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Abstract. The non-commuting graph ∇(G) of a non-abelian finite group G

is defined as follows: its vertex set is G−Z(G) and two distinct vertices x and

y are joined by an edge if and only if the commutator of x and y is not the

identity. In this paper we prove if G is a finite group with ∇(G) ∼= ∇(Ap+3),

then G ∼= Ap+3, where Ap+3 is the alternating group of degree p+ 3, where p

is a prime number.
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1. Introduction

Let G be a finite group. The non-commuting graph ∇(G) of G is defined as

follows: the set of vertices of ∇(G) is G−Z(G), where Z(G) is the center of G and

two vertices are connected whenever they do not commute, also we define its prime

graph Γ(G) of G as follows: the vertices of Γ(G) are the prime divisors of the order

of G and two distinct vertices p, q are joined by an edge, if there is an element in

G of order pq. In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a

conjecture in [1] as follows.

AAM’s Conjecture: If M is a finite non-abelian simple group and G is a group

such that ∇(G) ∼= ∇(M), then G ∼= M .

It has been proved that AAM’s conjecture is valid for all finite simple groups

with non connected prime graph (see [4]). This conjecture has been verified for the

group A10 in [5]. In this paper we will prove AAM’s conjecture for the alternating

groups Ap+3 of degree p+3, where p is a prime number, and in this case Ap+3 has

disconnected or connected prime graph depending on p. Therefor our proof does

not depend on the connectedness of the prime graph of Ap+3. In [6] some simple

groups with connected prime graphs are characterized by non-commuting graph.
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2. Preliminaries

Throughout this paper we assume that p is an arbitrary prime number and Ap+3

is the alternating group of degree p+3. The following result was proved in part(2)

of Theorem 3.16 of [1]

Lemma 2.1. Let G be a finite group such that ∇(G) ∼= ∇(Ap+3). Then |G| =
|Ap+3|.

Lemma 2.2. Let G and H be two non-abelian groups. If ∇(G) ∼= ∇(H), then

∇(CG(A)) ∼= ∇(CH(φ(A))) for all ∅ ̸= A ⊆ G−Z(G), where φ is an isomorphism

from ∇(G) to ∇(H) and CG(A) is non-abelian.

Proof. It is sufficient to show that φ |V (CG(A)) V (CG(A)) −→ V (CH(φ(A))) is

onto, where φ |V (CG(A)) is the restriction of φ to V (CG(A)) and V (CG(A)) =

CG(A) − Z(CG(A)), V (CH(φ(A))) = CH(φ(A)) − Z(CH(φ(A))). Assume d is an

element of V (CH(φ(A))), then d ∈ H − Z(H) and so there exists an element c

of G − Z(G) such that φ(c) = d. From d = φ(c) ∈ CH(φ(A)), it follows that

[φ(c), φ(g)] = 1 for all g ∈ A and since φ is an isomorphism from ∇(G) to ∇(H),

[c, g] = 1 for all g ∈ A. Therefore c ∈ CG(A). But d ̸∈ Z(CH(φ(A))), so for an

element x ∈ CH(φ(A)) we have [x, d] ̸= 1. Hence x is an element of H that does

not commute with d ∈ H. This implies that x ∈ H − Z(H). Thus there exists

x′ ∈ G− Z(G), such that φ(x′) = x. It is easy to see that [x′, c] ̸= 1 and therefore

c ̸∈ Z(CG(A)). Hence c ∈ CG(A)− Z(CG(A)) = V (CG(A)) and φ(c) = d. �

The following result was proved by E. Artin and together with the classification

of finite simple groups can be stated as follows.

Lemma 2.3. Let G and M be finite simple groups, |G| = |M |, then one of the

following holds:

(1) If |M | = |A8| = |L3(4)|, then G ∼= A8 or G ∼= L3(4);

(2) If |M | = |Bn(q)| = |Cn(q)|, where n ≥ 3, and q is odd, then G ∼= Bn(q) or

G ∼= Cn(q);

(3) If M is not the above cases of (1) and (2), then G ∼= M . (see [2] and [3])

As an immediate consequence of Lemma 2.3, we get the following corollary.

Corollary 2.4. Let G be a finite simple group with |G| = |Ap+3|, where p is a

prime number, p ̸= 5. Then G ∼= Ap+3.
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3. Characterization of Ap+3 by its non-commuting graph

In this section we will prove our main result.

Theorem 3.1. Let G be a finite group with ∇(G) ∼= ∇(Ap+3), where Ap+3 is the

alternating group of degree p+ 3, p is a prime number, then G ∼= Ap+3.

Proof. We can assume that p > 7, because A5,A6 and A8 all have non connected

prime graph, and by [5, Theorem 1] the result is valid for A10. We know that

A4 is isomorphic to a subgroup of Ap+3 which is called D. If A = D − {1}, then
A ⊆ Ap+3 −Z(Ap+3). Thus by Lemma 2.2 we have ∇(CAp+3(A)) ∼= ∇(CG(φ(A))),

where φ is an isomorphism from∇(Ap+3) to∇(G). It is easy to see that CAp+3(A)
∼=

Ap−1 thus CG(φ(A)) ∼= Ap−1. Hence G has a subgroup isomorphic to Ap−1 i.e.

CG(φ(A)). Let H = CG(φ(A)). Now we assume that N is a normal subgroup

of G such that N ̸= 1. Therefore N ∩ H E H and since H is a simple group,

N ∩H = 1 or N ∩H = H. We will prove that N ∩H = H. If N ∩H = 1, then

we have |NH| = |N ||H|
|N∩H| = |N ||H|

1 = |N ||H|
∣∣|G| = (p+3)!

2 . Thus |N |. (p−1)!
2

∣∣ (p+3)!
2 ,

since |H| = (p−1)!
2 . This implies that |N |

∣∣p(p + 1)(p + 2)(p + 3). Moreover N

is a union of conjugacy classes of G and the size of each conjugacy class of G

and Ap+3 is the same. But it is obvious that all conjugacy class sizes less than

p(p + 1)(p + 2)(p + 3) are 1, (p+1)(p+2)(p+3)
3 and p(p+1)(p+2)(p+3)

8 . Therefore there

exists k, k′ ∈ N such that |N | = 1 + k[ (p+1)(p+2)(p+3)
3 ] + k′[p(p+1)(p+2)(p+3)

8 ] thus

1 + k[ (p+1)(p+2)(p+3)
3 ] + k′[p(p+1)(p+2)(p+3)

8 ]
∣∣p(p + 1)(p + 2)(p + 3). If k = 0, then

1+k′[p(p+1)(p+2)(p+3)
8 ]

∣∣p(p+1)(p+2)(p+3). Let ℓ = p(p+1)(p+2)(p+3)
8 , then 1+k′ℓ |

8ℓ. Thus 1 + k′ℓ | 8 since 1 + k′ℓ | 8 + 8k′ℓ and 1 + k′ℓ | 8k′ℓ. This implies that

k′ = 0 because ℓ > 8 and so |N | = 1, a contradiction. Therefore there exists x ∈ N

such that the size of conjugacy class of G containing x is equal to (p+1)(p+2)(p+3)
3 .

So the size of conjugacy class of φ−1(x) in Ap+3 is equal to (p+1)(p+2)(p+3)
3 . Hence

φ−1(x) is a 3-cycle. Now assume that φ−1(x) = (a, b, c) , a, b, c ∈ {1, 2, ..., p + 3}
and B be a subgroup of Ap+3 consisting of even permutations on four letters taken

from the set {1,2,...,p+3}, where non of the letters belongs to the set {a,b,c}.
Hence φ−1(x) ̸∈ B. It is easy to see that φ−1(x) ∈ CAp+3(B) = CAp+3(B − {1}),
thus Ap−1

∼= CAp+3(B − {1}) ∼= CG(φ(B − {1})) by Lemma 2.2. Since φ−1(x) ∈
CAp+3

(B − {1}) we conclude x ∈ CG(φ(B − {1})). If L = CG(φ(B − {1})), then
we have N ∩ L ̸= 1 since x ∈ N ∩ L. But N ∩ L E L and L is a simple group

and so N ∩ L = L. Therefore L ⊆ N . Let P be an arbitrary subgroup of G

isomorphic to Ap−1. We assert that P ⊆ N . If P ̸⊆ N , then P ∩ N = 1 because

P is a simple group. It implies that P ∩ L ⊆ P ∩ N = 1. Therefore |PL |=
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|P ||L|
|P∩L| = |P ||L| = [ (p−1)!

2 ]2. But since PL ⊆ G, we have |PL| ≤ |G| and so

[ (p−1)!
2 ]2 ≤ (p+3)!

2 , which is a contradiction. Thus P ⊆ N for all subgroup P of G

isomorphic to Ap−1. In particular, H ⊆ N and N ∩ H = H. Now suppose that

g is a 3-cycle of Ap+3, then |CAp+3(g)| =
p!×3
2 . If M = N ∩ CG(φ(g)) then M is

a normal subgroup of CG(φ(g)) and |M | ≥ (p−1)!
2 .3. Because CAp+3(g) contains

a subgroup isomorphic to Ap−1 and φ(m) ∈ N for all 3-cycles m ∈ Ap+3. If

|M | = (p−1)!
2 .3, then M ∼= Ap−1 × Z3. Therefore |AutM | = |Aut(Ap−1)|.|AutZ3|

and since |CG(φ(g))|
|CCG(φ(g))(M)|

∣∣|AutM |, we conclude 3.p!
3·2 | (p−1)!.3·2. Thus p | 3·2·2 which

contradicts our assumption. Hence |M | > (p−1)!
2 .3. Since |M |

∣∣|CG(φ(g)) |= 3.p!
2

and 3. (p−1)!
2

∣∣|M |, |M | = p!.3
2 . Therefore M = CG(φ(g)). Now if x ∈ Ap+3 is not

a (p + 2)-cycle, then for a 3-cycle m ∈ Ap+3, we have x ∈ CAp+3(m). By a similar

argument we obtain that CG(φ(m)) = N ∩CG(φ(m)). Therefore φ(x) ∈ N and so

|N | ≥ (p+3)!
2 -(the number of (p+2)-cycles in Ap+3). It is easy to see that the number

of (p + 2)-cycles in Ap+3 is equal to
(
p+3
p+2

)
[(p + 2) − 1]! = (p+3)!

p+2 . Thus we obtain

|N | ≥ (p+3)!
2 − (p+3)!

p+2 = (p+3)!
2 ( p

p+2 ). But since N is a subgroup of G, there exists

an integer r ≥ 1 such that |N | = (p+3)!
2r . It follows that that (p+3)!

2r ≥ (p+3)!
2 ( p

p+2 )

and so 1
r ≥ p

p+2 . Hence (r−1)p ≤ 2 and since p > 7 we must have r = 1. Therefore

|N | = (p+3)!
2 , which implies N = G. From what we have discussed above, it follows

that G does not have any non-trivial normal subgroup and so G is a simple group.

Hence G ∼= Ap+3 by Corollary 2.4 and Lemma 2.1. �
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