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1. Introduction 

Г-Hilbert space plays an important role in generalization of general linear quadratic control problems 
in an abstract space [1] which was motivated from the work of L.Debnath and Pitor Mikusinski  [8] but 
there not enough literature found to study about the unbounded operators in Г-Hilbert space. The  
definition of Г-Hilbert space was introduced by Bhattacharya  D.K.  and T.E. Aman in their paper “Г-
Hilbert space and linear quadratic control problem” in 2003 [9]. Further development was made in 2017 
by A.Ghosh, A.Das and T.E. Aman in their research paper [1]. In [6] S.Islam and A.Das discussed about 
the properties of bounded operators in  Г-Hilbert Space. Boundedness of an operator is a great tool to 
elaborate Г-Hilbert Space. We often deal with operators which are not bounded. In this paper,  we will 
briefly discuss the concept, methods and theory of unbounded operators in Г-Hilbert Space. In this 
paper, after consulting the main author, we have made some changes in the main definition of Γ-Hilbert 
space [9]. 
 
First, we recall the definitions of Г-Hilbert Space. 
 
Definition 1.1. Let E be the linear space over the field F and Γ be a semi group with respect to addition. 
A mapping 〈. , . , . 〉: 𝐸 × Г × 𝐸 →  F (ℝ or ℂ)  is called a Г-Inner product on (𝐸, Г) if  

(i) 〈. , . , . 〉 is linear in first variable and additive in second variable. 
(ii) 〈u, γ, v〉 = 〈v, γ, u〉 ∀ u, v ∈ E and γ ∈ Г. 
(iii) 〈u, γ, u〉 > 0 ∀ 𝑢 ≠ 0. 
(iv) 〈u, γ, u〉 = 0 if at least one of u, γ is zero. 
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           [(𝐸, Г), 〈. , . , . 〉] is called a Г-inner product space over 𝐹. 
 
A complete Г-inner product space is called Г-Hilbert space. 
 
Using the Г-inner product, we may define three types of norm in a Г-Hilbert space, namely (i) 𝛾-norm            
(ii) inf- norm and (iii) Г-norm. 
 

Definition 1.2.  Now if we write ‖𝑢‖𝛾
2

= 〈𝑢, 𝛾, 𝑢〉, for 𝑢 ∈ 𝐻 and  𝛾 ∈ Г then ‖𝑢‖𝛾
2

 satisfy all the 

conditions of norm. 
 
Definition 1.3. If we define ‖u‖Гinf

= inf {‖𝑢‖𝛾 ∶  𝛾 ∈  Г}. Clearly Гinf-norm satisfy all the conditions of 

the norm for 𝑢 ∈ 𝐻. 
 
Definition 1.4. If we write ‖𝑢‖Г ={‖𝑢‖𝛾  : 𝛾 ∈ Г} then this norm is called the  Г-norm of the  Г-Hilbert 

space. 
 
Definition 1.5. Let L be a non-empty subset of a  Г-Hilbert space HГ . Two elements 𝑥 and 𝑦 are said to 
be 𝛾-orthogonal if their inner product  〈𝑥, 𝛾, 𝑦〉 = 0 . In symbol, we write 𝑥 ⊥𝛾 𝑦. 

 

2. Basic Concepts 

In this section, we briefly discuss about the definition of densely defined operator and the adjoint, self-

adjoint , symmetric etc of that operator. Also, related examples and theorem are mentioned in this part. 

2.1.  Extension of operators  
Let S and T be two operators in a vector space E. DS  and DT are the domains of S and T respectively. If   

 

DS  DT    and   Sx = Tx          for every x ∈ 𝐷𝑆 

 

then T is called an extension of S and we write  S  T . 

2.2.  Densely defined operator 
An operator T defined a linear map T from a subspace of  H to H  is called an operator in H and the 

subspace denoted by DT , is called the domain of T. Now an operator T is defined in a normed space E is 

called densely defined if its domain DT is a dense subset of E , that is           cl DT = E. 

 

Example 2.2.1. The differential operator 
𝑑

𝑑𝑥
 is densely defined in 𝐿2(ℝ), because the subspace of 

differentiable functions is dense in 𝐿(ℝ)2 . 

 

Theorem 2.2.2. Let T be a densely defined operator in a -Hilbert space H and let E be the set of all 𝑦 ∈

H for which 〈𝑇𝑥, 𝛾, 𝑥〉 where 𝛾 ∈  is a continuous functional on DT . There exists a unique operator S 

defined on E such that  

 

〈𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑥, 𝛾, 𝑆𝑦〉 for all 𝑥 ∈ DT and y ∈ E . 

 

Proof: For any y ∈ E , consider the functional 𝑓𝑦(𝑥) = 〈𝑇𝑥, 𝛾, 𝑥〉 where  𝛾 ∈ . Being continuous on a 

dense subspace of H , has a unique extension to a continuous functional 𝑓𝑦 on H. 
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By Riesz representation theorem, there exists a unique 𝑍𝑦 ∈ H such that 𝑓𝑦(𝑥) = 〈𝑥, 𝛾, 𝑍𝑦〉 ∀ 𝑥 ∈ H. 

Now if we define   𝑆(𝑦) = 𝑍𝑦 , then we will have  

                                                         〈𝑇𝑥, 𝛾, 𝑥〉 = 𝑓𝑦(𝑥) = 𝑓𝑦(𝑥) 

                                                                                       = 〈𝑥, 𝛾, 𝑍𝑦〉 

                                                                                       = 〈𝑥, 𝛾, 𝑆𝑦〉 for all 𝑥 ∈ DT , y ∈ E and 𝛾 ∈  . 

 Also the linearity of S is obvious. 

2.3.  Adjoint of densely defined operator  

Let T be an operator which is densely defined in a -Hilbert space H. The adjoint T∗ of T is the operator 

defined on the set of all 𝑦 ∈ H for which 〈𝑇𝑥, 𝛾, 𝑥〉 where 𝛾 ∈  is a continuous function on DT and such 

that  

〈𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑥, 𝛾, 𝑇∗𝑦〉 for all 𝑥 ∈ DT and 𝑦 ∈ 𝐷𝑇∗ 

 

Example 2.3.1. Let 𝐶1
0(ℝ) denote the space of all continuously differentiable functions on ℝ . This is also 

a dense subspace of 𝐿2(ℝ). Now consider the differentiable operator D which defined on 𝐶1
0(ℝ). Since  

               〈𝐷𝑥, 𝛾, 𝑦〉 = ∫ (
𝑑

𝑑𝑡
𝑥(𝑡)) 𝛾 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
 𝑑𝑡 

                                = − ∫ 𝑥(𝑡)(
𝑑

𝑑𝑡
 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
) 𝛾 𝑑𝑡          for all    𝛾 ∈  .     

  ∴ 〈𝐷𝑥, 𝛾, 𝑦〉 is a continuous functional on 𝐶1
0(ℝ) . 

Moreover, 

               〈𝐷𝑥, 𝛾, 𝑦〉 = − ∫ 𝑥(𝑡)(
𝑑

𝑑𝑡
 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
) 𝛾 𝑑𝑡 . 

                               =  ∫ 𝑥(𝑡)
∞

−∞
 (−

𝑑

𝑑𝑡
(𝑦(𝑡))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 𝛾 𝑑𝑡 . 

Here it is not correct to write  𝐷∗ = −𝐷 , since the domain of 𝐷∗ is not 𝐶1
0(ℝ) . 

2.4.   Self –adjoint of densely defined operator  

Let T be a densely defined operator in a -Hilbert space H. Then T is called self-adjoint if  𝑇 = 𝑇∗. 

 

Note. 𝑇 = 𝑇∗ implies that 𝐷𝑇∗ = 𝐷𝑇 and 𝑇(𝑥) = 𝑇∗(𝑥) for all 𝑥 ∈ 𝐷𝑇 . If T is a densely defined operator in 

H which is bounded then T has a unique extension to a bounded operator in H. Then the domain of T 

as well as its adjoint T∗, is the whole space H . If T is unbounded operators ,then T has an adjoint T∗ 

such that  𝑇(𝑥) = 𝑇∗(𝑥) whenever  𝑥 ∈ 𝐷𝑇 ∩ 𝐷𝑇∗ , but 𝐷𝑇∗ ≠ 𝐷𝑇 and thus T is not self-adjoint. 

2.5.   Symmetric Operator  

We now consider a special kind of operator in -Hilbert space . An operator T which is densely defined 

in -Hilbert space H is called symmetric if for all 𝑥, 𝑦 ∈ 𝐷𝑇 , we have 

 

〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇𝑦〉 for all 𝛾 ∈  . 

 

It is clear that if T is symmetric , then 〈𝑇(𝑥), 𝛾, 𝑥〉 ∈ ℝ  for every 𝑥 ∈ 𝐷𝑇  and 𝛾 ∈  .  Also, it follows that 

a densely defined operator T is symmetric if and only if  T∗ extends T. If T is symmetric and DT = H , 

then T is in fact a bounded operator on H. This leads as follows, 

 

Let 𝐸 = {T(x) ∶ x ∈ H , ‖x‖γ ≤ 1} . Then for a fixed 𝑦 ∈ H and 𝛾 ∈  , we have 

             |〈𝑇(𝑥), 𝛾, 𝑦〉| = |〈𝑥, 𝛾, 𝑇(𝑦)〉| 

                                   ≤  ‖𝑥‖ ‖𝛾‖‖𝑇(𝑦)‖ 

                                    ≤ ‖𝑇(𝑦)‖ for all 𝑥 ∈ H with ‖𝑥‖, ‖𝛾‖ ≤ 1 . 
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Also clearly every self-adjoint operator is symmetric. 

 

Example 2.5.1. Suppose we consider an operator 𝐴 =
𝑖𝑑

𝑑𝑡
  with the domain 𝐷𝐴 = { 𝑓 ∈ 𝐿2([𝑎, 𝑏]) ∶

 𝑓′ is continuous and 𝑓(𝑎) = 𝑓(𝑏) = 0 } . 

Now, since for all 𝛾 ∈  , we have 

           〈𝐴𝑓, 𝛾, 𝑔〉 =  ∫ 𝑖𝑓′(𝑡) 𝛾
𝑏

𝑎
𝑔(𝑡)̅̅ ̅̅ ̅̅  𝑑𝑡 

                            =  ∫ 𝑓(𝑡) 𝛾
𝑏

𝑎
 𝑖𝑔′(𝑡)̅̅ ̅̅ ̅̅ ̅ 𝑑𝑡  

                            =  〈𝑓, 𝛾, 𝐴𝑔〉 

      ∴    〈𝐴𝑓, 𝛾, 𝑔〉 = 〈𝑓, 𝛾, 𝐴𝑔〉 

for all 𝑓, 𝑔 ∈ 𝐷𝐴 ,  A is symmetric. 

 

〈𝐴𝑓, 𝛾, 𝑔〉   is a continuous functional on 𝐷𝐴 for any function 𝑔  continuously differentiable , no need to 

satisfying  𝑔(𝑎) = 𝑔(𝑏).  

 

Consequently , 𝐷𝐴∗ ≠ 𝐷𝐴   and A is not self-adjoint. 

2.6.   Closed Operator  
A linear operator 𝑇 ∶  𝐸1 → 𝐸2 is said to be closed when the graph 𝐺(𝑇) = {〈𝑥, 𝛾, 𝑇𝑥〉: 𝑥 ∈ 𝐷𝑇 and γ ∈ } 

is a closed subspace of 𝐸1 × 𝐸2 that is  

 

𝑥𝑛 ∈ 𝐷𝑇 , 𝑥𝑛 → 𝑥 and 𝑇𝑥𝑛 → 𝑦 

 

implies 𝑥 ∈ 𝐷𝑇 and 𝑇𝑥 = 𝑦. 

 

3. Main Results 

Theorem 3.1. Let A and B be densely defined operators in a  -Hilbert space H.  
(a) If 𝐴 𝐵 , then 𝐵∗  𝐴∗ . 
(b) If 𝐷𝐵∗ is dense in H , then 𝐵 𝐵∗∗ . 

 
Proof. (a) Let us consider 𝑦 ∈ 𝐷𝐵∗  and 𝛾 ∈ . Then as a function of 𝑥 , 〈𝐵𝑥, 𝛾, 𝑦〉 is a continuous functional 
on 𝐷𝐵 . Also 〈𝐵𝑥, 𝛾, 𝑦〉 is a continuous functional on  𝐷𝐴 since  𝐷𝐴 𝐷𝐵 . 
 
Now, 𝐵𝑥 = 𝐴𝑥 for 𝑥 ∈ 𝐷𝐴 , so 〈𝐴𝑥, 𝛾, 𝑦〉 is a continuous functional on 𝐷𝐴 . This proves that 𝑦 ∈ 𝐷𝐴∗ . Then 
the equality 𝐴∗𝑦 = 𝐵∗𝑦  for 𝑦 ∈ 𝐷𝐵∗  follows from the uniqueness of the adjoint operator. 
 
(b)   Let 𝑥 ∈  𝐷𝐵 . Then for every 𝑦 ∈ 𝐷𝐵∗  and 𝛾 ∈  ,we have 
 

〈𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝑦〉 
 

It can be rewrite as 
 

〈𝐵∗𝑦, 𝛾, 𝑥〉 = 〈𝑦, 𝛾, 𝐵𝑥〉 . 
 
Since 𝐷𝐵∗ is dense in H, 𝐵∗∗ exists and we have 
  
〈𝐵∗𝑦, 𝛾, 𝑥〉 = 〈𝑦, 𝛾, 𝐵∗∗𝑥〉 for all 𝑦 ∈ 𝐷𝐵∗ , 𝑥 ∈ 𝐷𝐵∗∗ and 𝛾 ∈  . 
 
Now, by the proof of (a), we can show that  𝐷𝐵 𝐷𝐵∗∗  and 𝐵(𝑥) =  𝐵∗∗(𝑥) for any 𝑥 ∈ 𝐷𝐵. Thus  𝐵 𝐵∗∗ . 
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Theorem 3.2. If T is a one-to-one operator in a -Hilbert space and both T and its inverse 𝑇−1 are densely 
defined , then 𝑇∗ is also one- to-one  and  (𝑇∗)−1 = (𝑇−1)∗ .  
 
Proof. Let 𝑦 ∈ 𝐷𝑇∗ . Then for every 𝑥 ∈  𝐷T−1 and 𝛾 ∈  , we have 𝑇−1𝑥 ∈ 𝐷𝑇  and hence  
 
         〈𝑇−1𝑥, 𝛾, 𝑇∗𝑥〉 = 〈𝑇𝑇−1𝑥, 𝛾, 𝑦〉 
                                 = 〈𝑥, 𝛾, 𝑦〉 . 
 
This follows that   𝑇∗𝑦 ∈ 𝐷(𝑇−1)∗ . 

 
And also,  
 

(𝑇−1)∗ 𝑇∗𝑦 = (𝑇 𝑇−1)∗ 𝑦 =  𝑦                                                                (3.1) 
                                       
Now we take an arbitrary 𝑦 ∈ 𝐷(𝑇−1)∗ .Then for each 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈  , we have 

 
𝑇𝑥 ∈ 𝐷𝑇−1  . 

 
Hence  
 

〈𝑇𝑥, 𝛾, (𝑇−1)∗𝑦〉 = 〈𝑇−1𝑇𝑥, 𝛾, 𝑦〉 =  〈𝑥, 𝑦〉                                                        (3.2) 
 

This shows that    (𝑇−1)∗𝑦 ∈ 𝐷𝑇∗ . And     𝑇∗(𝑇−1)∗𝑦 = (𝑇−1𝑇)∗𝑦 = 𝑦 . Now, from (3.1) and (3.2) it follows 
that  (𝑇∗)−1 = (𝑇−1)∗ .  
 
Theorem 3.3. If A, B and AB are densely defined operators in H , then 𝐵∗  𝐴∗ = (𝐴𝐵)∗ . 
 
Proof. Let 𝑥 ∈ 𝐷𝐴𝐵 and 𝑦 ∈ 𝐷𝐵∗𝐴∗  . Since 𝑥 ∈ 𝐷𝐵 and 𝐴∗𝑦 ∈ 𝐷𝐵∗ , it follows that 
 

〈𝐵𝑥, 𝛾, 𝐴∗𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝐴∗𝑦〉  for all 𝛾 ∈  . 
 
On the other side, since 𝐵𝑥 ∈ 𝐷𝐴 and 𝑦 ∈ 𝐷𝐴∗  , we have 
 

〈𝐴𝐵𝑥, 𝛾, 𝑦〉 = 〈𝐵𝑥, 𝛾, 𝐴∗𝑦〉  for all 𝛾 ∈  . 
 
Hence 
 

〈𝐴𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝐴∗𝑦〉 . 
 
Since this holds for all 𝑥 ∈ 𝐷𝐴𝐵 ,we have 𝑦 ∈ 𝐷(𝐴𝐵)∗  and (𝐵∗  𝐴∗)𝑦 = (𝐴𝐵)∗𝑦. This implies,  𝐵∗  𝐴∗ = (𝐴𝐵)∗.  

 
Theorem 3.4. A densely defined operator T in a -Hilbert space H is symmetric if and only if 𝑇 = 𝑇∗. 
 
Proof: Let us suppose 𝑇 = 𝑇∗. Since for all 𝑥 ∈ DT and 𝑦 ∈ 𝐷𝑇∗ we have 
 

                                  〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇∗𝑦〉 where 𝛾 ∈                                                         (3.3) 
Again we have 
 

                                  〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇𝑦〉 for all 𝑥, 𝑦 ∈ 𝐷𝑇                                                      (3.4) 
 

Thus, T is symmetric. If T is symmetric then combining (3.3) and (3.4) we can conclude  𝑇 = 𝑇∗ . 
 
Corollary 3.5. If T is a densely defined symmetric operator, then T∗ is the maximal symmetric extension 
of T. 
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Proof. Let S be a symmetric operator in a -Hilbert space H such that T  S . Then by the Theorem 3.3, 
we have  
 

S∗ T∗ . 
 

Hence,  T S  S∗ T∗.    
 
Theorem 3.6. If T is closed and invertible, then 𝑇−1  is closed. 
 
Proof. Let us suppose that graph of T that is 𝐺(𝑇) is closed and 𝐺(𝑇) = {(𝑥, 𝛾, 𝑇𝑥): 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈ } . 
Then obviously 
 

𝐺(𝑇−1) = {(𝑇𝑥, 𝛾, 𝑥): 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈ } is closed. 
 
Theorem 3.7. If T is densely defined operator, then T∗ is closed. 
 
Proof: If 𝑦𝑛 ∈ 𝐷𝐴∗ , 𝑦𝑛 → 𝑦 and 𝐴∗𝑦𝑛 → 𝑧 , then for any 𝑥 ∈ 𝐷𝐴  &  𝛾 ∈  we have 
 

〈𝐴𝑥, 𝛾, 𝑦〉 =  lim
𝑛→∞

〈𝐴𝑥, 𝛾, 𝑦𝑛〉 

                   =  lim
𝑛→∞

〈𝑥, 𝛾, 𝐴∗𝑦𝑛〉 

   = 〈𝑥, 𝛾, 𝑧〉 
 

Hence, 𝑦 ∈ 𝐷𝐴∗ and 𝐴∗𝑦 = 𝑧 . 
 
Note. If the given operator A is not closed then is it possible to extend A to a closed operator? Answer to 
that problem is to use the closure of 𝐺(𝐴) in H × H to define an operator. If closure of 𝐺(𝐴)  defines 
an operator, then extension of A  is closed.        
  
Theorem 3.8. Every symmetric and densely defined operator in -Hilbert space has a closed symmetric 
extension. 
 
Proof.  Let A be a densely defined, symmetric operator in a -Hilbert space  H . At first, we will show 
that condition 𝑥𝑛 ∈ 𝐷𝐴  , 𝑥𝑛 → 0 , as 𝐴𝑥𝑛 → 𝑦 which implies that 𝑦 = 0 , is satisfied.  
 
Let 𝑥𝑛 → 0 and 𝐴𝑥𝑛 → 𝑦 . Since A is symmetric then for all 𝛾 ∈   we have 
 

〈𝑦, 𝛾, 𝑧〉 =  lim
𝑛→0

〈𝐴𝑥𝑛, 𝛾, 𝑧〉 

               =   lim
𝑛→0

〈𝑥𝑛, 𝛾, 𝐴𝑧〉 

                        = 0,    for any 𝑧 ∈ 𝐷𝐴 . 
 

This implies 𝑦 = 0 , as 𝐷𝐴 is dense in H. 
 
Now we have that there exists a closed operator B such that 𝐺(𝐵) = Cl𝐺(𝐴)  and hence A  B . We have 
to prove that B is symmetric. If 𝑥, 𝑦 ∈ 𝐷𝐵 , then there exists 𝑥𝑛, 𝑦𝑛 ∈ 𝐷𝐴  such that 
 

𝑥𝑛 → 𝑥    ,    𝐴𝑥𝑛 → 𝐴𝑥 
 

and  
     𝑦𝑛 → 𝑦    ,    𝐵𝑥𝑛 → 𝐵𝑥 . 

 
Since A is a symmetric operator , we have  
 

〈𝐴𝑥𝑛, 𝛾, 𝑦𝑛〉 =  〈𝑥𝑛 , 𝛾, 𝐴𝑦𝑛〉  for all  𝛾 ∈  . 
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Then by letting 𝑛 → ∞ , we have 
 

〈𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵𝑦〉. 
 
Hence B is symmetric. 
 
Theorem 3.9. Let T be a closed densely defined operator in a -Hilbert space H. Then 
 
(a) For any 𝑣, 𝑤 ∈ H, there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 𝑇(𝑥) + 𝑦 = 𝑣 and  𝑥 − 𝑇∗(𝑦) =
𝑤. 
(b) For any 𝑤 ∈ H, there exist unique 𝑥 ∈ 𝐷𝑇∗𝑇 such that 𝑥 + 𝑇∗𝑇(𝑥) = 𝑤 . 
 

Proof. (a) Consider the -Hilbert space H1
= H ×  H. Since T is closed, 𝐺(𝑇) = {(𝑥, 𝛾, 𝑇(𝑥)): 𝑥 ∈

𝐷𝑇 and 𝛾 ∈ } is a closed subspace of H1
. Then by the projection theorem we have 

 
                H1

= G(T) + G(T)⊥γ , 

 
with      
 

     G(T) ∩ G(T)⊥γ = {0}. 
 

Now, (𝑢, 𝑦) ∈  G(T)⊥γ  if and only if 〈(𝑥, 𝑇𝑥), 𝛾, (𝑢, 𝑦)〉 = 0 for all 𝑥 ∈ 𝐷𝑇  and γ ∈ . This implies, 
〈𝑥, 𝛾, 𝑢〉 + 〈𝑇(𝑥), 𝛾, 𝑦〉 = 0 . That is (𝑢, 𝑦) ∈  G(T)⊥γ if and only if 〈𝑇(𝑥), 𝛾, 𝑦〉 = 〈𝑥, 𝛾, −𝑢〉 for all 𝑥 ∈ 𝐷𝑇  . 
In other way,  
               

(𝑢, 𝑦) ∈  G(T)⊥γ  if and only if 𝑦 ∈ 𝐷𝑇∗ and 𝑢 = −𝑇∗(𝑦). 
 
Since (𝑤, 𝑣) ∈  H ×  H , then there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 
 

(𝑤, 𝛾, 𝑣) = (𝑥, 𝛾, 𝑇(𝑥)) + (−𝑇∗(𝑦), 𝛾, 𝑦) for all γ ∈ . 

 
That is, 𝑤 =  𝑥 − 𝑇∗(𝑦) and 𝑣 =  𝑇(𝑥) + 𝑦 . 
 
(b) Letting 𝑣 = 0 in (a), then there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 𝑇(𝑥) + 𝑦 = 0 and   𝑥 −

𝑇∗(𝑦) = 𝑤. Thus 𝑥 − 𝑇∗(−𝑇(𝑥)) = 0 implies,  𝑥 + 𝑇∗𝑇(𝑥) = 𝑤  , as desired.  
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