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Keywords: Abstract — The development and implementation of a hybrid block method of order nine for
PBasis function, first-order initial value problems (IVPs) of ordinary differential equations (ODEs) that are stiff
Collocation, or oscillatory in nature are presented in this paper. The hybrid block method was created using
Exponential function, continuous collocation and interpolation techniques by combining Hermite polynomials and
Hermite polynomials, exponential functions as the basis function to produce a continuous implicit linear multistep
Hybrid block method, method (LMM). The method’s properties were studied and proven to be consistent, convergent,
Interpolation, and zero-stable with an A-stable region of absolute stability, making it a suitable approach for
Ordinary Differential stiff and oscillatory ODEs. The application of a combined basis in the generation of LMMs is an

Equations. approach that should be widely adopted. The technique shows that continuous LMMs can be
derived from a combination of any polynomials and exponential functions through an
interpolation and collocation approach. On two sampled stiff and oscillatory problems, the new
integrator was tested. The numerical findings demonstrate that our hybrid block integrator is
computationally efficient and outperforms previous methods of similar derivations in stability
and accuracy of results.

Subject Classification (2020): 65L04, 65L05, 65L6, 65L20.

1. Introduction

We investigate a numerical solution to first-order initial value problems (IVPs) of the ordinary
differential equations (ODEs) that may exhibit stiffness or oscillatory behaviour given by

y' =f(ty®), y(to) =y, Vast<b, (1.0)

where t is the initial point, y, is the solution at ty, and f is assumed to be continuous and satisfy the
Lipchitz theorem for the existence and uniqueness of the solution.

The problem (1.0) frequently arises in studying dynamic systems and electrical networks [4]. According
to [10], equation (1.0) is used to simulate population growth, particle trajectory, simple harmonic
motion, beam deflection, and other phenomena. Notably, mixture models, the basic Susceptible,
Infection, and Recovery (SIR) models, and other related models may all be formulated as problems of
the form (1.0).
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The solutions of nonlinear, stiff, and oscillatory problems of ODEs such as (1.0) are often highly unstable
[11].

Definition 1.1 [8]. A differential equation is considered to be stiff if Re( Ej) <0,j=1,2,..,m, here&is

the Eigenvalue of the given differential equation.

Definition 1.2 [13]. A differential equation with at least one oscillating solution is said to be oscillatory.
If a nontrivial solution (function) of an ODE converges not to a finite limit (or diverges), it is said to be
oscillating. (i.e. if the function has an infinity of results).

To deal with this class of problems, researchers have historically focused on developing efficient, stable,
and high-order linear multistep methods (LMMs). Because LMMs do not start on their own, they require
initial values from one-step methods like Euler's method and the Runge-Kutta family of methods. Ref.
[11] gives the k-step generalized LMM as

k k

Y @iy =h ) Bifurss  @GH+hoE0 @ =1 (1.1)
=0

j=0

where @; and B; are uniquely determined, h = step length, such that ¢, — t; = nh.

According to [11], existing LMMs for solving ODEs may be derived using approaches such as Taylor's
series, numerical integration, determining the order of the LMM, and the interpolation approach, all of
which are major discrete schemes constrained by assuming the order of convergence.

Ref. [1] and [11] reported that several researchers have shifted to employing the continuous collocation
and interpolation process, resulting in the emergence of continuous LMMs of the form

k k

YO = ) GOynj +h ) Bi(Ofnss, (12)
j j=0

Jj=0 J=

where ¢;(t) and ;(t) are continuous functions of t that should be differentiable at least once.

The continuous collocation and interpolation approach is a milestone in numerical analysis and
computation for it is widely used. In this study consequently, we will derive continuous LMM and
implement it in block form to eliminate its non-self-starting drawback.

Scholars have used continuous collocation technique to derive LMMs using a variety of single basis
functions, including power series, Lagrange polynomials, Chebychev polynomials, Legendre
polynomials, Hermite polynomials, and exponential functions among others.

It is established that the efficiency of these methods depends mainly on the basis functions chosen and
the problem to be solved [2], [9], and [11]. Consequently, in search of a method with better efficiency
and stability properties, [13] introduced a combined basis function for the derivation of LMM for the
problem (1.0) of the form
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r+n—-1 r+n P
) alt!
y(t) = z a;t! + ayip — (1.3)
j=0 =)

this combines power series and exponential functions. We improve upon this in terms of the
methodology of the derivation, and the order and stability of the method.

In this paper, therefore, we proposed a different combined basis function, which is Hermite polynomials
and exponential functions for the derivation of LMM to generate a higher order and efficiently stable
hybrid block method for the solution of problem (1.0).

2. Methodology

The collocation procedure for continuous LMM in equation (1.2) intended for ODEs such as equation
(1.0) is in general based on a basic idea: identify a function of a defined form that exactly satisfies the
differential equation at a given set of points. The approximation function must also meet some additional
conditions placed by the nature of the problem under consideration.

In this study, we concatenate Probabilist’'s Hermite polynomials and exponential functions to be an
approximate solution to the problem (1.0) in the form

y(t)—ZarH () + Z Zarﬁj,t], m=i+c. (1.4)

r=k+1 j=

Equation (1.4) is called the basis function and is continuously differentiable. where c¢ denotes the
number of collocation points, i is the number of interpolation points and g € R.

The coefficientsa,- € R, r =0,1,...,m of the series (1.4), are determined over the interval of
integration [a, b], fora =t, <t; <-- <ty =b, with a constant step size h given by h=1t,,; —
ty,; n=0,1,...,N — 1. H.(t) are the Probabilist’s Hermite polynomials generated by the formula

n

H,(t) = (=1D)"e (tz) a” e(_g) = (1 —i) -1, (1.5)
dth dt
and whose recursive relation is
Hn11(8) = tHy(8) — Hp () . (1.6)
The first ten probabilist’'s Hermite polynomials are:
Hy =1, H =t H, =t?—1, Hy = t3 — 3¢, H,=t*—6t>+3
Hg =t>—10t3 +15t, Hg =t —15t*+45t> — 15, H, = t’ — 21t%+ 105t3 — 105¢
Hg = t8 —28t%+210t* — 420t%2 — 105, Hy =1t° —36t7 + 378t°> — 1260t3 — 945¢
Now, obtaining the first derivative of (1.4) we have
pIv! .
y(t)—ZarH(t)+z ar(]_l)', m=i+c. (1.7)

r=k+1 j=

Interpolating equation (1.4) at t = t,, and collocating equation (1.7) at t = t,,,., ¢ € R; a system of
nonlinear equations is produced, which is compactly expressed in the form
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k

Yn = ZarHr(tn) + Z ar_.'n,
r=0 r=k+1j=0 J:
r (1.8)
it)
fose = zarH (tn+e) + z '8 n+C, .
r=k+1 (] a 1)' J
j=

The unknown constants a, in equation (1.8) are determmed using standard methods like Gaussian
elimination or matrices inversion method and substituted into equation (1.4). Thus, applying the

. t—t
transformation x = —=

form in equation (1.2) is obtained for different values of m, and it is implemented in block form.
3. Derivation of Hybrid block Method

The approximate solution to the problem (1.0) is the equation (1.4) wherem =9, i.e.

JtJ
y(t) = ag + a;t + ay(t? — 1) + a3(t3 — 3t) + a,(t* — 6t + 3) + as(t> — 10t3 + 15t) + aGZﬂ_—'
j=0

9 .
Jt] JtJ It
+a7z_+a82‘8 agzﬁj_|. (19)
j=0 °

Taking the first derivative of equation (1.9) and substituting in equation (1.0) gives

Jgi-1
F(t,) = a + 2a5t +3a5(t? — 1) + 4a,(t> — 3t) + Sas(t* — 6t2 +3) + aszm
j=1 '

Bftf 1 8 piti—1 Jti=
+Cl7 (] — 1)' _=1m + a9j=1m . (110)

Now, interpolating equation (1.9) at point ¢,,,;, i = 0and collocating equation (1.10) at point t, ., ¢ =

O,%, i, %, % g i ; and 1, the following nonlinear system of equations is obtained
B-A=1U, (1.11)
where

_ T
A = (ag, aq,az,a3,04,0as, g, A7,dg, Ag) ",

U= (v for Frats Fusts Frsts FastoFusss Futs Fua fos) and
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16, -1 @-3t) G-6E+3) (G-108+15,)  Ni,Et y L4 oy fa oy ]
01 2, 3D 43 S@oel+d)  yp,LE Zizlfff’]f; YN L
01 2. 3(ya-1) (g -sna) SCu-erL ) I u"f}’” i (1"3‘/3 e o“fifﬂ Zj 0”31373
0 1 2t 3(ta-1) 4(5a-36.) 5L -6:+3) T, (,"Z;"‘ T U"Z}“ T @“S." by (,’”13,"
O LI 3(0:=1) 4(2-3t,) 5s—6t7:+3) Ti, U”E,’” . (1"3,/3 ) O“Z;.’E X (}”;;,’B .
0 1 2t 3(2.-1) 4(8.-30a) SEa-6.+3) XL U";{Z I 15:";{2 e f;f“;(z LA
0 1 2t 3(2s-1) 4(2s-36,) Sa-62:43) X5, U_S’ X (jf)"!f“ ¥, (jf;“ ¥ (jf)"jg
01z 3(gym1) a(Bgmang) seledyrn dTER LSRR SR LT
0 1 2, 3(2;-1) 4(8;-380,:) S, -67:+3) Y, U";,’“ E?;fﬁi{s Eﬁzlﬁﬁifs E?zlﬂz;f;fa
0 1 2t B(E.-1) AGL -36.) S(E.— bR, +3) Do, l0m 57 Pte e P g S |

Solving equation (1.11) in maple soft, using the matrix inversion method, the value of the unknown
column vector A is obtained. The value of the vector A is then substituted in equation (1.9) to give a

(t_ n)

continuous implicit scheme. Thus, applying the transformation x = , and algebraic manipulation

for all values of § € R we have a continuous implicit hybrid LMM of the form in equation (1.2) given as

1
y() = @GOV +h| D B @ s . (113)

j=0

315 . . .
5 18 2' 8 2’ 8and1 fnsj = f(tn + jh,y(ty + jR)), while ay(x) and Bj(x)

represent continuous coefficients which are obtained as follow

where j= 0

a, =1
Bo = 28350(1310720x — 6635520x” + 14376960x° — 17418240x° + 12930624x* — 6055560x° + 1771860x2 — 308205x + 28350)
p1= —14175 (16384-Ox — 806400x° + 1681920x° — 1932000x* + 1326528x% — 549675x% + 129870x — 14175)
8
8x
p1= 14175 (2293760x — 10967040x° + 22026240x5 — 24057600x* + 15411312x% — 5781195x2 + 1173690x — 99225)
4
32x%h
Bz =— 14175 (1146880x — 5322240x% + 10298880x° — 10735200x* + 6483456x% — 2259495x2 + 420630x — 33075)
8
2x (1.14)
p1= 2835(4-587520)6 — 20643840x° + 38522880x° — 38492160x* + 22161888x% — 7343280x2 + 1305990x — 99225)
2
PBs = 14175 — 4999680x° + 9008640x° — 8672160x* + 4810176x% — 1540665x% + 266490x — 19845)
8
ps = 14175 (2293760x — 9676800x° + 16865280x° — 15724800x* + 8476272x% — 2650725x% + 450030x — 33075)
Z
32x%h
7 = ~ 14175 (163840x7 — 668160x° + 1128960x° — 1024800x* + 540288x3 — 166005x2 + 27810x — 2025)
8
2
B, = 28350(1310720x — 5160960x° + 8478720x° — 7526400x* + 3898944x° — 1181880x% + 196020x — 14175)

. . 1 1 3 1 5 3
When equation (1.13) isevaluatedatt = =, -, =, =, =, =
8’ 4’ 8" 2’ 8" 4’

OOI\I

, 1 and implemented in block form, it yields
a discrete hybrid block method of the type

AOy = Ey. +hDf(y,) + hBF(Y,,), (1.15)
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Where

T
Vin = [V Vst Vi Vst Vi Ysto Voo Yoss |
T
yw{n%n%%%n%n%n%n%hy
T
FO) = [t frito P Foito P Fruizo s fo]

T
o0 = | fupfusFusfusFusfosfust])

1 0 0 0 0 0 0 0
01000000
00100000

A®=[0 00 100 00
000010 0 0|
00000O0T100
00000O0GO0T10
0 000000 1
0 00 00 0 0 1
00000O0O0 1
00000O0O0O0 1

g—[0 00 00 00 1
000000 O0 1/
00000O0O0 1
00000O0O0O0 1
0 000000 1

0 0 0 0 0 o o 070017

29030400
00 0 0 o 32377
907200
0000000 0
358400
4063

Do 113400
41705 |

1161216
401

11200
149527

4147200

0 0000 0O 089
L 28350 -
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- 2233547 2302297 2797679 31457 1573169 645607 156437 33953 1
14515200 14515200 14515200 181440 14515200 14515200 14515200 29030400
22823 21247 15011 2903 9341 15577 953 119
113400 453600 113400 22680 113400 453600 113400 129600
35451 1719 39967 351 17217 7031 243 369
179200 179200 179200 2240 179200 179200 25600 358400
2822 61 4094 227 1154 989 122 107

5| 14175 28350 14175 2835 14175 28350 14175 113400
115075 3775 159175 125 85465 24575 5725 175
580608 580608 580608 36288 580608 580608 580608 165888

279 9 403 9 333 79 9 9
1400 5600 1400 280 1400 5600 1400 711200
408317 24353 542969 343 368039 261023 111587 8183
2073600 2073600 2073600 25920 2073600 2073600 2073600 4147200
2944 464 5248 454 5248 464 2944 989
L 14175 14175 14175 2835 14175 14175 14175 28350

4. Analysis of the Method

4.1 . Zero Stability of the Method

Definition 4.1: [3] if the roots r,, n=1,2, ...,k of the characteristics polynomial P(r) given by

P(r) = |(rA(°) — E)| satisfies |ry| < 1 and every root satisfying |r,| < 1 has a multiplicity not greater

than the order of the differential equation, then the Block Integrator (1.15) is said to be zero-stable,
Furthermore, as h - 0,P(r) = r* *(r — 1)* where p is the order of the differential equation, « is the

order of the matrices A(®and E (see also [7]).

Thus, for our block integrator, we have

P(r) =

PI) = (r =117 = 0,=>7 =15 =

1

S OO OO OO

0

[N e oNolollS

0

0 0 O
0 0 O
1 0 0
0 1 0
0 0 1
0 0 O
0 0 O
0 0 O

S OPRrRr OO OOoOOo
OCrRr OO OOoOOoOOo
O P OO OO OOO

I
Ny
I

Hence, our block integrator is zero-stable.

4.2. Order and Error Constant

e
I
_

S OO OO O OO

SO OO OO OO

S OO OO O OO
S OO OO O OO
S OO OO O OO

S OO OO O OO

SO OO OO OO

PR R R R R R

=0. (1.16)

Using the approach described in [6] and [13]. In equation (1.15), we define the linear difference

operator connected with the new hybrid block method as

L{y(t),h} = A®Y,, — Ey, — h[Df (y,) + BF(Y,,)]

(1.17)

We assume y(t) has higher derivatives, as such when the Taylor series is used to expand equation
(1.17) and the coefficients of h are compared, the result is



H. 0. Orapine et al. / IKIM/ 5(2) (2023) 10-23 17

L{y (), h} = coy(t) + c;hy' () + c;h2y"" () + csh®y""(£) + -+ + c,hPYP (t) + ¢y APy PHI(6) 4 o) (1.18)

where
1 k K
Cp == ijaj - psz‘lﬂj ,p=0,1,2,3,..,n. (1.19)
P\ & -
j=1 j=1
Definition 4.2. According to [6], if co=c;=c;=c3=--=¢, =0, cpyq #0, then the linear

difference operator and the corresponding continuous LMM are considered to be of the order p. The
Cp+1 is termed the error constant and the local truncation error is defined by

To+k = Cppr hPTDy@PH(¢)) + 0(hP+D) (1.20)

Thus from equation (1.15), we have that

r2233547 2302297 2797679 31457 1573169 645607 156437 33953
14515200 14515200 14515200 181440 14515200 14515200 14515200 25030400
22823 21247 15011 2903 9341 15577 953 119
113400 453600 113400 22680 113400 453600 113400 129600
v 35451 1719 39967 351 17217 7031 243 369 |[/net
L 000000 voa| T* 179200 179200 179200 2240 179200 179200 25600 3358400 | ([}
0010000 ol |1 w2 e s 7 ns o s am o 107 |f
L]0 © 0 1 0 0 o of[na| [if | B 28350 14175 2835 14175 28350 14175 113400 [|f.af _
' 0000100 Oyl [t 115075 3775 159175 125 85465 24575 5725 175 fri
00000010 0fys] |1 530608 580608 580608 36288 580608 580608 580608 163888 ||f .
PR | 54 I b 275 9 403 9 333 79 9 9
0 000O0O0TU01 |k Fuel
Yot 1400 5600 1400 "280 1400 5600 1400 o0 |[p]
408317 24353 542969 343 368039 261023 111587 8183 "
2073600 2073600 2073600 23920 2073600 2073600 2073600 4147200
2944 464 5248 454 5248 464 2944 989
L 14175 14175 14175 2835 14175 14175 14175 28350

Expanding equation (1.21) in the Taylor series and evaluating the coefficients using equation (1.19) we
have

Cg =C =€ =03 =C4 =Cg =Cg = Cg = Cg:D.
Therefore the hybrid block method has an order of nine (9) and an error constant as:

c10 = [7.3505E — 12, 5.9871EF — 12, 6.4964E — 12, 6.1760E — 12, 6.4964E — 12,
5.9871E — 12, 7.3505E — 12]"

Region of Absolute Stability of the Method

Definition 4.2 [14]: A region of absolute stability is one in which r = Ah in the complex z plane.

For all initial conditions, it is well-defined as the values for which the numerical solutions of y' =
—Ay satisfy y; - 0 asi — oo.

To establish the region of absolute stability of our block integrator, the boundary locus approach is
used. This is accomplished by substituting the test equation

y' ==,
into the block formula in equation (1.15). This gives

o o 0 o O o O o

(121)
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AOY. (r) = Ey,,(r) — hADy,(r) — hABY ,, (7). (1.22)
Given that, h = Ah and r = e'?, thus we have

AQy, (1) - Eyn(r))

(1.23)

h(r) = _< Dy, (r) + BY (1)

which is the characteristics/stability polynomial. Using equation (1.23), we obtain the stability
polynomial for our block method as:

E( ) = ( 1 8 1 7) he 4 ( 761 8 761 7) B
") =\150994944" ~ 150994944 2642411520 2642411520
N ( 29531 29531 7) 6+_< 89 ., 89 7>h5
3963617280 3963617280 655360 655360

1069 1069 9 9 91 91
8 _ 7 h4 _ - .8 __- .7 h3 (_ 8__ = 7)h2
+ (589824r 589824 ) *’( 512’ 512 ) T 768" 768"

1 1
+ <—§r8 —§r7>h + r8— 77,

This gives us the absolute stability region shown in Figure 4.1 below.

1400

1200

1000

800

Im(z)

600

400

200

0 SE——
4 -3 ) 1 0 1 2 3
Re(z) x10°

Figure 4.1: Showing the Absolute Stability Region of the Block Method

According to Figure 4.1, the new hybrid block method is effective in handling stiff problems since its
RAS (Region of the Absolute Stability) is unbounded [6]. A numerical scheme is considered A-stable if
its region of absolute stability R covers the entire complex plane C, which is defined as, i.e. R ={Z €
C/ Re(Z) < 0} [7]. This confirms that the hybrid block method is an A-stable method.

4.2 Consistency of the Method

If a block method has an order greater than one, it is considered to be consistent [7]. The foregoing
analysis shows that our block integrator is consistent.

4.3 Convergence of the Method

An LMM is considered convergent if and only if it satisfies both the requirements of consistency and
zero stability [5]. Hence our block integrator is convergent.
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5. Numerical Implementations

We compare the results of our method to those obtained by similar methods on some of the most
difficult stiff and oscillatory problems in the literature.

The following notations are used in the results tables.

ERROR: The absolute value difference between the exact solution and the computed numerical result
is an error. Le.

i. ERROR = |Exact solution — Numerical result|.

ii.  Ycomputea = Numerical result using the new hybrid block method.

iii. Yexact = Exact solution.

Example 5.1: Consider the stiff first-order ODE in [12].

1
() _yA-y

- 5
2}/——1 B y(O) = g,O <t< 1, (124)

with the analytical solution y(t) = % + % - % et

Example 5.2: The Prothero-Robinson Oscillatory ODE
We also study the Prothero-Robinson Oscillatory problem solved by [13].
y' = L(y —sint) + cost, L=-1, y(0)=0 (1.25)

with the analytical solution y(t) = sint.

The results obtained at different values of time ¢, are shown in figures 5.1-5.2, and the absolute error in
tables 5.1-5.2.

0.96] |

0.94 — *  Yexact solution |

—4— Ycomputed solution

.82l ! ! ! ! L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 5.1: Showing the results of Example 5.1 using both analytical and numerical approaches.
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ERROR ERROR
h yExuct ycomputed
in New Method in [12]
10~! | 0.85260195175848715618 | 0.85260195175848714034 1.584E-17 5.63131E-5
1072 | 0.83539987872083210020 0.83539987872083210018 2.0E-20 6.83365E-8
1073 | 0.83354149753621050416 | 0.83354149753621050415 1.0E-20 7.00620E-11
10~* | 0.83335416497409883587 | 0.83335416497409883586 1.0E-20 7.03881E-14
1075 | 0.83333541664973972384 | 0.83333541664973972383 1.0E-20 7.24374E-19
Table 5.1: Results and Absolute Errors of Example 5.1.
0.9
0.8 - -
0.7 *  Yexact solution -
=—+—Ycomputed Result
0.6 — =
0.5 — =
s
0.4 - -
0.3~ -
02— =
01— =
0 | \ \ J \ | \ \ |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.2: Presenting the results of Example 5.2 using both analytical and numerical approaches.
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ERROR ERROR
YExact Y computed

in New Method in [13]
0.1 0.099833416646828152307 | 0.099833416646828152301 | 6.0E-21 1.822016E-14
0.2 0.19866933079506121546 0.19866933079506121544 | 2.0E-20 2.271482E-14
0.3 0.29552020666133957511 0.29552020666133957508 | 3.0E-20 4.241108E-14
0.4 0.38941834230865049167 0.38941834230865049164 | 3.0E-20 1.364169E-14
0.5 0.47942553860420300027 0.47942553860420300024 | 3.0E-20 6.502551E-14
0.6 0.56464247339503535720 0.56464247339503535714 | 6.0E-20 9.103963E-14
0.7 0.64421768723769105367 0.64421768723769105357 | 1.0E-20 1.951339E-14
0.8 0.71735609089952276163 0.71735609089952276154 | 9.0E-20 7.155093E-14
0.9 0.78332690962748338846 0.78332690962748338836 | 1.0E-20 5.921081E-14
1.0 0.84147098480789650665 0.84147098480789650656 | 9.0E-20 8.457038E-14

Table 5.2: Results and Absolute Errors of Example 5.2.

5.1. Discussion of the Results

In this article, we investigated the effectiveness of a new hybrid block method by testing it on two
numerical problems: one involving stiff ODEs and the other involving oscillatory ODEs. The stiff problem
was previously solved using a seven-step block LMM by [12], while the oscillatory problem was
previously solved using a similar derivation of the order seven block method by [13]. Tables 5.1 and 5.2
display the comparative results of problem 5.1 in equation (1.24) and problem 5.2 in equation (1.25),
respectively. The new hybrid block method was evaluated against the exact solutions of the two
numerical problems, and the results are shown in Figures 5.1-5.2. Our findings demonstrate that the
recently developed hybrid block integrator is highly computationally efficient and offers superior
performance in precision and stability compared to current methods.

6. Conclusion

This paper presents a novel hybrid block integrator that uses a continuous collocation and
interpolation approach to solve stiff and oscillatory first-order ODEs. The hybrid LMM used in this study
employs a unique basis function that combines Hermite polynomials and exponential functions, which
differs from the approaches used by other researchers. Additionally, the derived LMM is distinct from
previous methods. The hybrid block method is both convergent and consistent, with zero stability and
an A-stable region of absolute stability. As such, it is well-suited for solving both stiff and oscillatory
ODEs.

In terms of accuracy, the novel hybrid block method has outperformed previous methods of similar
derivations. The use of combined basis functions in the generation of LMMs is worthy of universal
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acceptance. The technique indicates that continuous LMMs can be derived from any combination of
polynomials and exponential functions utilizing an interpolation and collocation approach.
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