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Abstract  The dynamical system with time varying stiffness subjected to multi excitation forces studied.  The system 
is written as two degree of freedom consists of the main system and absorber. The multiple time scale perturbation 
method is applied to get the approximate solution up to the third approximation. The stability of the system at the 
simultaneous primary resonance is investigated using both frequency response equations and phase-plane methods. 
The effects of different parameters are studied numerically. 
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1.Introduction  

This problem made the vibration is the one of a non-desired phenomenon in our life. One of the 
most common methods of vibration control is the dynamic absorber. It has the advantages of low 
cost and simple operation at one modal frequency. In the domain of many mechanical vibration 
systems the coupled non-linear vibration of such systems can be reduced to non-linear second order 
differential equations which are solved analytically and numerically. 

Nayfeh and Mook [1, 2] studied the nonlinear systems with linear natural frequencies which were 
commensurate or nearly commensurate. Internal resonance provides coupling and energy exchange 
among the vibration modes.  Jain [3] shows the solutions of differential equations using Runge-
Kutta fourth-order method. Asfar et. al. [4] studied the response of self excited two-degree-of-
freedom system to multi-frequency excitations. Queini et. al. [5] studied the regulation of a two-
degree-of-freedom structure using internal resonance. They introduce a controller taking the form 
of a second-order system that is coupled to the plant. Eissa [6] investigated the non-linear 
mechanical oscillator subjected to parametric and external excitation forces. Queini and Nayfeh [7] 
proposed a non-linear control law to suppress the vibrations of the first mode of a cantilever beam 
when subjected to a principal parametric excitation. The method of multiple scales is applied 
throughout. The analysis revealed that cubic velocity feedback reduced the amplitude of the 
response.  

Eissa [8] reported that when using a dynamic absorber, its damping coefficient should be kept 
minimal for better system performance. Pai and Schilz [9] designed a refined non-linear vibration 
absorber was using a quadratic velocity coupling term in the controller and adding a negative 
velocity feedback to the system.  Olkan [10] studied the basic absorption action of auto-parametric 
system under sinusoidal excitation numerically and experimentally. Ji and Hansen [11] studied an 
experimental investigation of the non-linear response of clamped beam subjected to a harmonic 
axial load. Ashour and Nayfeh [12] also studied non-linear adaptive control of flexible structures 
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using the saturation phenomenon. This phenomenon was utilized to suppress high-amplitude 
bending and torsional vibration modes of rectangular cantilever plates. Sayam et. al. [13] studied 
numerical simulations of the response of a uniform, cantilever beam subjected to a base excitation. 
Song et. al. [14] presented a study of the vibration response of the spring-mass-damper system with 
a parametrically excited pendulum hinged to the mass using the harmonic balance method. The 
results were verified by numerical calculation.  The third order approximation was used to analyze 
the response characteristic and the stability of the system. Attilio [15] applied an asymptotic 
perturbation method based on Fourier expansion and time rescaling. Eissa and Amer [16] simulated 
the vibration of a second order system to the first mode of a cantilever beam subjected to both 
external and parametric excitation at primary and sub-harmonic resonance.  They reported that the 
vibration of the system can be controlled by adding a feedback cubic velocity non-linear term. 
They reported also that there is a threshold value for the linear damping coefficient which can be 
applied to control the system vibration. Eissa et. al. [17, 18] studied the passive and active control 
in some non-linear differential equations describing the vibration of the aircraft wing subjected to: 
multi-excitation force, multi-parametric excitations are considered. The same system is considered 
with 1:2 internal resonances, 1:3 internal resonance and 1:2:4 internal resonance active controllers. 

Amer [19] investigated the coupling of two non-linear oscillators of the main system and absorber 
representing ultrasonic cutting process. The multiple time scale perturbation technique is applied 
throughout. A threshold value of linear damping has been obtained, where the system vibration can 
be reduced dramatically. Amer and EL-Sayed [20] studied the non-linear dynamics of a two-
degree-of freedom vibration system with non-linear damping and non-linear spring stiffness 
analytically using the method of multiple scales perturbation technique up to the third order 
approximation. The system consists of the main one and an absorber. Amer and El-emam [21] 
investigated the nonlinear dynamical system with time varying stiffness subjected to multi- 
excitation forces without control, and studied the effects of different parameters. Eissa and et. al. 
[22, 23] studied the vibration reduction of nonlinear dynamical system described the nonlinear 
spring pendulum under multi parametric and multi external excitations. El- Gohary and El-Ganini 
[24, 25] applied active control for suppressing the vibration of a non-linear plant when subjected to 
external and parametric excitation in the presence of 1:2 and 1:3 internal resonance. 

In this paper, the coupled non-linear differential equations of the non-linear dynamical two-degree-
of-freedom vibrating system including quadratic and cubic non-linearties are studied. The system 
consists of the main system and the absorber. The system subject to multi external excitation forces 
is considered with simultaneous primary resonance case passive control absorber. The method of 
multiple scales perturbation technique is applied throughout to determine the solution up to third 
order approximations. The different resonance cases are reported and studied numerically. Stability 
of the system is studied applying both frequency response functions and phase-plane methods.  

2. Mathematical Modeling 

Using a linear tuned mass absorber (TMA) connected to the system, equations of motions can be 
written in the following form:   

1 2 1
2 2 3

2 2 2 2 1 2 2 2 1  ( - )2 ( cos ) ( - )U U UU U U St U U U + εγ+ εζω + ω + εα + ε β +β + εζ&& & & &  

               
1

 cos      
N

j j
i

F t
=

= ε Ω∑                                                                                                (1a) 

       2
1 2 1 1 2 1 1 22 ( - ) ( - ) 0 U U U U U+ εζ ω + ω =&& & &                                                                       (1b) 
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where U1 donates the response of the second-order controller, U2 represents one of the model 
co-ordinates of a structure, ωand 1ω are the natural frequencies, ζ , 1ζ and 2ζ  are the damping 

coefficients, 1α,β and 2β are non-linear coefficients of the wings, γ is the linear coefficient ,ε is 

a small perturbation parameter, jF the forcing amplitudes and jΩ  are the excitation frequencies, 

j=1, 2, 3, 4 for simplicity. 

2.1. Perturbation analysis.     

The method of multiple time scale is applied to determine a first order uniform expansion for 
the solution of equations (1a) and (1b) as in the form: 

      1 1 1( , ) ( , ) ..........,                 ( 1,2) ( , )     n no o n oU T u T nt u T T+ ε + =ε =                               (2) 

where ε is a small perturbation parameter, o 1T =t,T =εt  are fast and slow time scales 

respectively, and the time derivatives became 

    
2

2 2 2 2
1 2 1 1 22

 , 2 ( 2 ) o o o o

d d
D D D D D D D D D

dt dt
= + ε + ε = + ε + ε +                                          (3) 

Substituting equations (2) and (3) in to equations (1a) and (1b) and equating the coefficients 
of the same power of ε  in both sides, we obtain   

         2 2
2( ) 0  o oD u+ ω =                                                                                                        (4a) 

         2 2 2
1 1 1 2( )o o oD u u+ ω = ω                                                                                                      (4b) 

2 2 2 3
21 1 2 2 2 1 2 2 1 2 1( ) -2 - 2 - - ( cos ) - ( - )o o o o o o o o o o oD u D D u D u u St u D u D u+ ω = ζω α β + β ζ  

                                   2 1
1

- ( - ) cos   
N

o o j j o
j

u u F T
=

γ + Ω∑                                                              (5a) 

      2 2 2
1 11 1 21 1 1 2 1 1 2( ) - 2 - 2 ( - )o o o o o o oD u u D D u D u D u+ ω = ω ζ ω                                                    (5a) 

2 2 2 2
22 1 21 1 2 21 1 2 2 21 1 2 2 21( ) -2 - - 2 ( ) - 2 -3( cos )o o o o o o oD u D D u D u D u D u u u St u u+ ω = ζω + α β + β  

                   1 21 1 2 11 1 1 21 11- ( - - ) - ( - )o o o oD u D u D u D u u uζ + γ                                                      (6a)              

      2 2 2 2
1 12 1 22 1 11 1 1 2 1 11 1 1 21 1 2( ) - 2 - - 2 ( - - )o o o o o o oD u u D D u D u D u D u D u D u+ ω = ω ζ ω +                (6b) 

2 2 2 2
23 1 22 1 21 22 1 21 21 2 22 22 12( ) -2 - - 2 ( ) - ( 2 ) ( )o o o oD u D D u D u D u D u u u u u u+ ω = ζω + α + − γ −                           

                              2 2
1 2 2 21 2 22 1 22 1 21 12 1 11-3( cos )( )  - ( - - )o o o oSt u u u u D u D u D u D uβ + β + ζ +       (7a) 

      2 2 2 2
1 13 1 23 1 12 1 11 2 1 12 1 11 22 1 21( ) - 2 - - 2 ( - - )o o o oD u u D D u D u D u D u D u D u+ ω = ω ζ ω +                (7b) 

 
 The general solution of equations (4a) and (4b) are given by 

              2 1 1( , ) ( )   oi T
o o ou T T A T e ccω= +                                                                                 (8a) 

           1
1 1 1 1( , ) ( ) ( )  o oi T i T
o o o ou T T B T e C T e ccω ω= + +                                                                (8b) 
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where A , ,o o oB C  are complex function in 1T  and cc are represents the complex conjugate of 

the preceding terms. Substituting equations (8a) and (8b) in to equations (5a) and (5b), and 
eliminating the secular terms, then the general solution obtained as: 

2 3 ( ) ( ) ( 3 )
21 1 1 2 3 4 5 6( , ) o o o o o oi T i T i T i S T i S T i S T

ou T T K e K e K e K e K e K eω ω ω +ω −ω + ω= + + + + +  

1 1 2 3 4( 3 )
7 8 9 10 11 12               o o o o o oi S T i T i T i T i T i TK e K e K e K e K e K e− ω ω Ω Ω Ω Ω+ + + + + +  

        13                K cc+ +                                                                                                       (9a) 

1 2 3 ( ) ( ) ( 3 )
11 1 1 2 3 4 5 6 7( , ) o o o o o o oi T i T i T i T i S T i S T i S T

ou T T Fe F e F e F e F e F e F eω ω ω ω +ω −ω + ω= + + + + + +  

                        1 2 3 4( 3 )
8 9 10 11 12 13

o o o o oi S T i T i T i T i TF e F e F e F e F e F cc− ω Ω Ω Ω Ω+ + + + + + +                    (9b) 

Where and  ( 1,2,...,13)i iK F i = are complex functions in1T , cc are complex conjugate. 

Similarly, substituting from Eqs. ( 8a), (8b), (9a) and(9b) in to Eqs. (6a) and (6b) we get        
 

1 1 12 3 4 5 ( ) ( )
22 1 1 2 3 4 5 6 7 8( , ) o o o o o o o oi T i T i T i T i T i T i T i T

ou T T R e R e R e R e R e R e R e R eω ω ω ω ω ω ω +ω ω −ω= + + + + + + +

(1 1

4
( ) ( )( 2 ) ( 2 )

9 10 (10 ) (14 ) (18 )
1

                j o j o j oo o
i T i T i Ti T i T

j j j
j

R e R e R e R e R eΩ Ω +ω Ω −ωω + ω ω − ω
+ + +

=

+ + + + +∑  

)( 2 ) ( 2 ) ( ) ( ) ( 2 )
(22 ) (26 ) 31 32 33 34                 j o j o o o o o

i T i T isT i S T i S T i S T
j jR e R e R e R e R e R eΩ + ω Ω − ω +ω −ω + ω

+ ++ + + + + +    
( 2 ) ( 3 ) ( 3 ) ( 4 ) ( 4 ) ( 5 )

35 36 37 38 39 40                o o o o o oi S T i S T i S T i S T i S T i S TR e R e R e R e R e R e− ω + ω − ω + ω − ω + ω+ + + + + +  

               ( 5 ) ( 2 ) (2 ) ( 2 3 ) ( 2 3 )
41 42 43 44 45 o o o o oi S T i S T i S T i S T i S TR e R e R e R e R e− ω + ω − ω + ω − ω+ + + + +                    

1 1 1(2 5 ) (2 5 ) (( ) 2 ) (( ) 2 ) (( ) 2 )
46 47 48 49 50                  o o o o oi S T i S T i S T i S T i S TR e R e R e R e R e+ ω − ω ω + + ω ω − + ω ω + − ω+ + + + +

(1 1 1

4
(( ) 2 )(( ) 2 ) ( ) ( )

51 52 53 (53 )
1

                j oo o o
i S Ti S T i S T i S T

j
j

R e R e R e R e Ω + + ωω − − ω ω + ω −
+

=

+ + + +∑  

                (( ) 2 ) (( ) 2 ) (( ) ) ( )
(57 ) (61 ) (65 ) (69 )

j o j o j o j oi S T i S T i S T i S T

j j j jR e R e R e R e
Ω − + ω Ω − + ω Ω − −ω Ω +

+ + + ++ + + +    

              )( )

(73 ) 78     j oi S T

jR e R cc
Ω −

++ + +                                                                     (10a)                                                               

1 12 3 4 5 ( )
12 1 1 2 3 4 5 6 7( , ) +

                

o o o o o o oi T i T i T i T i T i T i T
ou T T L e L e L e L e L e L e L eω ω ω ω ω ω ω + ω= + + + + +   

                (1 1 1

4
( )( ) ( 2 ) ( 2 )

8 9 10 (10 ) (14 )
1

 + j o j oo o o
i T i Ti T i T i T

j j
j

L e L e L e L e L eΩ Ω −ωω −ω ω + ω ω − ω
+ +

=

+ + + +∑  

              )( ) ( 2 ) ( 2 ) ( )
(18 ) (22 ) (26 ) 31 32   +j o j o j o o o

i T i T i T iST i S T
j j jL e L e L e L e L e

Ω +ω Ω + ω Ω − ω +ω
+ + ++ + + +  

                ( ) ( 2 ) ( -2 ) ( 3 ) ( -3 )
33 34 35 36 37

o o o o oi S T i S T i S T i S T i S TL e L e L e L e L e− ω + ω ω + ω ω+ + + + +  

                ( 4 ) ( -4 ) ( 5 ) ( -5 ) ( 2 )
38 39 40 41 42 o o o o oi S T i S T i S T i S T i S TL e L e L e L e L e+ ω ω + ω ω + ω+ + + + +  

                ( 2 - ) ( 2 3 ) ( 2 -3 ) ( 2 5 ) ( 2 -5 )
43 44 45 46 47

o o o o oi S T i S T i S T i S T i S TL e L e L e L e L eω + ω ω + ω ω+ + + + +  

                1 1 1 1(( ) 2 ) (( - ) 2 ) (( ) -2 ) (( - ) -2 )
48 49 50 51

o o o oi S T i S T i S T i S TL e L e L e L eω + + ω ω + ω ω + ω ω ω+ + + +  

               (1 1

4
(( 2 ) ) (( 2 )- )( ) ( - )

52 53 (53 ) (57 )
1

 j o j oo o
i S T i S Ti S T i S T

j j
j

L e L e L e L eΩ + ω + Ω + ωω + ω
+ +

=

+ + + +∑  

               )(( -2 ) ) (( -2 )- ) ( ) ( - )

(61 ) (65 ) (69 ) (73 )    j o j o j o j oi S T i S T i S T i S T

j j j jL e L e L e L e
Ω ω + Ω ω Ω + Ω

+ + + ++ + + +  

                78L cc+ +                                                                                                              (10b) 
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where and  ( 1,2,...,78)m mR L m =  are complex functions in1T , cc are complex conjugates.  

From the above analysis the general solutions of 2u  and 1u is given by 

            2 3 4
2 2 21 22 23 ( )oU u u u u o= + + + +ε ε ε ε                                                                      (11a) 

and      2 3 4
1 1 21 12 13 ( ) oU u u u u o= + + + +ε ε ε ε                                                                      (11b) 

From above-proposed solution, the reported resonance cases are: 
 
(i)  Trivial resonance: 1 0j Sω ωΩ ≅ ≅ =≅  

(ii) Primary resonance: 1 11 ,  , Sω ω ω ωΩ = ≅ ≅  

(iii) Sub-harmonic resonances:  1 , 2,3,4,5...,7,  2n n Sω ω ω≅ = ≅  

(iv) Super-harmonic resonances:  12, 2, 1,2,3,4j j jω ωΩ ≅ Ω ≅ =  

(v)  Combined resonances:   

1 1 1 1 1

1 2 1 1 2 1 1

4 2

1
(1) ( ),   (2) ( 2 ) ,  (3) ( 2 ),   (4) ( 2 ),

2
(5) ( ),  (6) ( S)(7) (2 ),  

1
(8) ( )

2

S S S

S

S

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω

ω

≅ ± ± ± ≅ ± ± ± ≅ ± ±Ω ± ≅ ± ± ±

± ≅ ± ±Ω ± Ω ± ≅ ± ±Ω ± Ω ± ≅ ± ±

± ≅ ± ±Ω ± Ω

 

(vi) Simultaneous resonance: any combination of the above resonance cases is                                                            
considered as simultaneous resonance 
 
 
2.2. Stability of the system 

We study the stability of the system at the simultaneous primary resonance 

1 2 1,ω ωΩ ≅ Ω ≅  and 2S ω≅ . Using the detuning parameters1 2,σ σ andσ such that 

    1 1 2 1 2  ,ω εσ ω εσΩ ≅ + Ω = +  and 2S ω εσ≅ +                                                                  (12) 

Eliminating the secular terms of equations (9a) and (9b),leads to the solvability conditions for 
the first order approximation and noting that oA and  oB are functions in 1T only, we get 

2
2 1

1 1 1 12 2
1

[ 2 ( ) 3 ( )]
( )

oi To
o o o o o o

A
i D A A A A i A A i e− + − − − + +

−
ωωω ζω β ωζ γ ωζ γ

ω ω
 

               1( )22
1

3 1
0 

2 2
o oi S T i T

o oA A e F e− Ω− + =ωβ
                                                   (13) 

   1 2

2 2
1 1 2

1 1 2 1 1 12 2 2 2
1 2

  [2 ( ) ( )] 0 
( ) 2( )

o oi T i To
o o

B F
i D B B i e e Ω− + + + + =

− − Ω
ωω ωω ζ ω ω ζ γ

ω ω ω
             (14) 

Putting the polar form  

                                  1 1( )
1 1

1
( )    

2
i T

oA a T e µ=                                                                          (15a) 

and                            2 1( )
2 1

1
( )   

2
i T

oB a T e µ=                                                                           (15b) 

where 1 2 1 , ,a a µ and 2µ are real. Substituting Equations (15a) and (15b) in to equations (13), 

(14), and separating real and imaginary parts we get the following  
 

                
2

31 1 1 1
1 1 1 1 2 1 12 2

1

1 3
sin sin  

2 2( ) 16 2

a F
a a a a

ω ζζω ζ β θ θ
ω ω ω

′ = − − + − +
−

                               (16a) 
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3 2 3

1 1 1 1 1 2 1
1 1 12 2

1

3 3
cos cos  

8 2 2 ( ) 16 2

a a a a F
a

β γ γ ω βµ θ θ
ω ω ω ω ω ω ω

′ = + − + −
−

                               (16b) 

                
2

2 1 1 1 2
2 2 2 1 22 2 2 2

1 2

  sin   
2( ) 2( )

a F
a a

ω ζ ωζ ω θ
ω ω ω

′ = − − +
− − Ω

                                           (16c) 

             2 1 1 2
2 2 22 2 2 2

1 2

  cos
2( - ) 2( - )

a F
a

γω ωµ θ
ω ω ω

′ = +
Ω

                                                        (16d) 

Where 1 1 1 1 1 12 , ,T Tθ σ µ θ σ µ= − = − and 2 2 1 2Tθ σ µ= − . For steady-state solutions, 

1 2 1 2 0,a a θ θ θ′ ′ ′ ′ ′= = = = =  and equations (16a), (16b), (16c) and (16d) becomes 

 

               
2

21 1 1
1 1 2 12 2

1 1

1 3
sin  = sin   

2 2 2( ) 16

F
a

a

ω ζθ ζω ζ β θ
ω ω ω

+ − +
−

                                           (17a) 

           
2 2 2

1 1 1 1 1 2 1
1 2 2

1

( ) 3 3
  cos  = cos

2 3 8 2 2 ( ) 16

F a aσ σ β γω βγθ θ
ω ω ω ω ω ω ω

+− − − + −
−

                        (17b) 

             
2

1 2 1 1
2 2 12 2 2 2

2 2 1

 sin
2 ( ) 2( )

F

a

ω ω ζθ ζ ω
ω ω ω

= +
− Ω −

                                                               (17c) 

                 1 2 1
2 22 2 2 2

2 2 1

cos  =     
2 ( - ) 2( - )

F

a

ω γωθ σ
ω ω ω

−
Ω

                                                           (17d) 

 
Squaring equations (17a), (17b) and adding the result, we get the corresponding frequency 
response equations (FRE) 

 
2 2 2 2

2 21 1 1 1 1 1
1 12 2 2 2

1 1

9 3 9 33 3
( 2 ) [

4 ( ) 4 ( )

a a− − − + + − + −
− −

β γω β σ γω σγ γσσ σ σ σ
ω ω ω ω ω ω ω ω ω ω

 

2 4 2 2 4 2 2 22
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2
1 1 1

9 3 9
     9(

64 4 2 ( ) 4 ( ) 8 ( ) 8

a a a+ + + + − +
− − −

β ω γ ω γ β γω β γγ
ω ω ω ω ω ω ω ω ω ω ω ω

 

2 4 2 2 3 2 4
2 2 21 1 1 1 1 1 2 1

12 2 2 2 2 2 2 2
1 1 1

91
     

4( ) 2( ) 4 ( ) 256

a+ − + + + − −
− − −

ζ ω ζ ω ζζ ω βζ ω ζ ζζ ω
ω ω ω ω ω ω ω

 

         
2

1 2 1
2 2 2
1

9
    )] 0         

4 16

F a

a
− + =β

ω ω
                                                                                    (18) 

 
Similarly, from equation (17c) and (17d), we get 

 
2 2 4 2 3

2 2 21 1 1 1 1 1
2 2 2 12 2 2 2 2 2 2 2 2 2

1 1 1 1

 [
( ) 4 ( ) 4 ( ) ( )

− + + + +
− − − −

γω γ ω ω ζ ζ ζ ωσ σ ζ ω
ω ω ω ω ω ω ω ω

 

 

     
2 2
1 2

2 2 2 2
2 2

  ] 0                        
4 ( )

F

a
− =

− Ω
ω
ω

                                                                             (19) 

 
Now to determine the stability of the steady –state linear solution, let oA and 0B  Expressed in 

cartizian form as following 
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                             1 1
0 1 1 1

1
( ) ( )  

2
i TA T p iq e σ= −                                                                        (20a) 

  and                         2 1
0 1 2 2

1
( ) ( )

2
i TB T p iq e σ= −                                                                     (20b) 

 
where np  and nq , (n=1, 2) are real values. Inserting equations (20a) and (20b) in to the linear 

form of equations (14a) ,(14b)  and separating real and imaginary parts, the following system 
of equations is obtained as: 
                                        1 1 1 1 1 0p p qυ η′ + + =                                                                       (21a) 

                                        1 1 1 1 1 0q q pυ η′ + − =                                                                        (21b) 

                                       2 2 2 2 2 0 p p qυ η′ + + =                                                                      (21c) 

                                        2 2 2 2 2 0q q pυ η′ + − =                                                                       (21d) 

where,       
2 2
1 1 1 1

1 1 2 2 12 2 2 2
1 1

1
( ),   ( )

2 2( ) 2( )
= + − = +

− −
ω ζ ω ζυ ζω ζ υ ζ ω

ω ω ω ω
 

       
2
1 1

1 1 2 22 2 2 2
1 1

            ( ),   ( ) 
2 ( ) 2 2( )

= + − = −
− −

γω γωγη σ η σ
ω ω ω ω ω ω

             

The stability of linear solution is investigated from the zero characteristics matrix 

1 1

1 1

2 2

2 2

0 0

 0 0
          0

0 0

0 0

λ υ η
η λ υ

λ υ η
η λ υ

+
− +

=
+

− +

 

The eigen values are given by  
  
                                 4 3 2

1 2 3 4 0r r r rλ λ λ λ+ + + + =  

Where,                 2 2 2 2
1 1 2 2 1 2 1 2 1 22( ),   4r r= + = + + + +υ υ υ υ υ υ η η  

                            2 2 2 2 2 2
3 1 2 1 2 2 1 1 2 4 1 1 2 22 ( ) 2 2 , ( )( )r r= + − + = + +υ υ υ υ υ η υ η υ η η υ  

 
According to the Routh-Hurwitz criterion, the linear solution is stable if the following are 
satisfied  
 

 

3. Numerical Result 

The main system response and the phase plane for a non-resonant case at some practical 
values of equations parameters are shown in Fig.1. It can be seen from figure that the 
maximum steady state amplitude is about 0.007 (1.4% of the maximum excitation 
amplitude 1F ). The phase-plane shows approximately fine limit cycle denoting the system is 

free of chaos. 

 

 

2
1 1 2 3 3 1 2 3 1 4 40,      0,      ( ) 0,      0r r r r r r r r r r r> − > − − > >
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3 .1 Effects of parameters 

The effects of different parameters are studied as in Fig. 2. From this figure the amplitudes of 
the system and the absorber are monotonic decreasing functions on the damping coefficient ζ  
and the nonlinear parameter γ as shown in Figs (2a, 2b) From Fig 2c the amplitude of the 

absorber is monotonic decreasing function in the damping coefficient 2ζ . The amplitudes of 

the system and absorber have maximum value at resonance case Ω ≅ ω  as show in Fig 2d. 
From Fig (2e, 2f) the amplitude are monotonic increasing functions of the excitation 
amplitudes jF . 

3.2. Resonance cases 

The system without absorber is studied numerically at simultaneous primary resonance case 
( 1 , S 2Ω ≅ ω ≅ ω ) as in Fig (3) it can be seen that the amplitude increases to about 700% of 

the basic case in Fig .1. 

3.2. Effects of control  

1. The system with absorber is solved numerically at non resonance case as shown in Fig. 4. 
We find that the amplitude of the main system is about 57% of the basic case in Fig.1 
which mean that the control is active and reduced the amplitude of the system. 

2. Fig.5. illustrates the system with absorber at the simultaneous primary 
resonance 1 1, 2Sω ω ωΩ ≅ ≅ = ; it can be shown that the amplitude of the main system to 

about 14% compared with the basic case shown in Fig .1.  
3. The effect of the control on the other resonance cases are studied also as shown in  
       

    
Figure1. Non-resonant case (without absorber) 
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Figure 2 Effects of parameters (______1U  (the absorber), …… 2U (The main system)). 
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Figure 3. The steady state amplitude without absorber at simultaneous primary resonance 

1 , 2Sω ωΩ ≅ =  
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Figure 4. Non-resonant case (with absorber) 

 
 

 
Figure 5. The response for the system with absorber at the simultaneous primary resonance 

1 1, 2Sω ω ωΩ ≅ ≅ =  
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                                          (a) Primary resonance 1 ω ≅ ω  

         
(b) Sub-harmonic resonances 1 2 ω ω≅  

 
                                           (c) Combined resonance 1 Sω = ω+  
                                        Figure 6. Some of selected resonance cases 

3.4 Frequency response curves     

The frequency response equation (18) is a nonlinear algebraic equation which can be solved 
numerically of 1a against 1σ   as shown in Fig.7.  From this Figure we see that the amplitude 

of the main system is monotonic decreasing function of the non linear coefficient γ  and 

damping effect 1ζ  and 2β  as shown in Figs. 7a, 7b, 7c. But the amplitude is monotonic 

increasing function of natural frequency 1ω  and time stiffness coefficient  1β  as seen in Figs. 

7d and 7e. The frequency response equation (19) is a nonlinear algebraic equation of the 
amplitude of the absorber 2a against 2σ  which can be solved numerically as shown in Fig 8. 
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It can be seen that the amplitude 2a  is monotonic decreasing in coefficient1ζ , 2ζ and 2Ω  as 

shown in Figs. (8a-8c), and monotonic increasing in the excitation amplitude jF as shown in 

Fig. 8d. If 2γ  increasing the frequency response curves are shifted to left in Fig. 8e but if 1ω is 

increasing the curves are shifted to right as shown in Fig. 8f. The amplitude of the absorber is 
monotonic increasing function of natural frequency ω  as shown in Fig. 8g. 

 

              

 
Figure7. Frequency response curves of 1a against 1σ    
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Figure 8. Frequency response curves of 2a against 2σ   
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4. Conclusions  

The vibration control of a system with the time varying stiffness are studied, and the 
analytical solution of the system is obtained using multiple scale method, also the stability of 
the system is studied from this studied the following are concluded 

 
1- The maximum steady state amplitude is about 0.007 (1.4% of the maximum excitation 

amplitude 1F ). The phase-plane shows approximately fine limit cycle denoting the system 

is free of chaos. 
2-The steady state amplitudes of the system and the absorber are monotonic decreasing 

functions on the damping coefficient ζ  and the nonlinear parameterγ . 

3- The amplitudes are monotonic increasing functions of the excitation amplitudesjF . 

4- The worst resonance case is the simultaneous primary resonance case (1 , S 2Ω ≅ ω ≅ ω ) 

which the steady state amplitude increases to about 700% of the basic case. 
5-The amplitude of the main system is reduced to about 57% of the basic case which means 

that the control is active. 
6- The amplitude of the system with absorber at the simultaneous primary 

resonance 1 1, 2Sω ω ωΩ ≅ ≅ =  is reduced to about 14% compared with the basic case. 
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