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W e define complex locally H -symmetric spaces. As an example we prove that complex

(#,4) -spaces with k<1 are locally H -symmetric.
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INTRODUCTION

r | Yakahashi defined local ¢ -symmetry for Sasaki-
an manifolds by the curvature condition that

g(VxRY,Z)W,T)=0 @

for all horizontal vector fields X,Y,Z,W.,T ([12]).
There are two generalizations to contact metric mani-

folds. In [2], contact metric manifolds satisfying the cur-
vature condition (1.1) are called locally ¢ -symmetric.
In [6] another definition is given. A contact metric ma-
nifold is called locally ¢ -symmetric if characteristic
reflections are local isometries. This condition leads to
infinitely many curvature conditions including the abo-
ve condition (1.1). Boeckx proved that («, ) -spaces sa-
tisfy this condition ([5]). This gives a set of non Sasakian
examples.

Symmetry for complex contact metric manifolds is
studied by Blair and Mihai in [3], [4]. They defined a
complex contact metric manifold to be GH-locally
symmetric if the reflections in the integral submani-
folds of the vertical bundle are isometries. They also

proved in [4] that a complex («,x) -space with k<1 is
GH-locally symmetric.

In this paper, we will use the first generalization of
local symmetry and define a complex contact metric
manifold to be locally H -symmetric (in order not to
confuse with GH-locally symmetric) if it satisfies the
curvature condition (1) and we will give a simple and
detailed proof showing that complex (x,x)-spaces

with & <1 satisfy this condition.
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PRELIMINARIES

Let M be a complex manifold of dimension 2n+1. It is
called a complex contact manifold if it has an open
covering {O} of coordinate neighborhoods such that:

1) On each O there is a holomorphic 1-form ®
such that @ A (dw)’? =0,

2) On 0NO %@ there is a non-vanishing holo-

morphic function f suchthat @' = fo.

The complex contact structure determines a non-
integrable subbundle H by the equation @=0; H is
called the complex contact subbundle or simply the ho-
rizontal subbundle.

On a complex contact manifold M, there is a Her-
mitian metric g, local (real) 1 forms u and v=u°J,
local (real) dual vector fields U and V' =-JU , and (1,1)
tensor fields G and H =GJ such that:

) G2=H?=—I+u®U+v®V,

GE=H?=1+u®U +v®V,
g(U,X):M(X), g(X,GY):—g(GX,Y),

GJ=-JG, GU=0, ulU)=1,
N0n ONO 2@
u'=Au—Bv, Vv =Bu+ Av,

G'=AG-BH, H'=BG+AH
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where 4 and B are functions with A% 4 B2 =1.

As a result of these conditions, the following identities
also hold:

3) HG=-GH=J+u®V -v®U,
JH=-HJ] =G, g(HX,Y)=g(X,HY),
GV=HU=HV =0, uG=vG=ulH =vH =0,
JV=U, gU,V)=0,
du(X,Y)=g(X,GY)+ (o Av)(X.,Y),
dv(X,Y)=g(X,HY)—- (o ru)(X,Y)

where o(X)=g(VxU,V), Vbeing the Levi-Civita
connection of g (see [1], [7] and [9]).

Here w= f(u—iv) where f isa non-vanishing comp-
lex-valued function. Also, on the intersections the subbund-
le generated by U and ¥ is the same as the subbundle gene-
rated by U' and V'. Hence we have a global bundle V' ort-
hogonal to H . This bundle is called the vertical subbundle
and it is typically assumed to be integrable. We refer to a
complex contact manifold with the above structure tensors
satisfying these conditions as a complex contact metric ma-

nifold.

In order to split the covariant derivatives of U and V'
into symmetric and skew-symmetric parts, we define two
other local structure tensors:

1 1
hu =Esym£UG°p and hy ZES}’mﬁVH °p

where “'sym” denotes the symmetric part and p deno-
tes the projection TM — H . These operators satisfy the fol-
lowing properties [2,8]:

hyG=-Ghyy, hyH =-Hhy,
hyU =hyV =hyU = hyV =0,
VxU=-GX -GhyX +o(X)V,
VxV=-HX —-Hhy X —c(X)U.

In order to define a complex («, #) -space, we consider
complex contact metric manifold M with Ay =hy =h . In
this case, & anti-commutes with G and H, and hence com-
mutes with J. If the following curvature conditions hold for
some constants k¥ and u, then M is called a complex

(e, 1) -space ([11]):

R(X,Y)U =x(¥)X —u(X)Y)+ p(u(Y)hX —u(X)hY)
+ (k= ) (v(Y)JX —v(X)JY) 2)
+2((x — w)g(JX,Y) + (4x = 3p)u Av(X, V)V,

RX,YW = c(v(Y)X = v(X)Y) + u(W(Y)hX —v(X)hY)
= (k= )(Y)JX —u(X)JY) 3)
—2((x - @)g(JX,Y) + (4xc = 3p)u Av(X,Y)U.

QX,Y) =2 - w)g(JX,Y) +2g(JhX,Y) +2((2 - s)u Av(X,Y))

&)

Here Q=do .

The following theorem is proved in [11].

Theorem 1

Let M be a complex (x,u)-space. Then x<1.If k=1,
then h=0 and M is normal. If x <1, then M admits three
mutually orthogonal distributions [0], [A] and [-2], de-
fined by the eigenspaces of h, where A=\1-x .

Curvature of a complex (i, ) -space is completely de-
termined. For details see [11].

Curvature of complex (K, ,Ll) -spaces

In this section we will write the curvature tensor for a
complex (k,x) -space. In the expression for the curvatu-
re tensor there are several terms. In order to give a simp-
ler expression if we group some terms, we come up with
the following tensors which are defined for vector fields
X Y

AX,Y)=g(X,hY)+(1—-u/2)g(X,Y),

B(X,Y) = g(X,V)+(2— 1)/ (2A%)g(X,hY),
CX,Y)=u(X)(k =1+ 1/ 2)Y +(u—1)hY),
D(X,Y) =v(X)((x—1—u/2)JY — hJY).

Here 4,B are (0,2) tensorsand C,D are (1,2) tensors.
We also define the following (0,3) tensors:

f(X.Y.Z)=g(C(X,Y)+D(X.Y)-C(Y.X)-D(Y,X).Z)
+2g(D(Z,Y),X)-4Q2x —1— p)v(Z)2u Anv(X,Y),

k(X,Y,Z)=g(C(JX,Y)+D(JX,Y)-C(JY,X)-D(JY,X),Z)
+2g(D(JZ,Y),X) = 42Kk — 1= t)u(Z)2u Av(X,Y).

Note that when the vector fields are horizontal, the ten-
sors C,D, f and k vanish.

Theorem 2

Let M be a complex (x,u) -space with k <1. Then, for vec-

tor fields X,Y,Z , the curvature tensor is given by
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R(X,Y)Z =(AY,Z)+(x -1+ %)(u(Y)u(Z) +v(¥YW(2))HX

—(AX,Z2)+(xc -1+ g)(u(X)u(Z) +V(XW(Z))Y
+(B(Y,Z) + (u = DuMu(Z) + (Y W(Z))hX
= (B(X, 2) + (u=D(X)u(Z) + V(XW(Z))hY

—(A(Y,JZ)+ ( —1 7§)2u AV(Y,Z))JX

F(AX,JZ) + (k-1 —%)214 AV(X,Z)JY

+QAX,JIY) + (2K — 2 — 1)2u AV(X,Y)JZ

—(B(Y,JZ)—2u AW(Y, Z)hIX

+(B(X,JZ) —2u AV(X,Z)hJY

+ (2B(X,JY) —du Av(X,Y)hIZ

+ %( 2(Y,GZ)GX - g(X,GZ)GY

+g(Y,HZ)HX - g(X,HZ)HY)

+ 2"7_2“(g()/,hGZ)hGX — g(X,hGZ)hGY
22

+g(Y,hHZ)hHX — g (X ,hHZ ) hHY)
+ u(g(Y,GX)GZ + g(Y,HX )HZ)
+ (XY, Z)U +k(X,Y,Z)V.

Proof
First, we write any vector field X uniquely as

X=X +X_ +u(X)U +v(X)V

where X €[4] and X_j €[-4]. We can write the
terms R(X+4,Y+1)Z+ 2 using the formulas given in [11].
The terms R(X,Y)U, R(X,Y)V, R(U,X)Y, R(V,X)Y,
R(X,U)Y and R(X,V)Y, can be computed by using the
conditions (2) and (3). Then, by using the identities

X, :%(XJr%hX—u(X)va(X)V}

X_) =%(X—%hX—u(X)U—v(X)V),

we obtain the formula in the theorem. Keep in mind
that hX) =AX), hX_j=-AX_) and hU=hV' =0, O

When the vector fields are horizontal, the above exp-
ression simplifies to

R(X,Y)Z = A(Y,Z)X — A(X,Z)Y + B(Y,Z)hX — B(X,Z)hY
— A(Y,JZ)JX + A(X,JZ)JY +2A(X,JY)JZ
— B(Y,JZ)hJX + B(X,JZ)hJY +2B(X,JY)hJZ
+ g(g(Y, GZ)GX - g(X,GZ)GY

+g(Y,HZ)HX — g(X,HZ)HY)
2K —
222
+g(Y,hHZ)hHX — g(X,hHZ)hHY)
+u(g(Y,GX)GZ + g(Y,HX)HZ.

+

(g(Y,hGZ)hGX — g(X,hGZ)hGY
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Now we can state and prove our main theorem.

Theorem 3
Let M be a complex (k. u) -space with k <1. Then, for ho-
rizontal vector fields X,Y,Z and W, we have

(Vi R)(X,Y)Z =0.

Proof

For a horizontal fields X,Y,Z and W , we need to compute

(VIwR)X.V)Z =V R(X,Y)Z - R(Vyy X.Y)Z
~R(X .V Y)Z -R(X.Y)VyZ.

First, let us compare the coefficients of X in the 4 terms
above. From VyR(X,Y)Z we have

W(AY,Z))=g(VwY,hZ)+ g(Y,VhZ)
+(I=u/2)(g(VwY,2)+g(Y,Viy 2)).

The coefficient of X in R(X,VyY)Z is

AVwY,Z)=g(VwY,hZ)+(1-u/2)g(VyY,2),

andin R(X,.Y)VWZ is

AY Ny Z)=g(¥. Ny Z)+ (-l 2)g(Y Vi Z).

Sothe coefficientof Xin (Vg R)(X,Y)Zis g(Y, (Vg h)Z).

By Lemma 3.5 in [11], for horizontal fields #,Z the co-
variant derivative of / is given by

Vwh)Z =(gW,hGZ)—(k -)gW,GZ))U
+(g(W,hHZ) - (« - ) g(W ,HZ))V

and hence g(Y,(Viyh)Z)=0.

In VIWR(X,Y)Z we also have the term 4A(Y,Z)Vy X

but that term also appears in R(Vjy X,Y)Z and they cancel
each other out.

Similarly the coefficient of Y'also vanishes and the term
AX,Z)VwY in VIgR(X,Y)Z cancels out with its counter-

partin R(X,VY)Z.

Similar situation happens with the terms AX and AY .

For the terms with JX,JY and JZ, we need (Vg J)Z

and (VhJ)Z . Since W and Z are horizontal, using Lem-
ma 3.1, part (v) in [11] we can write

VwI)Z =-pu(W)HZ + pv(W)GZ =0,
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and

(VwhD)Z =(Nywh)JZ+h(VyJ)Z =(Vyh)JZ.

Now, if we compute the coefficient of JX in
(VI RN(X,Y)Z we get

g, (VghD)Z)+ (1~ p/ 2)g(Y,(Vy J)Z) = 0.

Similarly, the coefficients of JY and JZ vanish also.

Differentiating the term with JX we also get

—A(Y,JZ)\VyyJX + A(Y,JZ)JV X = =AY, JZ)VyJ)X =0.

Similarly for JY and JZ .

Same thing happens with the terms AJX, AJY and
hJZ .

By Lemma 3.1, part (v) in [11], for horizontal fields X
and W we have

(ViwG)X = c(W)HX, (Vi H)X = —o(W)GX.

So, by differentiating the term GX we get

(u/ 2. (VgD Z)GX (1! 2)o(W)g(Y,HZ)GX
+g(Y,GZ)(VpG)X) +g(Y,GZ)HX) '

By differentiating the term HX we get

(w12, (Vig NHX _~(u/ o (W) (Y,GZ)HX
+g(Y,HZ)(Vy H)X) +g(Y,HZ)GX)
and they cancel out. Similarly the terms we get from

GY and HY, and the terms we get from GZ and HZ can-
cel each other out.

Same thing happens with the terms #GX and hHX,
and with the terms AGY and hHY .

We conclude that, in a complex (K,y) -space with
x <1, for horizontal vector fields (Vi R)(X.,Y)Z=0. O
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