylindrical plates made of 
Al2O3/ZrO2 under the thermal shock condition. A meshfree, semi-discrete finite element 
method was proposed for the solution of the thermal shock problem for a thin, cylindrical 
plate made of FGM ceramics, and an explicit finite difference method was utilized for the 
temporal discretization [20]. A multiple reciprocity boundary face method was developed to 
investigate the transient heat conduction analysis of functionally graded materials [21]. Li and 
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Wen [22] put forward a finite block method based on the Lagrange series to solve transient 
heat conduction problem in a functionally graded media regarding one dimensional to three 
dimensional conduction cases. A thermal conduction analysis of layered functionally graded 
materials composed of Ni and Carbon nanotube was performed by Olatunji- Ojo et al. [23] 
using a finite element code and parametric studies were carried out using different cooling 
times, different mixing rules and different heat transfer coefficients. Jin [24] examined the 
transient heat conduction in a functionally graded plate subjected to gradual cooling and 
heating at its boundaries and asymptotic analysis and integration technique were used to 
obtain a closed form asymptotic solution of temperature field in FGM plate for short times. 
Determination of through the thickness temperature distribution in functionally graded 
materials (FGMs) has significant importance since it directly influences the failure 
mechanism.  

In the present study, we develop computer codes based on explicit and implicit schemes to 
determine the transient temperature distribution in a layer made of FGM and compare results 
with those obtained through the finite element analysis. Then, the separate influences of 
inhomogeneity parameters for the thermal conductivity, thermal capacitance and the mass 
density on temperature distribution in a graded layer are determined. The main novelty of the 
present study is the investigation of the influences of these inhomogeneity constants 
separately on the temperature distribution in FGM layers, individually and determination of 
the dominance of each parameter. Governing partial differential equation has variable 
coefficients of each material property and solution is performed keeping the generality. It is 
demonstrated that computational methods based on explicit and implicit schemes can 
efficiently be applied to such conduction problems including non-homogenous materials and 
they are able to provide fast and accurate solutions. In addition to that, although there have 
been many works in the literature which utilized some kind of different computational 
methods to examine the transient heat conduction problem in FGM layers, none of them 
compared the results of developed computational techniques with each other. Thus, another 
novelty of the paper is providing the comparison of the temperature results for an FGM layer 
obtained by explicit, implicit and FEA methods. It is believed that results of this study will be 
helpful for material designers to understand the transient thermal response of graded layers 
designated especially for thermal barrier coatings in harsh environments. 

2. FGM Material and Properties 

The functionally graded material (FGM) considered made of ceramic and metal phases is 
illustrated in Fig.1. One side of functionally graded layer is composed of 100% ceramic phase 
whereas the other side of the layer is composed of 100% metallic phase with the intermediate 
transition region in between.  Material properties are denoted by exponential functions 
varying in x-axis. A schematic illustration of a continuously graded microstructure in FGM is 
provided by Chan et al. [25]. As provided in [26-27], thermal conductivity, heat capacitance 
and density of the functionally graded layer are defined by the exponential functions: 
 

0 1exp( ),k k xγ=                                                                      (1) 

0 2exp( ),c c xγ=                                                                      (2) 

0 3exp( ).xρ ρ γ=                                                                     (3) 
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where 0 ,k 0c and 0ρ  are the thermal conductivity, heat capacitance and mass density at the 
metallic (left) surface ( )0 .x = 1,γ  2γ and 3γ  respectively show the inhomogeneity constants 
for thermal conductivity, specific heat capacitance and mass density and these constants are 
assumed to be different from each other in the present study. ZrO2 and Ti-6Al-4V are 
referencing ceramic and metallic materials utilized in the present study and their thermal 
properties are provided in Table 1. 

Table 1. Material properties of ZrO2 and Ti-6Al-4V (Fujimoto and Noda [28]). 
Material 2ZrO Ti-6Al-4V 
Thermal conductivity (W/mK) 2.036 18.1 
Heat capacitance (j/kgK) 615.6 808.3 

)3kg/mDensity ( 5600 4420 

 

 

 

Fig. 1. The schematic illustration of functionally graded material possessing different 
inhomogeneity constants for thermal properties 

3.  Equation of Conduction and Boundary Conditions 

In order to find the time dependent temperature distribution inside the FGM layer, the 
following heat conduction equation should be derived. One of the main contributions of this 
study over previous studies is to taking into consideration of spatial variation of each thermal 
properties separately, hence derived heat conduction equation is different that adopted in the 
previous studies. The derivation of conduction equation is shown in Eqs. (4)-(5) which 
involves variable parameters for thermal conductivity, heat capacitance and mass density.  
 

2

2

( ) ( ) ( ) ( ) .k x T T Tk x x c x
x x x t

ρ
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

                                                    (4) 

2

1 2( ) ( ) .T T Tx x
t x x

γ α α
∂ ∂ ∂

= +
∂ ∂ ∂

                                                            (5) 

 

The thermal diffusivity for the FGM layer is expressed to be: 
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0 1 2 3( ) exp( )x xα α γ γ γ= − −                                                       (6) 

0
0

0 0

.k
c

α
ρ

=                                                                          (7) 

Two different boundary and initial condition cases are applied to the boundary value problem 
and these conditions are given in Table 2. 

Table 2. Applied boundary and initial conditions 
Case 1  Case 2 
1 0 ,T K= 1 0 ,T T K= 

2 0 ,T K= 2 02 ,T T K= 

( )0( ,0) sinT x T x L Kπ= × 0( ,0)T x T K= 

where 0 1000 .T K=   

 

4. Computational Techniques Applied for the Transient Thermal Analysis of FGM 

The addressed heat conduction equation is discretized utilizing the finite difference formula. 
Temperature at the left surface is denoted by 0,0T  and that at the right surface is shown 
by ,0NT . This discretization in space and time parameters is illustrated in Fig. 2. After 
discretization step is completed, formulations for explicit and implicit schemes are developed.  

 
Fig. 2. Discretized numerical model prepared for the numerical analysis 

In the following subsections 4.1 and 4.2, explicit and implicit formulations are provided. The 
derived formulations are implemented into MATLAB.  

4.1. Explicit method formulation 

The general explicit method finds the solution of node i at time j+1 using the temperature  
information available at nodes i-1, i and i+1 at time j. Temperature value of point i at time 
j+1, , 1i jT +  is calculated using the temperature values at time j using the temperature values of 
two neighboring points. We develop a formulation based on the explicit method to find the 
temperature distribution along the FGM layer whose thermal properties vary with the x-
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coordinate. In order to discretize the time dependent heat conduction equation in space and 
time domains, the following central difference formulae are utilized. 
 

, 1 , ( ),i j i jT TT O t
t t

+ −∂
= + Δ

∂ Δ
                                                             (8) 

1, 1, 2( ),
2

i j i jT TT O x
x x

+ −−∂
= + Δ

∂ Δ
                                                         (9) 

2
1, , 1, 2

2 2

2
( ).

( )
i j i j i jT T TT O x

x x
− +− +∂

= + Δ
∂ Δ

                                            (10) 

 

When Eqs. (8-10) are substituted into Eq. (5) and after performing necessary mathematical 
manipulations, temperature at space i and time j+1, , 1i jT +  is calculated through the following 
equation.  

1 0
, 1 , 1 2 3 1, 1,

0 1 2 3 1, , 1,2

exp{( ) }
2

exp{( ) } 2 .

i j i j i i j i j

i i j i j i j

tT T x T T
x

tx T T T
x

γ α
γ γ γ

α γ γ γ

+ + −

− +

Δ⎛ ⎞ ⎡ ⎤= + − − − +⎜ ⎟ ⎣ ⎦Δ⎝ ⎠

Δ⎛ ⎞ ⎡ ⎤+ − − − +⎜ ⎟ ⎣ ⎦Δ⎝ ⎠

                            (11) 

Since explicit scheme calculates temperature distribution at time j+1 using the temperature 
information at time j, it is open to any instability problems. Since material properties of FGM 
layer vary with respect to spatial coordinate, the dimensionless mesh Fourier number for this 
material is not constant, so we need to define mesh Fourier number for all the grid points as, 
 

( )2
i

i
t

x
α

τ
Δ

=
Δ

                                                                 (12) 

where  

i
i

i pi

k
c

α
ρ

=                                                                  (13) 

In Eq. (13), the subscript i shows the properties of the FGM material at the spatial coordinate 
.ix  In order to obtain stable numerical solutions using explicit scheme, the following 

condition must be satisfied for all the grid points throughout the functionally graded layer. If 
this condition is not satisfied at least one of the grid points, the numerical solution of the 
overall system will not be stable and properly found. 
 

  
( )2

1 .
2

i
i

t
x

α
τ

Δ
= ≤

Δ
                                                           (14) 
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4.2. Implicit method formulation 

As an implicit method, the Crank-Nicolson (C-N) scheme is considered for the transient 
thermal analysis of FGM layer. The Crank-Nicolson (C-N) scheme finds the solution of nodes 
i-1, i and i+1 at time j+1 using the information available at nodes i-1, i and i+1 at time j. In 
this method, temperature values of points i-1, i ,i+1 at time j+1 are calculated utilizing the 
temperature values of points i-1, i, i+1 at time j. In this section, the formulation based on the 
implicit (C-N) method is provided for the thermal analysis of FGM layer. In order to 
discretize the time dependent heat conduction equation in space and time variables, the 
following central difference formulae are employed. 
 

, 1 , ( ),i j i jT TT O t
t t

+ −∂
= + Δ

∂ Δ
                                                       (15) 

1, 1, 2( ),
2

i j i jT TT O x
x x

+ −−∂
= + Δ

∂ Δ
                                                   (16) 

2
1, , 1, 2

2 2

2
( ).

( )
i j i j i jT T TT O x

x x
− +− +∂

= + Δ
∂ Δ

                                        (17) 

 

Utilizing the finite difference formula, the heat conduction equation is discretized as follows: 
 

 
( )( )

( )( )
( )

( ) ( )( )

, 1 , 1, ,
1 0 1 2 3

0 1 2 3
1, 1 , 1 1, 1 1, , 1,2

exp

exp
2 2

2

i j i j i j i j
i

i
i j i j i j i j i j i j

T T T T
x

t x

x
T T T T T T

x

γ α γ γ γ

α γ γ γ

+ +

+ + + − + + −

− −⎛ ⎞
= − − +⎜ ⎟Δ Δ⎝ ⎠

− −
+ − + + − +

Δ

        (18) 

Rearrangement of Eq. (18) produces the following equation: 
 

1 1, 1 , 1 1 1, 1 1 1, , 1 1,i i j i i j i i j i i j i i j i i jf T g T f T f T l T s T− − + + + + + − − + +− + − = + −                          (19) 

where coefficients depending on space variables can be denoted by, 
 

( )
( )( )0
1 2 32 exp ,

2i if x
x

α
γ γ γ= − −

Δ
                                              (20) 

( )( )1
0 1 2 3exp ,i id x

x
γ
α γ γ γ= − −

Δ
                                                 (21) 

1 2 ,i ig f
t

= +
Δ

                                                                (22) 

1 2 ,i i il f d
t

= − −
Δ

                                                            (23) 

.i i is d f= +                                                                    (24) 
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Since the layer is made of functionally graded material, parameters ,if  ,id ,ig il and is are not 
constant parameters. Eq. (19) is expanded in space and time grids using index parameters 
j=1,2,…,M and i=1,2,…,N where M and N indicates the boundary points of time and space 
grids. Hence, NMT shows the temperature of point N at time M. In our parametric analyses, the 
final time of simulation is specified as 5ft s=  and 0.01s time intervals are used. The distance 
between two neighboring nodes is specified as 0.0005x mΔ = . When Eq. (19) is expanded for 
j={1,2,3,…,M} and i={2,3,4,…,N}, the equation set is obtained as follows:       
                                       

2 3

2 3 4

3 4 5

4 5 6

3 2 1

2 1

0 0 ... 0
0 ... 0

0 ... 0
0 0 0
... ... ...
0 0 0 0

N N N

N N

g f
f g f

f g f
f g f

f g f
f g

− − −

− −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

2,

3,

4,

5,

1,

...

j

j

j

j

N j

T
T
T
T

T −

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 =

1

2

3

4

2

.

...

N

z
z
z
z

z −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                        (25) 

where 

1 1 1, 2 2, 3 3, 1 1, 1,j j j jz f T l T s T f T += + + +                                             (26) 

2 2 2, 3 3, 4 4, ,j j jz f T l T s T= + +                                                     (27) 

3 3 3, 4 4, 5 5, ,j j jz f T l T s T= + +                                                      (28) 

2 2 2, 1 1, , , 1.N N N j N N j N N j N N jz f T l T s T f T− − − − − += + + +                                (29) 
 

The algebraic equation system given by Eq. (25) is solved for all time steps j=1,2,…,M. The 
parameters in coefficient matrix are not constants since they depend on the material properties 
in FGM layer. In Eqs (26) - (29), 1, 1jT +

and , 1N jT +
are known temperature values from the 

specified boundary conditions. The algebraic equation system is solved for unknown 
temperatures at interior points. 

4.3. Finite element method (FEM) 

The parametric finite element analyses are performed with ANSYS Parametric Design 
Language (APDL) [29]. 8-node PLANE77 element is utilized in simulations. This element is 
a higher order version of the 2-D, 4-node thermal element PLANE55 [29]. The element has 
one degree of freedom which is temperature at each node. The 8-node thermal element is 
appropriate to a 2-D, steady-state or transient thermal analyses. The geometry, node locations 
and the coordinate system for PLANE77 is depicted in Fig 3(a). A triangular shape option 
may be formed by merging three nodes at the same point. Modelling functionally graded layer 
using finite elements requires assigning continuously varying material properties into the 
layer. The most conventional way to model graded material inhomogeneity involves the use 
of conventional homogenous elements in successive layers of the mesh, containing own 
material properties [30]. Hence, stepwise change in properties along the direction of gradation 
is satisfied. Such ways have already been used for many researchers [31-32], hence we have 
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adopted this model in the present study. Constructed finite element mesh for transient heat 
conduction analysis of the FGM layer is depicted in Fig. 3(b).  

 

Fig. 3. (a) Two-dimensional 8-node thermal solid element available in ANSYS [29] (b) 
Constructed finite element mesh for the FGM layer 

5. Results 

In this section, we provide temperature distribution results. Firstly, obtained results based on 
three different methods are compared with each other to verify the developed numerical 
formulations. Two different boundary and initial conditions are applied to the layer and they 
are labeled as Case 1 and Case 2 as mentioned in section 2. In Case 1, the temperature at left 
and right surfaces of the layer is kept constant as 0 K and FGM layer is loaded by a sinusoidal 
temperature profile initially. In Case 2, the temperature at left surface of FGM layer is kept 
constant as 02T K whereas the temperature at right surface is kept constant as 0T K. In both 
cases, the influences of inhomogeneity constants for thermal conductivity, mass density and 
thermal capacitance on transient temperature distribution in an FGM layer are examined. 
Before analyzing the effect of inhomogeneity constants, the temperature distribution in the 
FGM layer is analyzed and compared with that obtained in a homogeneous layer which is 
composed of 100% Ti-6Al-4V. Fig. 7(a) and 7(b) respectively show the contours of 
temperature distribution in homogenous layer and FGM layer in Case 1 condition with respect 
to time. Temperature values in the layer is normalized utilizing 0 1000T K= . Hence, 

0( )T x T results are presented in parametric studies. The coordinate parameter along the layer 
is normalized by the following equation, 

2 1.xx
L

= −                                                                    (30) 

According to these figures, the homogenous layer is cooling faster than the FGM layer. 
Moreover, cooling in homogenous layer appears symmetric whereas cooling in FGM layer 
appears not symmetric as predicted. Since right surface of the layer composed of ZrO2, 
conduction towards right surface gradually decreases. The low thermal conductivity of ZrO2 
plays an important role on observing such a behavior. Fig. 7(c) and (d) show the contours of 
temperature distribution of homogenous layer and FGM layer, respectively when Case 2 
condition is applied to the layer. When Figs 7(c) and (d) are examined, temperature at the 
right surface of homogenous layer diffuses faster into the thickness of the layer when 
compared to that of FGM layer. Therefore, the cool region emerging around the metallic 
surface of FGM layer is larger than that of homogenous layer. 
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Fig.8 (a) and (b) show the temperature distribution in a homogenous layer loaded by Case 1 
and Case 2 conditions with respect to time for the discussed numerical methods. It can be 
inferred from figures that results of developed code for explicit and implicit schemes are in a 
very good agreement with those of finite element analysis. In addition, Fig.9 (a) and (b) 
illustrate the temperature distribution in a functionally graded layer loaded by Case 1 and 
Case 2 conditions with respect to time. Since layer is made of FGM, cooling curves observed 
from Fig. 9(a) is not symmetric, and heating curves appearing in Fig. 9(b) is different from 
that appearing in Fig. 8(b). It can be inferred from Fig. 9(a) and (b) that obtained results for 
the FGM layer are in a very good agreement with the results of finite element method similar 
to the homogeneous case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) Temperature contours in homogenous layer in Case 1, (b) Temperature contours in 
FGM layer in Case 1,  (c) Temperature contours in homogenous layer in Case 2, (d) 

Temperature contours in FGM layer in Case 2. 
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Fig. 8. Temperature distribution in homogenous layer made of Ti-6Al-4V using different 
numerical techniques with respect to time 1 2 30, 0, 0.γ γ γ= = =  

 

Fig. 9. Temperature distribution in FGM layer made of Ti-6Al-4V and ZrO2 using different 
numerical techniques with respect to time 1 2 32.185, 0.2724, 0.2366.γ γ γ= − = − =  

The influence of each inhomogeneity constants on the temperature distribution is evaluated 
and compared with each other. This is performed by analyzing the temperature at the 
midpoint of the layer ( ( / 2)MPT T x= ) while varying each inhomogeneity parameter, 
individually. Fig. 16 shows the variation of normalized temperature with respect to time for 
the midpoint of the layer. Shown in Figs. 10 (a)-(d), the midpoint temperature is decreasing 
with time under Case 1 condition whereas it is increasing under Case 2 condition.  For both 
cases, the variation 2Lγ  and 3Lγ  have similar influences and increase in those parameters 
results in higher midpoint temperature while cooling condition in Case 1 and lower midpoint 
temperature while heating condition in Case 2. Furthermore, the opposite is true for the 
increase in 1 .Lγ  Decrease in 2Lγ and 3Lγ leads to lower midpoint temperature in Case 1 in 
which cooling occurs and much higher midpoint temperature in Case 2 where heating 
happens. On the contrary, decrease in 1Lγ causes higher midpoint temperature in Case 1 and 
lower temperature in Case 2.  The main reason behind this behavior is that the inhomogeneity 
constant solely participate in transient heat conduction Eq. (5) ahead of T

x
∂

∂
 term and 

1γ exponentially contributes to the thermal diffusivity (see Eq. (6)) in a positive way, however 
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the opposite is true for 2γ  and 3.γ  Following figure (see Fig. 11) illustrates the midpoint 
temperature when inhomogeneity constants 1 ,Lγ 2Lγ and 3Lγ are varied together. Hence, 
combined effect of inhomogeneity parameters on midpoint temperature value can be clearly 
observed. When 1 ,Lγ 2Lγ and 3Lγ are increased together, the midpoint temperature in Case 1 
rises and Case 2 reduces. Similarly, decrease in 1 ,Lγ 2Lγ and 3Lγ together leads to lower 
midpoint temperature value in Case 1 and higher midpoint temperature value in Case 2. We 
can draw such a conclusion from the findings that the alteration of 2Lγ and 3Lγ are more 
dominant on midpoint temperature value in layer than that of 1 .Lγ   

 

 

Fig. 10. The midpoint temperature value in FGM layer with respect to time (a) for increasing 
values of inhomogeneity constants 1 2,L Lγ γ  and 3Lγ  individually (a) Case 1 (b) Case 2; (c) 
for decreasing values of inhomogeneity constants 1 2,L Lγ γ  and 3Lγ  individually (c) Case 1 

(d) Case 2. 
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Fig. 11. The midpoint temperature value in FGM layer with respect to time (a) for increasing 
values of 1 2,L Lγ γ  and 3Lγ  together in Case 1 (b) for increasing values of 1 2,L Lγ γ  and 3Lγ  
together in Case 2 (c) for decreasing values of 1 2,L Lγ γ  and 3Lγ  together in Case 1 (d) for 

decreasing values of 1 2,L Lγ γ  and 3Lγ  together in Case 2. 

In order to see which of the inhomogeneity parameter is the most dominant, the normalized 
values of midpoint temperature in the layer at t=5s are provided in Table 3. Midpoint 
temperatures regarding individual and combined alteration of the inhomogeneity constants are 
given in a tabular format. Percent difference is shown by %ε  and it is calculated with respect 
to the temperature in which combined inhomogeneity take place 
1 2 3( 0.8L L Lγ γ γ= = = and 1 2 3 0.8).L L Lγ γ γ= = = − We have denoted this temperature using 

(*) as the referencing state. In Case 1 and 2, when dimensionless temperature values are 
compared, increase in 2Lγ  and 3Lγ  have equal influence on temperature and they lead to get 
closer temperatures to the temperature at referencing state. For both cases, decreases in 2Lγ  
and 3Lγ  have the same effect and they are more influential than the change in 1 .Lγ  It can be 
quantitatively inferred from Table 3 that the inhomogeneity constants 2Lγ  and 3Lγ have 
greater influence on midpoint temperature than that of 1Lγ  and they equally influence the 
temperature value.  
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Table 3. Normalized midpoint temperature values at t=5s. 

 Case 1 
0 ( 5 )MPT T t s= 

%ε  Case 2 
0 ( 5 )MPT T t s= 

%ε 

Homogenous Layer           0.08291 56.23 1.44732 9.13 

1 2 30.8, 0.0, 0.0.L L Lγ γ γ= = = 0.02573 86.41 1.57624 18.85 

1 2 30.0, 0.8, 0.0.L L Lγ γ γ= = = 0.18846 0.517 1.30999 1.22 

1 2 30.0, 0.0, 0.8.L L Lγ γ γ= = = 0.18846 0.517 1.30999 1.22 

1 2 30.8, 0.8, 0.8.L L Lγ γ γ= = = 0.18944(*) - 1.32623(*) - 

1 2 30.8, 0.0, 0.0.L L Lγ γ γ= − = = 0.17870 712.02 1.29911 35.05 

1 2 30.0, 0.8, 0.0.L L Lγ γ γ= = − = 0.02523 14.06 1.80274 9.86 

1 2 30.0, 0.0, 0.8.L L Lγ γ γ= = = − 0.02523 14.06 1.80274 9.86 

1 2 30.8, 0.8, 0.8.L L Lγ γ γ= − = − = − 0.02212(*) - 2.00000(*) - 

 

6. Conclusions 

In this study, the transient heat conduction in a functionally graded layer is examined using 
various computational techniques. Heat conduction equation for the functionally graded layer 
is derived without any simplification for the inhomogeneity. Hence, inhomogeneity 
parameters controlling thermal conductivity, specific heat capacitance and mass density 
involve. Time dependent temperature distribution in the functionally graded layer is obtained 
by applying explicit and implicit schemes to the time dependent variable coefficient partial 
differential equation (PDE). Developed formulations for the functionally graded layer are 
implemented via computer codes in MATLAB. In addition, functionally graded layer is 
modeled in ANSYS [29] and transient heat conduction analysis is carried out. Two different 
cases of boundary and initial conditions are considered. In the first case, the layer is loaded by 
the sinusoidal temperature initially while temperatures at surfaces of the layer are kept 
constant, so cooling behavior is observed. In the second case, one of the surfaces of the layer 
is subjected to 02T K while other surface is hold at 0T K, hence heating behavior is seen. In 
both cases, the results of developed formulations are compared with those obtained by finite 
element analysis and a very good agreement is accomplished. Then, a series of parametric 
analyses are conducted to investigate the separate effects of inhomogeneity constants on 
temperature distributions. The results of this study can guide the material specialists to 
determine the materials to be utilized in an FGM layer in thermal barriers according to the 
desired temperature distribution. Some concluding remarks are summarized as follows: 

• Decrease in 1Lγ leads to higher temperatures towards the ceramic side in an FGM 
layer. 
• The change in 2Lγ and 3Lγ  affects the temperature in an equal manner. Increase in 

2Lγ and 3Lγ leads to slow temperature change whereas decrease in those parameters causes a 
fast change.  
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• The order of the dominance of the inhomogeneity constants on thermal conductance 
analysis is summarized as: 2 3 1 .L L Lγ γ γ= >  
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