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Abstract 
 
Optimum solution of time cost trade-off (TCT) problem has significant importance for construction sector as it 
maximizes the profit of the project. As this is the case, numerous solution techniques are adopted for the 
optimum solution of TCT. Meta-heuristics are prevalent techniques for the adaptation of optimum solution of 
TCT. Meta-heuristic algorithms are problem independent algorithms; however their input parameters are 
sensitive to the problem type and are not immutable. Erroneous assignment of input parameters may abate the 
convergence to the optimum solution or even prevent the convergence to the optimum. In order to improve input 
parameters of the hybrid meta-heuristic algorithm; Genetic Algorithm with Simulated Annealing (GASA) an 
experimental design is implemented on an 18-Activity project. The correlation between the parameters and the 
sensitivity of the input parameters are revealed. 
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1. Introduction and Literature Review 
 
Time Cost Trade off analysis is the compression of the project schedule to achieve a more 
favorable outcome in terms of project duration, cost, and projected revenues. The objectives 
of the TCT analysis are to compress the project until reaching the optimum duration which 
minimizes the total project cost.  
 
TCT is one of the major interests of the construction management, since the optimum solution 
of TCT problem directly increases profit of the project. As this is the case, several algorithms 
and heuristics are developed and implemented which aims to achieve the optimum solution of 
TCT problems. Consequently, many researchers implement heuristic algorithms in their 
studies for the search of the optimum solution of TCT problem [1 -5]. Genetic Algorithm 
(GA) is also a well known heuristic method which has many implementations on the solution 
of TCT problem [6 – 25]. 
 
Although GA is a talented meta-heuristic algorithm, hybrid meta-heuristics can provide more 
successful results [26]. For this reason, many hybrid meta-heuristics are developed to improve 
the capability of GA and Genetic Algorithm with Simulated Annealing (GASA) is one of 
them. The adaptation of GASA for the solution of TCT problems presents successful results 
[27]. In this study, the model parameters of GASA are aimed to be improved by 
implementing experimental design. 18-Activity project is used for the tests of the design. 
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2. Methodology 
 
The study consists of implementation of experimental design for a hybrid meta-heuristic 
algorithm, Genetic Algorithm Simulated Annealing (GASA). The meta-heuristic algorithms 
Genetic Algorithm (GA) and Simulated Annealing (SA) and experimental design are briefly 
introduced.  
 
2.1 Genetic Algorithm 
 
GA is a search technique used for finding exact or near optimum solutions to optimization 
problems. GA searches the global optimum with an algorithm based on the meiosis. An initial 
population is randomly generated and new genes are reproduced by crossover. The genetic 
differences are formed by mutation and the unfit genes are terminated by natural selection 
operations. 
 
First step of the GA is generation of the initial population. Determining the population size 
has significant importance, because small populations contain the risk of seriously under-
covering the solution space, while large populations incur severe computational demand. 
Binary representation is preferred for the solution of TCT where Goldberg indicates that the 
optimal size for binary-coded strings grows exponentially with the length of the string n [28]. 
By experimental design, population size is tried to be optimized. 
 
Crossover is the necessary operation for the genetic reproduction. New genes are reproduced 
from randomly selected genes. Couples, namely the parents; are determined by randomly 
generated numbers and new two genes are reproduced from parents by crossover operation. 
The location of the crossover is also determined by generating a random number which is 
shown in Figure 1. After the crossover new two gene combinations are generated by the 
existing gene combination of the population. 
 
 

 
 

Fig.1. Crossover operator 
 
Eshelman [29], worked on multipoint crossover that examined the biasing effect of traditional 
one-point crossover and considered a range of alternatives. Central argument was that two 
sources of bias exist to be exploited in a genetic algorithm; positional bias, and distributional 
bias. Eshelman concluded that simple crossover has considerable positional bias and the bias 
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may be against the production of good solutions. In addition to this, crossover operator is 
analyzed in detail [30]. To prevent biased crossover, four point crossover is applied in this 
study. 
 
Crossover rate has a vital importance that too low crossover rate can not produce enough 
genetic mixture and the convergence ratio decreases. Inversely, too high crossover rate too 
harshly mixes the genes and prevents the genes carrying good-fit chromosomes to converge 
into global optimum. Experimental design analysis includes the investigation of crossover rate 
as well. Mutation operator shifts the binary value of the gene on a randomly selected location 
from 0 to 1 or vice versa, which is shown in Figure 2.  

 
 

Fig. 2. Mutation operator 
 
Mutation prevents domination of a certain gene which has high probability of survival. 
Initially domination of relatively good fit genes may cause being stuck into local minimum. 
On the other hand, too high mutation rate may also bastardize good fit genes. Moreover, 
crossover can produce good fit genes from existing genes, but it can not generate a new gene 
for a specific portion which does not exist in the population. Therefore, mutation operator has 
significant importance as it can produce new gene combinations, which have not been 
generated at the initialization of the population or regenerate a gene combination terminated at 
natural selection. Mutation rate is also important that too low mutation rate can not help to 
improve genetic diversity. However, too high mutation rate will be detrimental on the good fit 
genes and prevent convergence to optimum. 
 
Natural selection is the final step of a cycle of the GA. Natural selection keeps the population 
size constant by terminating the same number of individuals reproduced at the crossover. In 
addition to this, it improves the overall gene quality of the population by terminating the low 
fit genes. On the other hand, low fit genes may carry very important genes on their certain 
location and in order to preserve these portions and prevent initially good fit genes to 
dominate, some precautions are taken at the natural selection phase. Roulette wheel selection 
algorithm has been implemented for this purpose which is a probabilistic selection algorithm. 
Roulette wheel determines the genes to be terminated by assigning high probability of 
termination to low fit genes and low probability of termination to good fit genes. 
 
Natural selection operator completes the one cycle of the GA. Number of cycle generation 
depends on the number of input parameters and the expected reduction in the total project 
cost. Flowchart of GA is given in Figure 3. 
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Fig. 3. Flowchart of GA 
 
 
2.2 Genetic Algorithm with Simulated Annealing 
 
If GA is implemented solely for the optimization, much iteration would be required to obtain 
satisfactory results. Convergence of GA can be increased significantly by applying 
complementary methods, thus important savings would be obtained in terms of computation 
time. Simulated Annealing (SA) is one of the complementary methods that are used for this 
purpose. SA is a generic probabilistic meta-heuristic algorithm for the global optimization 
problem. SA is inspired by the cooling schedule of alloys subjected to tempering. Initially, 
when the temperature is high, the molecules are free to move in any direction. At later phases, 
movements of molecules are restricted depending on the temperature [31].  
 
Mutation operator sometimes leads to better genes and sometimes doesn’t. SA decides 
weather to reject or accept the mutation that leads to a worse result. The rejection probability 
increases as the iteration number increases which simulates the cooling of the alloy. SA 
accepts every mutation that leads to a better gene and decides the rejection of a harmful 
mutation.  
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Besides the initial temperature, the cooling schedule has vital importance as well. In theory, 
the temperature should be allowed to decrease to zero before the stopping condition is 
satisfied. However, in practice there is no need to decrease the temperature this far. Given the 
limited precision of any computer implementation, as t approaches zero from right, 
probability of accepting a harmful mutation will be indistinguishable to zero. Even before 
zero temperature is reached, it is likely that the chances of a complete escape from the current 
local optimum will become negligible. Thus the criterion for stopping can be expressed either 
in terms of a minimum value of the temperature parameter, or in terms of the ‘freezing’ of the 
system at the current solution. 
 
If the initial temperature is not high enough or cooled very rapidly, there can be no beneficial 
mutations after a certain point. If no progress is apparent in searching, a concerted acceptance 
of detrimental mutation would be made in order to widen the scope of the search. Kirkpatrick 
[32] proposed reheating the temperature if there is not an improvement for a certain number 
of iterations. In this thesis study, there is not any reheating, by enlarging population size; 
enrichment of the gene content is aimed to be obtained. 
 
The cooling process is controlled by Boltzmann Constant which is taken as 1 for GASA. 
Division by temperature for cooling is replaced by multiplying the exponential equation with 
the iteration number. After the mutation, a random number is generated for the decision and if 
the generated random number is smaller than the decision function, the mutation is accepted 
[33]. The decision function explained above is represented as: 
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where; Rn is a random number generated between 0 and 1 for the decision, fm is the evaluation 
value of the mutated gene, f0 is the initial value of the gene before the mutation operator 
affects the gene, BC is the Boltzmann constant used to determine the speed of cooling, t is the 
current number of iteration. 
 
Decision function always gives results greater than 1 if the mutation is beneficial, as a result 
beneficial mutations are always accepted. If the mutated gene is worse than its initial state, the 
decision formula gives a result between 0 and 1 depending on the difference between the 
initial and mutated state. Higher the detriment of the mutation, closer the decision function to 
0. If the detriment of the mutation is small the decision formula will give results close to 1 
and the probability of acceptation will be high. Meanwhile, the higher the iteration number, 
the harder the acceptance criteria. If mutation is harmful even a small difference will be 
evaluated as close to 0 by the decision formula and the probability of acceptance will be very 
low. The hardening of acceptance criteria is controlled by the Boltzmann constant. 
 
Genetic algorithm in which the acceptance of mutation is under the control of simulated 
annealing is called, Genetic Algorithm Simulated Annealing (GASA). The flowchart of 
GASA is given in Figure 4. 
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Fig. 4. Flowchart of GASA 
 
 
2.3 Experimental Design 
 
It is clear that the model parameters are correlated and affected by each other. As a result of 
this, it is difficult to guess the optimum or the suitable model parameter which will present the 
optimum solution in minimum number of schedule. In order to reveal the correlation between 
the parameters an experimental design is performed. The aim of this study is to measure the 
interaction between the basic parameters such as crossover, mutation, BC and population size. 
18-Activity project is selected for the case study. The project is analyzed by considering the 
only 200$ constant overhead cost for each day with no delay penalty or early finish bonuses. 
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Experimental design is the systematic measurement of the responses of output variable based 
on the systematic changes on the input variables. Variable is a qualitative or quantitative 
entity that can vary or take on different values. Reliability is a crucial characteristic of 
measurement and refers to the consistency of a measuring device. Validity of an instrument 
means that it measures what it is designed to measure. Control involves holding constant or 
varying variables systematically so that, their effects can be removed from a study or 
compared to other conditions. Randomization refers to the assignment of subjects to 
conditions or levels of an independent variable either by the investigator or by a natural 
process in the field [34]. 
 
The design of an experiment should take; the objectives of experiment, the number of factors 
under investigation, possible presence of identifiable and non-identifiable extraneous factors, 
amount of time and money available for the experimentation into account [35]. In this study, 
boundaries of input variables are determined by obtaining the most common numbers from 
the literature. After determining the minimum and maximum values of the variable, 
experimental design analysis is performed by spreadsheet method. 
 
Main effect of a dependent variable on the independent variable is defined as the difference in 
the average response between the high and low levels of a factor. The main effect can be 
represented as [36]; 
 

( ) −+ −=
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YYAE                   (1) 

 
Where, ( )AE  is the effect of dependent variable A on the independent variable, +A

Y  is the 

average response of the high level, −A
Y  is the average response of the low level of A. 

Interaction occurs when a particular combination of two factors affect the dependent variable 
unexpectedly from simply observing their main effects. Interaction is defined as one-half of 
the difference between the effect of independent variable A at the high level of B and the 
effect of A at the low level of B. The interaction of dependent variable A and B can be 
formulated as [36]; 
 

( ) ( ) ( )[ ]
−+ −+−+ −−−=

BAABAA
YYYYABE

2

1
                (2) 

 
where, ( )

+−+ −
BAA

YY  is the effect of A when B is high and ( )
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BAA
YY  is the effect of A when 

B is low. 
 
In order to determine the significance of the independent parameters and their interactions 
between each other, t-test is performed. Determination of significance requires calculation of 
standard deviation as a measure of inherent variation or experimental error in the process. 
Variance is the square of the deviation of each observation of a sample from the sample 
average which can be written as [36]; 
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Average variance is the average of the variance of each variance obtained by k runs, where k 
is equal to 2n if there are n investigated independent variables with only high and low levels. 
Average variance is computed as following; 
 

∑= 22
ie SS                   (4) 

 
Effects of the dependent variables are differences between averages and require definition of a 
modified variation which is called variation of the effects as [36]; 
   

N
SS eeff

422 =                   (5) 

 
where N is the total number of trials. As long as the factors will have only high and low levels 
equation 4.5 will be valid. 
 
In order to perform t-test, degrees of freedom of the data set should be determined. The 
computation of degrees of freedom is shown below [37]; 
 

( ) ( )runsofrunpernsobservatiooffd #1#.. ×−=              (6) 
 
Next step is selecting a significance level for the t-test. In this analysis 95% significance 
interval is preferred. By using the significance interval and degrees of freedom, t-value is 
obtained and decision limits are calculated by the formula [37]; 
 

( )( )dfdftDL ,, αα σ±=                  (7) 

 
If effect of a variable or interaction is outside the region defined by DL, then the variable or 
interaction is determined as significant. The model parameters are adjusted according to the 
significances of them. However, the relationships of the parameters are not always linear 
which makes interpolation not applicable. 
 
3. Experimental Design of 18-Activity Project 
 
18-activity project is analyzed for experimental design of GASA. Population size, crossover, 
mutation and BC are analyzed. The project cost at the end of 50000th schedule is taken into 
account in order to make a fair comparison of the effect of the parameters. The crashing 
options of the activities and logical relationships between the activities are shown in Table 1 
[38]. 
 
Since there are four parameters number of interactions and parameters becomes 24 = 16. Each 
run is repeated 10 times in order to obtain redundant observations. As a result of this, there 
are (10 – 1)* 16 = 144 redundant observations. 
 
In Figure 5 pareto chart of effects of GASA for the 18-activity project is shown. The bars 
show the effect of the parameter on the total cost of the project. The most significant 
parameter is the population size where if population size is increase total project cost at the 
end of the 50000th schedule also increase. Similarly, when crossover ratio and Boltzmann 
Constant is increased total project cost also increases. There is significant interaction between 
the parameters population size and crossover, population size and Boltzmann Constant and 
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Crossover and Boltzmann Constant. As this is the case the interaction between the three 
parameters are also significant. The positive interaction means that when the population size 
and crossover rate is increased simultaneously, the increase in total project cost will be more 
than the prediction by only considering increase in total project cost when these two 
parameters are increased solely. 
 
 

Table 1. 18-Activity Project 
 

Act. 
No. 

Predecess
or Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

  Dur. 
(days) Cost ($) 

Dur. 
(days) Cost ($) 

Dur. 
(days) Cost ($) 

Dur. 
(days) Cost ($) 

Dur. 
(days) Cost ($) 

1 – 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 
2 – 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 
3 – 15 4,500 22 4,000 33 3,200 – – – – 
4 – 12 45,000 16 35,000 20 30,000 – – – – 
5 1 22 20,000 24 17,500 28 15,000 30 10,000 – – 
6 1 14 40,000 18 32,000 24 18,000 – – – – 
7 5 9 30,000 15 24,000 18 22,000 – – – – 
8 6 14 220 15 215 16 200 21 208 24 120 
9 6 15 300 18 240 20 180 23 150 25 100 
10 2, 6 15 450 22 400 33 320 – – – – 
11 7, 8 12 450 16 350 20 300 – – – – 
12 5, 9,10 22 2,000 24 1,750 28 1,500 30 1,000 – – 
13 3 14 4,000 18 3,200 24 1,800 – – – – 
14 4, 10 9 3,000 15 2,400 18 2,200 – – – – 
15 12 12 4,500 16 3,500 – – – – – – 
16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 
17 11, 14, 15 14 4,000 18 3,200 24 1,800 – – – – 
18 16, 17 9 3,000 15 2,400 18 2,200 – – – – 

 
 
Variables to be examined and their low and high limits are given in Table 2. 
 

Table 2. High and Low levels of parameters of GASA 
 

Parameter High Level Low Level 
Population Size (A) 200 50 
Crossover (B) 0,9 0,3 
Mutation (C) 0,9 0,3 
Boltzmann Constant (D) 1,5 0,5 

 
 
It is seen that increasing mutation rate decreases the total project cost at the end of the 50000th 
schedule. Consequently, in order to obtain near-optimum results at the end of the 50000th 
schedule low level values should be assigned to the population size, crossover and Boltzmann 
constant and high level value should be assigned to mutation. 
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The examined four parameters have significant effect on the computational demand. Whole 
second order correlations except for the correlation between the mutation and BC are also 
significant. The second order correlations have the same sign with the multiplication of the 
correlated parameters which also increases the effect of the parameters. 
 

Pareto Chart of Effects of GASA
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Fig. 5.  Pareto Chart of effects of GASA 
 
 
4. Conclusion 
 
In this study, model parameters of a meta-heuristic algorithm are adopted for solution of 
medium sized TCT problems. It is seen that the meta-heuristic algorithm can already find the 
optimum the problem; however by improving the model parameters the optimum solution is 
obtained in shorter computational duration. 
 
Computation duration for the execution of 50000 iterations is around 2 seconds which does 
not seems to be important to bother for improving the input parameters. However, it is known 
that the number of required generations would increase exponentially with the project size. As 
a result of this, improving the input parameters for GASA would end up with saving of hours 
in terms of computational duration for larger projects. 
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