Symmetry in Complex Contact Manifolds

Belgin Korkmaz

Hitit University, Mathematics Department, Çorum, Turkey
ABSTRACT
$\mathbf{N}_{(\kappa, \mu) \text {-spaces with } \kappa<1}^{\text {e define complex locally }} \boldsymbol{\mathcal { H }}$-symmetric spaces. As an example we prove that complex
\mathcal{H}-symmetric.

Keywords:

Complex contact geometry; Symmetry; Local symmetry

Article History:

Received: 2017/05/04
Accepted: 2017/09/06 Online: 2017/12/28

Correspondence to:Belgin Korkmaz, Hitit University, Mathematics Department, Çorum, Turkey E-Mail: belginkorkmaz@hitit.edu.tr

INTRODUCTION

Takahashi defined local φ-symmetry for Sasakian manifolds by the curvature condition that

$$
\begin{equation*}
g\left(\left(\nabla_{X} R\right)(Y, Z) W, T\right)=0 \tag{1}
\end{equation*}
$$

for all horizontal vector fields X, Y, Z, W, T ([12]). There are two generalizations to contact metric manifolds. In [2], contact metric manifolds satisfying the curvature condition (1.1) are called locally φ-symmetric. In [6] another definition is given. A contact metric manifold is called locally φ-symmetric if characteristic reflections are local isometries. This condition leads to infinitely many curvature conditions including the above condition (1.1). Boeckx proved that (κ, μ)-spaces satisfy this condition ([5]). This gives a set of non Sasakian examples.

Symmetry for complex contact metric manifolds is studied by Blair and Mihai in [3], [4]. They defined a complex contact metric manifold to be GH-locally symmetric if the reflections in the integral submanifolds of the vertical bundle are isometries. They also proved in [4] that a complex (κ, μ)-space with $\kappa<1$ is GH-locally symmetric.

In this paper, we will use the first generalization of local symmetry and define a complex contact metric manifold to be locally \mathcal{H}-symmetric (in order not to confuse with GH-locally symmetric) if it satisfies the curvature condition (1) and we will give a simple and detailed proof showing that complex (κ, μ)-spaces with $\kappa<1$ satisfy this condition.

PRELIMINARIES

Let M be a complex manifold of dimension $2 n+1$. It is called a complex contact manifold if it has an open covering $\{\mathcal{O}\}$ of coordinate neighborhoods such that:

1) On each \mathcal{O} there is a holomorphic 1-form ω such that $\omega \wedge(d \omega)^{n} \neq 0$,
2) On $\mathcal{O} \cap \mathcal{O}^{\prime} \neq \varnothing$ there is a non-vanishing holomorphic function f such that $\omega^{\prime}=f \omega$.

The complex contact structure determines a nonintegrable subbundle \mathcal{H} by the equation $\omega=0 ; \mathcal{H}$ is called the complex contact subbundle or simply the horizontal subbundle.

On a complex contact manifold M, there is a Hermitian metric g, local (real) 1 forms u and $v=u^{\circ} J$, local (real) dual vector fields U and $V=-J U$, and (1,1) tensor fields G and $H=G J$ such that:

1) $G^{2}=H^{2}=-I+u \otimes U+v \otimes V$, $G^{2}=H^{2}=-I+u \otimes U+v \otimes V$, $g(U, X)=u(X), \quad g(X, G Y)=-g(G X, Y)$, $G J=-J G, \quad G U=0, \quad u(U)=1$,
2) On $\mathcal{O} \cap \mathcal{O}^{\prime} \neq \varnothing$

$$
\begin{aligned}
& u^{\prime}=A u-B v, \quad v^{\prime}=B u+A v, \\
& G^{\prime}=A G-B H, \quad H^{\prime}=B G+A H
\end{aligned}
$$

where A and B are functions with $A^{2}+B^{2}=1$.
As a result of these conditions, the following identities also hold:

$$
\text { 3) } \begin{aligned}
& H G=-G H=J+u \otimes V-v \otimes U, \\
& J H=-H J=G, \quad g(H X, Y)=g(X, H Y) \\
& G V=H U=H V=0, \quad u G=v G=u H=v H=0 \\
& J V=U, \quad g(U, V)=0 \\
& d u(X, Y)=g(X, G Y)+(\sigma \wedge v)(X, Y) \\
& d v(X, Y)=g(X, H Y)-(\sigma \wedge u)(X, Y)
\end{aligned}
$$

where $\sigma(X)=g\left(\nabla_{X} U, V\right), \nabla$ being the Levi-Civita connection of g (see [1], [7] and [9]).

Here $\omega=f(u-i v)$ where f is a non-vanishing comp-lex-valued function. Also, on the intersections the subbundle generated by U and V is the same as the subbundle generated by U^{\prime} and V^{\prime}. Hence we have a global bundle V orthogonal to \mathcal{H}. This bundle is called the vertical subbundle and it is typically assumed to be integrable. We refer to a complex contact manifold with the above structure tensors satisfying these conditions as a complex contact metric manifold.

In order to split the covariant derivatives of U and V into symmetric and skew-symmetric parts, we define two other local structure tensors:

$$
h_{U}=\frac{1}{2} \operatorname{sym} \mathcal{L}_{U} G^{\circ} p \text { and } h_{V}=\frac{1}{2} \operatorname{sym} \mathcal{L}_{V} H^{\circ} p
$$

where "sym" denotes the symmetric part and p denotes the projection $T M \rightarrow \mathcal{H}$. These operators satisfy the following properties $[2,8]$:

$$
\begin{aligned}
& h_{U} G=-G h_{U}, \quad h_{V} H=-H h_{V}, \\
& h_{U} U=h_{U} V=h_{V} U=h_{V} V=0, \\
& \nabla_{X} U=-G X-G h_{U} X+\sigma(X) V, \\
& \nabla_{X} V=-H X-H h_{V} X-\sigma(X) U .
\end{aligned}
$$

In order to define a complex (κ, μ)-space, we consider complex contact metric manifold M with $h_{U}=h_{V}=h$. In this case, h anti-commutes with G and H, and hence commutes with J. If the following curvature conditions hold for some constants κ and μ, then M is called a complex (κ, μ)-space ([11]):

$$
\begin{aligned}
R(X, Y) U= & \kappa(u(Y) X-u(X) Y)+\mu(u(Y) h X-u(X) h Y) \\
& +(\kappa-\mu)(v(Y) J X-v(X) J Y) \\
& +2((\kappa-\mu) g(J X, Y)+(4 \kappa-3 \mu) u \wedge v(X, Y)) V
\end{aligned}
$$

$$
\begin{align*}
R(X, Y) V= & \kappa(v(Y) X-v(X) Y)+\mu(v(Y) h X-v(X) h Y) \\
& -(\kappa-\mu)(u(Y) J X-u(X) J Y) \tag{3}\\
& -2((\kappa-\mu) g(J X, Y)+(4 \kappa-3 \mu) u \wedge v(X, Y)) U
\end{align*}
$$

$$
\begin{equation*}
\Omega(X, Y)=(2-\mu) g(J X, Y)+2 g(J h X, Y)+2((2-\mu) u \wedge v(X, Y)) . \tag{4}
\end{equation*}
$$

Here $\Omega=d \sigma$.

The following theorem is proved in [11].

Theorem 1

Let M be a complex (κ, μ)-space. Then $\kappa \leq 1$. If $\kappa=1$, then $h=0$ and M is normal. If $\kappa<1$, then M admits three mutually orthogonal distributions $[0],[\lambda]$ and $[-\lambda]$, defined by the eigenspaces of h, where $\lambda=\sqrt{1-\kappa}$.

Curvature of a complex (κ, μ)-space is completely determined. For details see [11].

Curvature of complex (κ, μ)-spaces

In this section we will write the curvature tensor for a complex (κ, μ) -space. In the expression for the curvature tensor there are several terms. In order to give a simpler expression if we group some terms, we come up with the following tensors which are defined for vector fields X, Y :

$$
\begin{aligned}
& A(X, Y)=g(X, h Y)+(1-\mu / 2) g(X, Y), \\
& B(X, Y)=g(X, Y)+(2-\mu) /\left(2 \lambda^{2}\right) g(X, h Y), \\
& C(X, Y)=u(X)((\kappa-1+\mu / 2) Y+(\mu-1) h Y), \\
& D(X, Y)=v(X)((\kappa-1-\mu / 2) J Y-h J Y) .
\end{aligned}
$$

Here A, B are $(0,2)$ tensors and C, D are $(1,2)$ tensors.
We also define the following $(0,3)$ tensors:

$$
\begin{aligned}
f(X, Y, Z)= & g(C(X, Y)+D(X, Y)-C(Y, X)-D(Y, X), Z) \\
& +2 g(D(Z, Y), X)-4(2 \kappa-1-\mu) v(Z) 2 u \wedge v(X, Y), \\
k(X, Y, Z)= & g(C(J X, Y)+D(J X, Y)-C(J Y, X)-D(J Y, X), Z) \\
& +2 g(D(J Z, Y), X)-4(2 \kappa-1-\mu) u(Z) 2 u \wedge v(X, Y) .
\end{aligned}
$$

Note that when the vector fields are horizontal, the tensors C, D, f and k vanish.

Theorem 2

Let M be a complex (κ, μ)-space with $\kappa<1$. Then, for vector fields X, Y, Z, the curvature tensor is given by

$$
\begin{aligned}
R(X, Y) Z & =\left(A(Y, Z)+\left(\kappa-1+\frac{\mu}{2}\right)(u(Y) u(Z)+v(Y) v(Z))\right) X \\
& -\left(A(X, Z)+\left(\kappa-1+\frac{\mu}{2}\right)(u(X) u(Z)+v(X) v(Z))\right) Y \\
& +(B(Y, Z)+(\mu-1)(u(Y) u(Z)+v(Y) v(Z))) h X \\
& -(B(X, Z)+(\mu-1)(u(X) u(Z)+v(X) v(Z))) h Y \\
& -\left(A(Y, J Z)+\left(\kappa-1-\frac{\mu}{2}\right) 2 u \wedge v(Y, Z)\right) J X \\
& +\left(A(X, J Z)+\left(\kappa-1-\frac{\mu}{2}\right) 2 u \wedge v(X, Z)\right) J Y \\
& +(2 A(X, J Y)+(2 \kappa-2-\mu) 2 u \wedge v(X, Y)) J Z \\
& -(B(Y, J Z)-2 u \wedge v(Y, Z)) h J X \\
& +(B(X, J Z)-2 u \wedge v(X, Z)) h J Y \\
& +(2 B(X, J Y)-4 u \wedge v(X, Y)) h J Z \\
& +\frac{\mu}{2}(g(Y, G Z) G X-g(X, G Z) G Y \\
& +g(Y, H Z) H X-g(X, H Z) H Y) \\
& +\frac{2 \kappa-\mu}{2 \lambda^{2}}(g(Y, h G Z) h G X-g(X, h G Z) h G Y \\
& +g(Y, h H Z) h H X-g(X, h H Z) h H Y) \\
& +\mu(g(Y, G X) G Z+g(Y, H X) H Z) \\
& +f(X, Y, Z) U+k(X, Y, Z) V .
\end{aligned}
$$

Proof

First, we write any vector field X uniquely as

$$
X=X_{\lambda}+X_{-\lambda}+u(X) U+v(X) V
$$

where $X \lambda \in[\lambda]$ and $X_{-\lambda} \in[-\lambda]$. We can write the terms $R\left(X_{ \pm}, Y_{ \pm}\right) Z_{ \pm \lambda}$ using the formulas given in [11]. The terms $R(X, Y) U, R(X, Y) V, R(U, X) Y, R(V, X) Y$, $R(X, U) Y$ and $R(X, V) Y$, can be computed by using the conditions (2) and (3). Then, by using the identities

$$
\begin{aligned}
& X_{\lambda}=\frac{1}{2}\left(X+\frac{1}{\lambda} h X-u(X) U-v(X) V\right), \\
& X-\lambda=\frac{1}{2}\left(X-\frac{1}{\lambda} h X-u(X) U-v(X) V\right),
\end{aligned}
$$

we obtain the formula in the theorem. Keep in mind that $h X \lambda=\lambda X \lambda, h X_{-\lambda}=-\lambda X_{-\lambda}$ and $h U=h V=0$.

When the vector fields are horizontal, the above expression simplifies to

$$
\begin{aligned}
R(X, Y) Z= & A(Y, Z) X-A(X, Z) Y+B(Y, Z) h X-B(X, Z) h Y \\
& -A(Y, J Z) J X+A(X, J Z) J Y+2 A(X, J Y) J Z \\
& -B(Y, J Z) h J X+B(X, J Z) h J Y+2 B(X, J Y) h J Z \\
& +\frac{\mu}{2}(g(Y, G Z) G X-g(X, G Z) G Y \\
& +g(Y, H Z) H X-g(X, H Z) H Y) \\
& +\frac{2 \kappa-\mu}{2 \lambda^{2}}(g(Y, h G Z) h G X-g(X, h G Z) h G Y \\
& +g(Y, h H Z) h H X-g(X, h H Z) h H Y) \\
& +\mu(g(Y, G X) G Z+g(Y, H X) H Z .
\end{aligned}
$$

Now we can state and prove our main theorem.

Theorem 3

Let M be a complex (κ, μ)-space with $\kappa<1$. Then, for horizontal vector fields X, Y, Z and W, we have
$\left(\nabla_{W} R\right)(X, Y) Z=0$.

Proof

For a horizontal fields X, Y, Z and W, we need to compute

$$
\begin{aligned}
\left(\nabla_{W} R\right)(X, Y) Z= & \nabla_{W} R(X, Y) Z-R\left(\nabla_{W} X, Y\right) Z \\
& -R\left(X, \nabla_{W} Y\right) Z-R(X, Y) \nabla_{W} Z .
\end{aligned}
$$

First, let us compare the coefficients of X in the 4 terms above. From $\nabla_{W} R(X, Y) Z$ we have

$$
\begin{aligned}
W(A(Y, Z))= & g\left(\nabla_{W} Y, h Z\right)+g\left(Y, \nabla_{W} h Z\right) \\
& +(1-\mu / 2)\left(g\left(\nabla_{W} Y, Z\right)+g\left(Y, \nabla_{W} Z\right)\right)
\end{aligned}
$$

The coefficient of X in $R\left(X, \nabla_{W} Y\right) Z$ is
$A\left(\nabla_{W} Y, Z\right)=g\left(\nabla_{W} Y, h Z\right)+(1-\mu / 2) g\left(\nabla_{W} Y, Z\right)$,
and in $R(X, Y) \nabla_{W} Z$ is

$$
A\left(Y, \nabla_{W} Z\right)=g\left(Y, h \nabla_{W} Z\right)+(1-\mu / 2) g\left(Y, \nabla_{W} Z\right)
$$

So the coefficient of X in $\left(\nabla_{W} R\right)(X, Y) Z$ is $g\left(Y,\left(\nabla_{W} h\right) Z\right)$.
By Lemma 3.5 in [11], for horizontal fields W, Z the covariant derivative of h is given by

$$
\begin{aligned}
\left(\nabla_{W} h\right) Z= & (g(W, h G Z)-(\kappa-1) g(W, G Z)) U \\
& +(g(W, h H Z)-(\kappa-1) g(W, H Z)) V
\end{aligned}
$$

and hence $g\left(Y,\left(\nabla_{W} h\right) Z\right)=0$.
In $\nabla_{W} R(X, Y) Z$ we also have the term $A(Y, Z) \nabla_{W} X$ but that term also appears in $R\left(\nabla_{W} \mathrm{X}, Y\right) Z$ and they cancel each other out.

Similarly the coefficient of Y also vanishes and the term $A(X, Z) \nabla_{W} Y$ in $\nabla_{W} R(X, Y) Z$ cancels out with its counterpart in $R\left(X, \nabla_{W} Y\right) Z$.

Similar situation happens with the terms $h X$ and $h Y$.
For the terms with $J X, J Y$ and $J Z$, we need $\left(\nabla_{W} J\right) Z$ and $\left(\nabla_{W} h J\right) Z$. Since W and Z are horizontal, using Lemma 3.1, part (v) in [11] we can write
$\left(\nabla_{W} J\right) Z=-\mu u(W) H Z+\mu v(W) G Z=0$,
and
$\left(\nabla_{W} h J\right) Z=\left(\nabla_{W} h\right) J Z+h\left(\nabla_{W} J\right) Z=\left(\nabla_{W} h\right) J Z$.
Now, if we compute the coefficient of $J X$ in $\left(\nabla_{W} R\right)(X, Y) Z$ we get

$$
g\left(Y,\left(\nabla_{W} h J\right) Z\right)+(1-\mu / 2) g\left(Y,\left(\nabla_{W} J\right) Z\right)=0
$$

Similarly, the coefficients of $J Y$ and $J Z$ vanish also.
Differentiating the term with $J X$ we also get $-A(Y, J Z) \nabla_{W} J X+A(Y, J Z) J \nabla_{W} X=-A(Y, J Z)\left(\nabla_{W} J\right) X=0$.

Similarly for $J Y$ and $J Z$.
Same thing happens with the terms $h J X, h J Y$ and $h J Z$.

By Lemma 3.1, part (v) in [11], for horizontal fields X and W we have

$$
\left(\nabla_{W} G\right) X=\sigma(W) H X,\left(\nabla_{W} H\right) X=-\sigma(W) G X
$$

So, by differentiating the term $G X$ we get

$$
\begin{gathered}
(\mu / 2)\left(g\left(Y,\left(\nabla_{W} G\right) Z\right) G X\right. \\
\left.+g(Y, G Z)\left(\nabla_{W} G\right) X\right)
\end{gathered}=\begin{gathered}
(\mu / 2) \sigma(W)(g(Y, H Z) G X \\
+g(Y, G Z) H X)
\end{gathered} .
$$

By differentiating the term $H X$ we get

$$
\begin{gathered}
(\mu / 2)\left(g\left(Y,\left(\nabla_{W} H\right) Z\right) H X\right. \\
\left.+g(Y, H Z)\left(\nabla_{W} H\right) X\right)
\end{gathered}=\begin{gathered}
-(\mu / 2) \sigma(W)(g(Y, G Z) H X \\
+g(Y, H Z) G X)
\end{gathered}
$$

and they cancel out. Similarly the terms we get from $G Y$ and $H Y$, and the terms we get from $G Z$ and $H Z$ cancel each other out.

Same thing happens with the terms $h G X$ and $h H X$, and with the terms $h G Y$ and $h H Y$.

We conclude that, in a complex (κ, μ)-space with $\kappa<1$, for horizontal vector fields $\left(\nabla_{W} R\right)(X, Y) Z=0$.

REFERENCES

1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser 2002.
2. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, A classification of 3-dimensional contact metric manifolds with , Kodai Math. J. 13 (1990), 391-401
3. D. E. Blair, A. Mihai, Symmetry in complex contact geometry, Rocky Mountain J. Math. 42 (2012), no. 2, 451-465
4. D. E. Blair, A. Mihai, Homogeneity and local symmetry of complex -spaces, Israel J. Math. 187 (2012), no. 2, 451464
5. E. Boeckx, A class of locally -symmetric contact metric spaces, Arch. Math. 72 (1999), 466-472
6. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448
7. B. Foreman, Variational Problems on Complex Contact Manifolds with Applications to Twistor Space Theory, Thesis, Michigan State University 1996.
8. B. Foreman, Boothby-Wang fibrations on complex contact manifolds, Differential Geom. Appl., 13 (2000), 179--196.
9. S. Ishihara, M. Konishi, Complex almost contact structures in a complex contact manifold, Kodai Math. J., 5 (1982), 30--37.
10. S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164--167.
11. B. Korkmaz, A nullity condition for complex contact metric manifolds, J. Geom. 77 (2003), 108--128.
12. T. Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. 29 (1977), 91--113.
