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Abstract
In this article, we study the piezoelectric beams with thermal and magnetic effects in the
presence of a nonlinear damping term acting on the mechanical equation. First, we prove
that the system is well-posed in the sense of semigroup theory. And by constructing a
suitable Liapunov functional, we show a general decay result of the solution for the system
from which the polynomial and exponential decay are only special cases. Furthermore,
our result does not depend on any relationship between system parameters.
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1. Introduction
In recent years, we have seen a large number of published works on piezoelectric materi-

als [12,24]. Piezoelectric materials such as quartz, Rochelle salt, and barium titanate have
an important property of converting mechanical energy to electromagnetic energy with the
effect of mechanical stress. This phenomenon is known by the direct piezoelectric effect
that was discovered by the brothers Pierre and Jacques Curie in 1880. Reciprocally, the
same materials have the ability to convert electromagnetic energy to mechanical energy
and this phenomena is well called the reverse piezoelectric effect that was discovered by
Gabriel Lippmann [27] in 1881. There are many applications of piezoelectric materials
in real life like in: civil engineering, industrial, automotive, aeronautical and space struc-
tures. Also these materials have been widely used as sensors and actuators in the area
of structures and intelligent systems [2, 3]. Furthermore, these smart materials can be
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used in many fields, especially when dealing with piezoelectric motors, sonars and injec-
tion mechanisms. The activity of these materials is related to the fact that they exhibit
microscopic polarization due to the presence of a dipole moment caused by the absence
of central symmetry. In addition, during the transformation of mechanical energy into
electric one, it also turns a small portion of it into magnetic energy [18]. This last energy
has a relatively small effect on the general dynamics, and there exist models that neglect
magnetic effects such as piezoelectric beams. However, this magnetic contribution may
limit the system performance. For example, the magnetic effect can cause oscillations
in the output, which leads to system instability in closed loop [21, 29]. Other problems
related to piezoelectric systems can be found in the following references [5, 6, 17, 26, 28].
On the other hand, in the references [13,14,30,31] a great deal of attention has been given
to the study of differential variational-hemivariational inequalities.

Morris et al. [18] using a variational approach to introduce the following coupled model
of piezoelectric beams with magnetic effects{

ρvtt − αvxx + γβpxx = 0 in (0, L) × (0, ∞) ,
µptt − βpxx + γβvxx = 0 in (0, L) × (0, ∞) ,

(1.1)

where the positive parameters ρ, α, γ, µ, β, L represent, respectively, the mass density
per unit volume, elastic stiffness, piezoelectric coefficient, magnetic permeability, water
resistance coefficient of the beam and the length of the beam. In addition, the relationship
is considered

α = α1 + γ2β with α1 > 0. (1.2)

The system (1.1) is subjected to the following initial and boundary conditions
v (0, t) = p (0, t) = αvx (L, t) − γβpx (L, t) = 0,

βpx (L, t) − γβvx (L, t) = −V (t)
h

,

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) ,

(1.3)

where h is the thickness of the beam and V (t) is the voltage applied at the electrode.
Here the functions v and p are used to denote the transverse displacement of the beam
and the total load of the electric displacement along the transverse direction at each point
x respectively. Ramos et al. [23] studied the following piezoelectric beams system with
magnetic effects {

ρvtt − αvxx + γβpxx + δvt = 0 in (0, L) × (0, T ) ,
µptt − βpxx + γβvxx = 0 in (0, L) × (0, T ) ,

(1.4)

and the system (1.4) is equipped by the following initial and boundary conditions
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, 0 ≤ t ≤ T,
p (0, t) = px (L, t) − γvx (L, t) = 0, 0 ≤ t ≤ T,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) , 0 ≤ x ≤ L,

they investigated the exponential decay of the total energy and some numerical aspects
related to the dissipative piezoelectric beams system with magnetic effects. And also, they
proved that the dissipation produced by damping δvt, acting in the mechanical equation, is
strong enough to stabilize exponentially the system solution (1.4) for whatever the physical
parameters of the model. In addition, they presented results of numerical simulations
using the explicit finite difference method. Ramos et al. [22] studied the one-dimensional
piezoelectric beams system with magnetic effects given by{

ρvtt − αvxx + γβpxx = 0 in (0, L) × (0, T ) ,
µptt − βpxx + γβvxx = 0 in (0, L) × (0, T ) ,
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with the following initial and boundary conditions
v (0, t) = αvx (L, t) − γβpx (L, t) + ξ1

vt(L,t)
h = 0, 0 < t < T,

p (0, t) = βpx (L, t) − γβvx (L, t) + ξ2
pt(L,t)

h = 0, 0 < t < T,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) , 0 < x < L,

where ξ1, ξ2 > 0, and they showed that the system is exponentially stable regardless of
any condition on the coefficients of the system, and exponential stability is equivalent to
exact observability at the boundary. In [25], Soufyane et al. considered the following
piezoelectric beams with magnetic effects, nonlinear damping and nonlinear delay terms{

ρvtt − αvxx + γβpxx + α1g1 (vt) + α2g2 (vt (x, t − τ)) = 0,
µptt − βpxx + γβvxx = 0,

with the following initial and boundary conditions
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) ,
v (0, t) = vx (1, t) = p (0, t) = px (1, t) = 0,
vt (x, t − τ) = g0 (x, t − τ) , x ∈ (0, 1) , 0 < t < τ.

Under appropriate assumptions on the weight of the delay, the authors established an
energy decay rate by using a perturbed energy method and some properties of convex
functions. Freitas et al. [8] studied the following piezoelectric beams system with thermal
and magnetic effects, and with friction damping

ρvtt − αvxx + γβpxx + δθx + g1 (v, p) = h1 in (0, L) × (0, T ) ,
µptt − βpxx + γβvxx + Avpt + g2 (v, p) = h2 in (0, L) × (0, T ) ,
cθt − κθxx + δvtx = 0 in (0, L) × (0, T ) ,

(1.5)

with the following initial and boundary conditions
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, t > 0,
p (0, t) = px (L, t) − γvx (L, t) = 0, t > 0,
θ (0, t) = θ (L, t) = 0, t > 0,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , 0 < x < L,
pt (x, 0) = p1 (x) , θ (x, 0) = θ0 (x) , 0 < x < L,

(1.6)

where the physical constants ρ, α, β, γ, δ, κ, µ and c are positive constants, g1 and g2
are nonlinear source terms, h1 and h2 are external forces. Moreover, we consider the
relationship

α = α1 + γ2β with α1 > 0,

A : D (A) ⊂ L2 (0, L) → L2 (0, L) is the one-dimensional Laplacian operator defined by

A = −∂xx with domain D (A) =
{

v ∈ H2 (0, L) ∩ H1
∗ (0, L) : vx (L) = 0

}
,

where H1
∗ (0, L) :=

{
u ∈ H1 (0, L) : u (0) = 0

}
and Av : D (Av) ⊂ L2 (0, L) → L2 (0, L) is

the fractional power associated with the operator A of order v ∈ (0, 1/2). The authors
used the variational approach for model of vibrations on piezoelectric beams with frac-
tional damping depending on v ∈ (0, 1/2). Also, they showed that the dynamical system
generated by the problem (1.5)–(1.6) has a smooth global attractor with a finite fractal
dimension by the theory of quasi-stability [4], the authors obtained the existence of a
generalized exponential attractor in a scale of fractional spaces, and they established the
stability of global attractors on the perturbation of the fractional exponent. Freitas et al.
[7] studied the following nonlinear piezoelectric beams system with a delay term{

ρvtt − αvxx + γβpxx + g1 (v, p) + vt = h1,
µptt − βpxx + γβvxx + g2 (v, p) + µ1pt + µ2pt (x, t − τ) = h2,

(1.7)
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subject to the following initial and boundary conditions{
v (0, t) = vx (L, t) = p (0, t) = px (L, t) = 0, t ≥ 0,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) , x ∈ (0, L) ,

where (x, t) ∈ (0, L)×(0, T ), the functions g1 (v, p) and g2 (v, p) represent nonlinear source
terms, h1 and h2 are external forces, whereas pt and vt denote magnetic current and
damping in displacement, respectively. They discussed its long time behavior through the
related dynamical system. The authors also showed that the system is asymptotically
smooth. In addition, they established a stabilizability inequality to get the quasi-stability
of the system and therefore obtain the finite fractal dimension of the global attractor and
exponential attractors.

In this article, motivated and inspired by the above papers, we consider the following
system 

ρvtt − αvxx + γβpxx + δθx + χ (t) g (vt) = 0 in (0, L) × (0, ∞) ,
µptt − βpxx + γβvxx = 0 in (0, L) × (0, ∞) ,
cθt − κθxx + δvtx = 0 in (0, L) × (0, ∞) .

(1.8)

This system is subjected to the following initial and boundary conditions
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , p (x, 0) = p0 (x) , x ∈ (0, L) ,
pt (x, 0) = p1 (x) , θ (x, 0) = θ0 (x) , x ∈ (0, L) ,
v (0, t) = vx (L, t) = p (0, t) = px (L, t) = θ (0, t) = θ (L, t) = 0, t ∈ (0, ∞) ,

where ρ, α, β, γ, δ, κ, µ and c are positive constants, the functions p, v and θ represent,
respectively, the total load of the electric displacement along the transverse direction at
each point x, the longitudinal displacement of the center line, and temperature. The term
χ (t) g (vt) is the nonlinear damping term where the functions χ, g are specified later, v0, v1,
p0, p1, θ0 are the initial data. Other systems with nonlinear terms [1, 11, 16]. However,
it remains with great importance in the asymptotic behavior study of the solution for
different types of systems that can be found in the following papers [9, 10, 19, 32–34].
Throughout this article, we will suppose that (1.2) is satisfied and χ and g satisfy the
following assumptions:

(A1) χ : R+ → R+ is a differentiable non-increasing function.
(A2) g : R → R is a non-decreasing C0-function, such that there exist positive constants

c1, c2, ε and a strictly increasing function Φ ∈ C1([0, +∞)) with Φ(0) = 0, and Φ
is linear or strictly convex C2-function on (0, ε] such that{

s2 + g2(s) ≤ Φ−1 (sg(s)) for all |s| ≤ ε,
c1 |s| ≤ |g(s)| ≤ c2 |s| for all |s| ≥ ε,

which means that sg(s) > 0 for all s ̸= 0.
(A3) The function g satisfies the following condition

|g(u2) − g(u1)| ≤ k0 (|u1|ρ + |u2|ρ) |u1 − u2| , u1, u2 ∈ R, (1.9)

where k0 > 0, ρ > 0.
Outline of the article. To show our goals, this article takes the following route. In Section

2, by using semigroup techniques, we study the existence and uniqueness of solutions for
the system (1.8). Next, in Section 3, we give some technical lemmas, which will be used
in the proof of our stability results. In Section 4, we present the proofs of our stability
results. Furthermore, throughout this work we use c to denote a generic positive constant.

2. The well-posedness of the problem
In this section, by using the semigroup theory [15, 20], we prove that the system (1.8)

is well-posed. So, if U = (v, u, p, q, θ)T with u = vt and q = pt, then, we can write the
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system (1.8) as {
dU
dt − AU = G(U), t > 0,
U (x, 0) = U0 (x) = (v0, v1, p0, p1, θ0)T ,

(2.1)

where the linear operator A : D(A) ⊂ H → H is defined by

AU =


u

α
ρ vxx − γβ

ρ pxx − δ
ρθx

q
β
µpxx − γβ

µ vxx
κ
c θxx − δ

c ux

 ,

and the nonlinear operator G : H −→ H is defined by

G(U) =


0

−χ(t)
ρ g (u)

0
0
0

 .

We consider the following spaces

H̃1 (0, L) =
{

g ∈ H1 (0, L) : g(0) = 0
}

,

H̃2 (0, L) = H2 (0, L) ∩ H̃1 (0, L) ,

and H is the energy space given by

H = H̃1 (0, L) × L2 (0, L) × H̃1 (0, L) × L2 (0, L) × L2 (0, L) ,

equipped with the inner product〈
U, Ũ

〉
H

= ρ

∫ L

0
uũdx + µ

∫ L

0
qq̃dx + c

∫ L

0
θθ̃dx + α1

∫ L

0
vxṽxdx

+ β

∫ L

0
(γvx − px) (γṽx − p̃x) dx. (2.2)

The domain D (A) of A is given by

D (A) =
{
U ∈ H : v ∈ H̃2 (0, L) , u ∈ H̃1 (0, L) , p ∈ H̃2 (0, L) ,

q ∈ H̃1 (0, L) , θ ∈ H2 (0, L) ∩ H1
0 (0, L) , vx (L) = px (L) = 0

}
.

Clearly, D (A) is dense in H.
Next, we prove the existence results. So, we show that the operator A is maximal

dissipative.

Theorem 2.1. Let U0 ∈ H and assume that (A1)–(A3) hold. Then, there exists a unique
solution U ∈ C (R+,H) of the problem (2.1). Moreover, if U0 ∈ D (A) then

U ∈ C (R+, D (A)) ∩ C1 (R+,H) .

Proof. First, we show that the operator A is maximal dissipative. For any U ∈ D (A)
and by using the inner product, we have

⟨AU,U⟩H =
〈


u
α
ρ vxx − γβ

ρ pxx − δ
ρθx

q
β
µpxx − γβ

µ vxx
κ
c θxx − δ

c ux

 ,


v
u
p
q
θ


〉

,
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we obtain
⟨AU,U⟩H = −κ

∫ L

0
θ2

xdx ≤ 0. (2.3)

So, the operator A is dissipative. Now, we show that R (I − A) = H. For this, it is sufficient
to prove that for S = (s1, s2, s3, s4, s5)T ∈ H, there exists U = (v, u, p, q, θ)T ∈ D (A) such
that

(I − A)U = S. (2.4)
That is, 

v − u = s1 ∈ H̃1 (0, L) ,
ρu − αvxx + γβpxx + δθx = ρs2 ∈ L2 (0, L) ,
p − q = s3 ∈ H̃1 (0, L) ,
µq − βpxx + γβvxx = µs4 ∈ L2 (0, L) ,
cθ − κθxx + δux = cs5 ∈ L2 (0, L) .

(2.5)

Inserting u = v − s1 in (2.5)2, (2.5)5 and q = p − s3 in (2.5)4, we get
ρv − αvxx + γβpxx + δθx = h ∈ L2 (0, L) ,
µp − βpxx + γβvxx = J ∈ L2 (0, L) ,
cθ − κθxx + δvx = Q ∈ L2 (0, L) ,

(2.6)

where
h = ρ (s1 + s2) , J = µ (s3 + s4) , Q = cs5 + δs1x.

For solve (2.6), we introduce the variational formulation as follows
B ((v, p, θ) , (v1, p1, θ1)) = L (v1, p1, θ1) , ∀ (v1, p1, θ1) ∈ W, (2.7)

where W = H̃1 (0, L)×H̃1 (0, L)×H1
0 (0, L), the bilinear form B : W ×W −→ R is defined

by
B ((v, p, θ) , (v1, p1, θ1))

= ρ

∫ L

0
vv1dx + α1

∫ L

0
vxv1xdx

+ µ

∫ L

0
pp1dx + β

∫ L

0
(γvx − px) (γv1x − p1x) dx

+ δ

∫ L

0
(θxv1 + vxθ1) dx + c

∫ L

0
θθ1dx + κ

∫ L

0
θxθ1xdx,

and the linear form L : W −→ R is given by

L (v1, p1, θ1) =
∫ L

0
hv1dx +

∫ L

0
Jp1dx +

∫ L

0
Qθ1dx.

Now, for W = H̃1 (0, L) × H̃1 (0, L) × H1
0 (0, L) equipped with the norm

∥(v, p, θ)∥2
W = ∥v∥2

2 + ∥vx∥2
2 + ∥p∥2

2 + ∥γvx − px∥2
2 + ∥θ∥2

2 + ∥θx∥2
2 .

Then, we have
B ((v, p, θ) , (v, p, θ)) = ρ ∥v∥2

2 + α1 ∥vx∥2
2 + µ ∥p∥2

2 + β ∥γvx − px∥2
2 + c ∥θ∥2

2 + κ ∥θx∥2
2 .

So, for some M > 0, we get
B ((v, p, θ) , (v, p, θ)) ≥ M ∥(v, p, θ)∥2

W .

Then, the operator B is coercive.
Now, by using the Cauchy-Schwartz inequality, we have

|B ((v, p, θ) , (v1, p1, θ1))| ≤ n ∥(v, p, θ)∥W ∥(v1, p1, θ1)∥W .

Similarly
|L (v1, p1, θ1)| ≤ l ∥(v1, p1, θ1)∥W .
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Then, by using the Lax-Milgram theorem, we prove the existence of a unique
(v, p, θ) ∈ H̃1 (0, L) × H̃1 (0, L) × H1

0 (0, L) ,

satisfying
B ((v, p, θ) , (v1, p1, θ1)) = L (v1, p1, θ1) , ∀ (v1, p1, θ1) ∈ W.

By substituting v into (2.5)1 and p into (2.5)3, we obtain

(u, q) ∈ H̃1 (0, L) × H̃1 (0, L) .

Furthermore, if we take (v1, θ1) = (0, 0) ∈ H̃1 (0, L) × H1
0 (0, L) in (2.7), then we obtain

µ

∫ L

0
pp1dx + β

∫ L

0
pxp1xdx − γβ

∫ L

0
vxp1xdx =

∫ L

0
Jp1dx, ∀p1 ∈ H̃1 (0, L) . (2.8)

By multiplying (2.6)1 and (2.6)2 by γβ and α respectively, and by adding the obtained
results, we get

pxx = γρ

α1
v + αµ

βα1
p + γδ

α1
θx − γ

α1
h − α

βα1
J ∈ L2 (0, L) .

Consequently, we obtain
p ∈ H̃2 (0, L) .

In the same way, if we take (p1, θ1) = (0, 0) ∈ H̃1 (0, L) × H1
0 (0, L) in (2.7), we get

ρ

∫ L

0
vv1dx+α

∫ L

0
vxv1xdx−γβ

∫ L

0
pxv1xdx+δ

∫ L

0
θxv1dx =

∫ L

0
hv1dx, ∀v1 ∈ H̃1 (0, L) .

(2.9)
Multiplying (2.6)2 by γ and adding with (2.6)1, we obtain

vxx = ρ

α1
v + γµ

α1
p + δ

α1
θx − 1

α1
h − γ

α1
J ∈ L2 (0, L) .

Consequently, we obtain
v ∈ H̃2 (0, L) .

Similarly, if we take (v1, p1) = (0, 0) ∈ H̃1 (0, L) × H̃1 (0, L) in (2.7), then we have

c

∫ L

0
θθ1dx + κ

∫ L

0
θxθ1xdx + δ

∫ L

0
vxθ1dx =

∫ L

0
Qθ1dx, ∀θ1 ∈ H1

0 (0, L) . (2.10)

By exploiting (2.6)3, we obtain

θxx = c

κ
θ + δ

κ
vx − 1

κ
Q ∈ L2 (0, L) .

Consequently, we obtain
θ ∈ H2 (0, L) ∩ H1

0 (0, L) .

Thus, by integrating (2.8) and (2.9) by parts and exploiting (2.6)1, (2.6)2, then we obtain{
(βpx (L) − γβvx (L)) p1 (L) − (βpx (0) − γβvx (0)) p1 (0) = 0,
(αvx (L) − γβpx (L)) v1 (L) − (αvx (0) − γβpx (0)) v1 (0) = 0.

Furthermore, if we take p1 = γx
L and v1 = x

L , then we get{
γβpx (L) − γ2βvx (L) = 0,
αvx (L) − γβpx (L) = 0.

(2.11)

By performing some calculations on the above expression (2.11), we get(
α − γ2β

)
vx (L) = 0,

and as
(
α − γ2β

)
= α1, then we find

α1vx (L) = 0.
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Since α1 > 0, then we obtain
vx (L) = 0. (2.12)

By substituting the value of (2.12) into (2.11), then we get

px (L) = 0.

Therefore,
vx (L) = px (L) = 0.

Then, there exists a unique U ∈ D (A), such that (2.4) is satisfied. Hence, the operator A
is maximal dissipative.

Next, we show that the operator G defined in (2.1) is locally Lipschitz in H. Let
U = (v, u, p, q, θ)T ∈ H and U1 = (v1, u1, p1, q1, θ1)T ∈ H, then we have

∥G (U) − G (U1)∥H ≤ η ∥g(u) − g(u1)∥L2 .

By exploiting (1.9), Hölder inequality, we can obtain

∥g(u) − g(u1)∥L2 ≤ k0
(
∥u∥ρ

2ρ + ∥u1∥ρ
2ρ

)
∥u − u1∥L2 ≤ η1 ∥u − u1∥L2 ,

which gives us
∥G (U) − G (U1)∥H ≤ η2 ∥U − U1∥H .

So, G is locally Lipschitz operator in H.
Therefore, by using the Hille-Yosida theorem, we obtain the well-posedness result. □

3. Technical lemmas
In this section, by using the multiplier technique, we prove and state our stability results

for the solution of the system (1.8).

Lemma 3.1. If (v, p, θ) is a solution of (1.8), then the energy functional defined by

E(t) = 1
2

∫ L

0

[
ρv2

t + µp2
t + α1v2

x + β(γvx − px)2 + cθ2
]

dx, (3.1)

satisfies

E′(t) = −κ

∫ L

0
θ2

xdx − χ (t)
∫ L

0
vtg (vt) dx ≤ 0. (3.2)

Proof. Multiplying the first equation in (1.8) by vt, the second one by pt and the third
one by θ, respectively. Then, integrating over (0, L), applying integration by parts and
the boundary conditions, and adding the obtained results, we get (3.2). □

Lemma 3.2. If (v, p, θ) is a solution of (1.8), then the functional

F1 (t) = ρ

∫ L

0
vvtdx + γµ

∫ L

0
vptdx, t ≥ 0,

satisfies

F′
1 (t) ≤ −α1

4

∫ L

0
v2

xdx +
[
ρ + γµ

4ε1

] ∫ L

0
v2

t dx + γµε1

∫ L

0
p2

t dx

+ δ2c

α1

∫ L

0
θ2

xdx + χ2 (0) c

2α1

∫ L

0
g2 (vt) dx. (3.3)

Proof. By differentiating F1(t), using (1.8)1, (1.8)2 and integrating by parts together with
the boundary conditions, we obtain

F′
1 (t) = −α1

∫ L

0
v2

xdx+ρ

∫ L

0
v2

t dx+γµ

∫ L

0
vtptdx−δ

∫ L

0
θxvdx−χ (t)

∫ L

0
vg (vt) dx. (3.4)
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By using the Young and Poincaré inequalities, we get

γµ

∫ L

0
vtptdx ≤ γµε1

∫ L

0
p2

t + γµ

4ε1

∫ L

0
v2

t dx, (3.5)

−χ (t)
∫ L

0
vg (vt) dx ≤ α1

2

∫ L

0
v2

xdx + χ2 (0) c

2α1

∫ L

0
g2 (vt) dx, (3.6)

−δ

∫ L

0
θxvdx ≤ α1

4

∫ L

0
v2

xdx + δ2c

α1

∫ L

0
θ2

xdx. (3.7)

Substituting (3.5), (3.6) and (3.7), in (3.4), we get (3.3). □
Lemma 3.3. If (v, p, θ) is a solution of (1.8), then the functional

F2(t) =
∫ L

0
(ρvt + γµpt) (γv − p) dx, t ≥ 0,

satisfies

F′
2 (t) ≤ −γµ

2

∫ L

0
p2

t dx + α1ε3

∫ L

0
(γvx − px)2 dx + α1

4ε3

∫ L

0
v2

xdx

+ δε5c

∫ L

0
(γvx − px)2 dx + δ

4ε5

∫ L

0
θ2

xdx + cχ(0)ε4

∫ L

0
(γvx − px)2 dx

+ χ (0)
4ε4

∫ L

0
g2 (vt) dx +

[
ργ +

(
γ2µ − ρ

)2
2γµ

] ∫ L

0
v2

t dx. (3.8)

Proof. By differentiating F2(t), using (1.8)1, (1.8)2 and integrating by parts together with
the boundary conditions, we get

F′
2 (t) = −γµ

∫ L

0
p2

t dx − α1

∫ L

0
vx (γvx − px) dx − δ

∫ L

0
θx (γv − p) dx

− χ(t)
∫ L

0
(γv − p) g (vt) dx + ργ

∫ L

0
v2

t dx +
(
γ2µ − ρ

) ∫ L

0
ptvtdx. (3.9)

By applying the Young and Poincaré inequalities, we get

−α1

∫ L

0
vx (γvx − px) dx ≤ α1ε3

∫ L

0
(γvx − px)2 dx + α1

4ε3

∫ L

0
v2

xdx, (3.10)

−χ(t)
∫ L

0
(γv − p) g (vt) dx ≤ cχ(0)ε4

∫ L

0
(γvx − px)2 dx + χ(0)

4ε4

∫ L

0
g2 (vt) dx, (3.11)

and
−δ

∫ L

0
θx (γv − p) dx ≤ δε5c

∫ L

0
(γvx − px)2 dx + δ

4ε5

∫ L

0
θ2

xdx. (3.12)

By using the Young inequality again, we obtain(
γ2µ − ρ

) ∫ L

0
ptvtdx ≤ γµ

2

∫ L

0
p2

t dx +
(
γ2µ − ρ

)2
2γµ

∫ L

0
v2

t dx. (3.13)

By substituting (3.10)–(3.13) in (3.9), we get (3.8). □
Lemma 3.4. If (v, p, θ) is a solution of (1.8), then the functional

F3 (t) = ρ

∫ L

0
vvtdx + µ

∫ L

0
pptdx, t ≥ 0,

satisfies

F′
3(t) ≤ −β

∫ L

0
(γvx − px)2 dx + ρ

∫ L

0
v2

t dx + δcε7

∫ L

0
v2

xdx + δ

4ε7

∫ L

0
θ2

xdx

+ µ

∫ L

0
p2

t dx + χ (0) cε6

∫ L

0
v2

xdx + χ (0)
4ε6

∫ L

0
g2 (vt) dx. (3.14)
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Proof. By differentiating F3(t), using (1.8)1, (1.8)2 and integrating by parts together with
the boundary conditions, we obtain

F′
3 (t) = −β

∫ L

0
(γvx − px)2 dx − α1

∫ L

0
v2

xdx + ρ

∫ L

0
v2

t dx

− δ

∫ L

0
θxvdx + µ

∫ L

0
p2

t dx − χ (t)
∫ L

0
g (vt) vdx. (3.15)

By using the Young and Poincaré, inequalities, we obtain

−χ (t)
∫ L

0
g (vt) vdx ≤ χ (0) cε6

∫ L

0
v2

xdx + χ (0)
4ε6

∫ L

0
g2 (vt) dx, (3.16)

and

−δ

∫ L

0
θxvdx ≤ δcε7

∫ L

0
v2

xdx + δ

4ε7

∫ L

0
θ2

xdx. (3.17)

Substituting (3.16), (3.17) in (3.15), we get (3.14). □

Now, we define the Liapunov functional L(t) by

L(t) := NE(t) +
3∑

i=1
NiFi (t) , (3.18)

where N, N1, N2, N3 are positive constants.

Lemma 3.5. If (v, p, θ) be a solution of (1.8), then there are two positive constants τ1
and τ2 such that the Liapunov functional (3.18) satisfies

τ1E (t) ≤ L(t) ≤ τ2E (t) , ∀t ≥ 0, (3.19)

and

L′(t) ≤ −β1E(t) + c

∫ L

0

(
v2

t + g2 (vt)
)

dx, ∀t ≥ 0. (3.20)

Proof. From (3.18), we have

|L(t) − NE (t)| ≤ ρN1

∫ L

0
|vtv| dx + γµN1

∫ L

0
|vpt| dx

+ N2

∫ L

0
|(ρvt + γµpt)| |(γv − p)| dx

+ ρN3

∫ L

0
|vvt| dx + µN3

∫ L

0
|ppt| dx.

By using the Young, Poincaré and Cauchy-Schwartz inequalities, we obtain

|L(t) − NE (t)| ≤ cE (t) ,

which yields

(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) .
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By choosing N (depending on N1, N2 and N3 ) sufficiently large we get (3.19). Now, By
differentiating L (t), using (3.2), (3.3), (3.8), and (3.14), we obtain

L′(t) ≤ −
[
N1α1

4
− N2α1

4ε3
− N3χ (0) cε6 − δcε7N3

] ∫ L

0
v2

xdx

−
[
N2γµ

2
− N1γµε1 − µN3

] ∫ L

0
p2

t dx

− [βN3 − N2 (α1ε3 + cχ(0)ε4 + δε5c)]
∫ L

0
(γvx − px)2 dx

−
[
κN − N1δ2c

α1
− N2δ

4ε5
− δN3

4ε7

] ∫ L

0
θ2

xdx

+
[
Nχ (0) ε2 + N1

(
ρ + γµ

4ε1

)
+ N2

((
γ2µ − ρ

)2
2γµ

+ ργ

)
+ N3ρ

] ∫ L

0
v2

t dx

+
[
Nχ (0)

4ε2
+ N1χ2(0)c

2α1
+ N2χ(0)

4ε4
+ N3χ (0)

4ε6

] ∫ L

0
g2 (vt) dx.

By setting ε1 = 1
N1

, ε2 = 1
N

, ε3 = ε4 = ε5 = 1
N2

, ε6 = ε7 = 1
N3

L′(t) ≤ −
[
N1α1

4
− N2

2α1
4

− χ (0) c − δc

] ∫ L

0
v2

xdx

−
[
N2γµ

2
− µN3 − γµ

] ∫ L

0
p2

t dx

− [βN3 − (α1 + cχ(0) + δc)]
∫ L

0
(γvx − px)2 dx

−
[
κN − N1δ2c

α1
− N2

2δ

4
− δN2

3
4

] ∫ L

0
θ2

xdx

+
[
χ (0) + N1

(
ρ + N1γµ

4

)
+ N2

((
γ2µ − ρ

)2
2γµ

+ ργ

)
+ N3ρ

] ∫ L

0
v2

t dx

+
[
N2χ(0)

4
+ N1χ2(0)c

2α1
+ N2

2χ(0)
4

+ N2
3χ(0)
4

] ∫ L

0
g2 (vt) dx.

Now, we select our parameters appropriately as follows.
First, we choose N3 large enough so that

δ1 = βN3 − (α1 + cχ(0) + δc) > 0.

Then we choose N2 large enough so that

δ2 = N2γµ

2
− µN3 − γµ > 0.

Next, we select N1 so large that

δ3 = N1α1
4

− N2
2α1
4

− χ (0) c − δc > 0.

Finally, we choose N large enough so that

δ4 = κN − N1δ2c

α1
− N2

2δ

4
− δN2

3
4

> 0.
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So, we end up with

L′(t) ≤ −δ1

∫ L

0
(γvx − px)2 dx − δ2

∫ L

0
p2

t dx − δ3

∫ L

0
v2

xdx

− δ4

∫ L

0
θ2

xdx + c

∫ L

0

(
v2

t + g2 (vt)
)

dx.

Use the Poincaré inequality to substitute −
∫ L

0 θ2
xdx by −

∫ L
0 θ2dx, we get

L′(t) ≤ −δ1

∫ L

0
(γvx − px)2 dx − δ2

∫ L

0
p2

t dx − δ3

∫ L

0
v2

xdx

− cδ4

∫ L

0
θ2dx + c

∫ L

0

(
v2

t + g2 (vt)
)

dx

≤ − min (δ1, δ2, δ3, cδ4)
∫ L

0

[
v2

x + p2
t + (γvx − px)2 + θ2

]
dx

+ c

∫ L

0

(
v2

t + g2 (vt)
)

dx. (3.21)

On the other hand,

E(t) ≤ c

∫ L

0

[
v2

x + p2
t + (γvx − px)2 + v2

t + θ2
]

dx,

which implies that

−
∫ L

0

[
v2

x + p2
t + (γvx − px)2 + θ2

]
dx ≤ −c′E(t) +

∫ L

0
v2

t dx. (3.22)

The combination of (3.21) and (3.22) gives (3.20). □

4. Stability results
In this section, we state and prove our stability result.

Theorem 4.1. Suppose (A1)–(A2) hold. Then, there exist positive constants µ1, µ2, µ3,
and ε0 such that the solution of (1.8) satisfies

E(t) ≤ µ1Φ−1
1

(
µ2

∫ t

0
χ (s) ds + µ3

)
, t ≥ 0, (4.1)

where
Φ1 (t) =

∫ 1

t

1
Φ0 (s)

ds and Φ0 (t) = tΦ′ (ε0t) , ∀ε0 ≥ 0.

Proof. Multiplying (3.20) by χ (t), we have

χ (t)L′(t) ≤ −β1χ (t)E(t) + cχ (t)
∫ L

0

(
v2

t + g2 (vt)
)

dx. (4.2)

Now, we distinguish two cases.
Case 1. Φ is linear on [0, ε]. By exploiting (3.2) and the hypothesis (A2) and note that

c is a generic positive constant, then we obtain

χ (t)L′(t) ≤ −β1χ (t)E(t) + cχ (t)
∫ L

0
(vtg (vt)) dx

= −β1χ (t)E(t) − cE′(t) − cκ

∫ L

0
θ2

xdx

≤ −β1χ (t)E(t) − cE′(t),
which implies

(χ (t)L(t) + cE(t))′ − χ′ (t)L(t) ≤ −β1χ (t)E(t). (4.3)
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Since χ′ (t) ≤ 0, then (4.3) is equivalent to

K′
0(t) ≤ −β1χ (t)E(t),

where
K0(t) := χ (t)L(t) + cE(t) ∼ E(t). (4.4)

So, for some positive constant λ1, we obtain

K′
0(t) + λ1χ (t)K0(t) ≤ 0, ∀t ≥ 0. (4.5)

The combination of (4.5) and (4.4), gives

E(t) ≤ E(0)e−λ1
∫ t

0 χ(s)ds = E(0)Φ−1
1

(
λ1

∫ t

0
χ (s) ds

)
. (4.6)

Case 2. Φ is nonlinear on [0, ε]. In this case, we first choose 0 < ε1 ≤ ε such that

sg(s) ≤ min {ε, Φ(ε)} , ∀ |s| ≤ ε1. (4.7)

By using (A2) along with fact that the function g is continuous and |g(s)| > 0, for s ̸= 0,
it follows that {

s2 + g2(s) ≤ Φ−1 (sg(s)) , ∀ |s| ≤ ε1,
c1 |s| ≤ |g(s)| ≤ c2 |s| , ∀ |s| ≥ ε1.

(4.8)

To estimate the last integral in (4.2), we introduce the following partition of (0, L)

I1 = {x ∈ (0, L) : |vt| ≤ ε1} , I2 = {x ∈ (0, L) : |vt| > ε1} .

Now, we define I(t) by

I(t) =
∫

I1
vtg(vt)dx,

using Jensen inequality (note that Φ−1 is concave), we have

Φ−1 (I(t)) ≥ c

∫
I1

Φ−1 (vtg(vt)) dx. (4.9)

Direct computations using (4.8) and (4.9) yields

χ (t)
∫ L

0

(
v2

t + g2(vt)
)

dx

= χ (t)
∫

I1

(
v2

t + g2(vt)
)

dx + χ (t)
∫

I2

(
v2

t + g2(vt)
)

dx

≤ χ (t)
∫

I1
Φ−1 (vtg(vt)) dx + cχ (t)

∫
I2

vtg(vt)dx

≤ cχ (t) Φ−1 (I(t)) − cE′(t) − cκ

∫ L

0
θ2

xdx

≤ cχ (t) Φ−1 (I(t)) − cE′(t). (4.10)

So, by substituting (4.10) into (4.2) and using (4.4) and (A1), we have

K′
0(t) ≤ −β1χ (t)E(t) + cχ (t) Φ−1 (I(t)) , ∀t ≥ 0. (4.11)

Now, for ε0 < ε and δ0 > 0, using (4.11) and the fact that E′ (t) ≤ 0, Φ′ (t) > 0, Φ′′ (t) > 0
on (0, ε], we find that the functional K1, defined by

K1 (t) := Φ′
(

ε0
E(t)
E(0)

)
K0 (t) + δ0E(t),

satisfies, for some α1, α2 > 0,

α1K1 (t) ≤ E(t) ≤ α2K1 (t) , (4.12)
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and

K′
1 (t) = ε0

E′(t)
E(0)

Φ′′
(

ε0
E(t)
E(0)

)
K0 (t) + Φ′

(
ε0

E(t)
E(0)

)
K′

0 (t) + δ0E
′(t)

≤ −β1χ (t)E(t)Φ′
(

ε0
E(t)
E(0)

)
+ cχ (t) Φ′

(
ε0

E(t)
E(0)

)
Φ−1 (I (t)) + δ0E

′(t). (4.13)

Let Φ∗ be the convex conjugate of Φ defined by

Φ∗ (s) = s
(
Φ′)−1 (s) − Φ

[(
Φ′)−1 (s)

]
if s ∈

(
0, Φ′ (ε)

]
,

satisfying the following general Young inequality
AB ≤ Φ∗ (A) + Φ(B) if A ∈

(
0, Φ′ (ε)

]
, B ∈ (0, ε] .

Taking A = Φ′
(
ε0

E(t)
E(0)

)
and B = Φ−1 (I (t)), using (4.7), we get

cχ (t) Φ′
(

ε0
E(t)
E(0)

)
Φ−1 (I (t)) ≤ cχ (t) Φ∗

(
Φ′
(

ε0
E(t)
E(0)

))
+ cχ (t) I(t).

By using (3.2) and the fact that Φ∗ (s) ≤ s (Φ′)−1 (s), we have

cχ (t) Φ′
(

ε0
E(t)
E(0)

)
Φ−1 (I (t))

≤ cε0χ (t) E(t)
E(0)

Φ′
(

ε0
E(t)
E(0)

)
− cE′(t) − cκ

∫ L

0
θ2

xdx

≤ cε0χ (t) E(t)
E(0)

Φ′
(

ε0
E(t)
E(0)

)
− cE′(t). (4.14)

Substituting (4.14) into (4.13), we obtain

K′
1 (t) ≤ −β1χ (t)E(t)Φ′

(
ε0

E(t)
E(0)

)
+ cε0χ (t) E(t)

E(0)
Φ′
(

ε0
E(t)
E(0)

)
− cE′(t) + δ0E

′(t)

≤ − (β1E(0) − cε0) χ (t) E(t)
E(0)

Φ′
(

ε0
E(t)
E(0)

)
+ (δ0 − c)E′(t).

We now choose ε0 and δ0 small enough such that
k = β1E(0) − cε0 > 0 and δ0 − c > 0,

using that E′(t) ≤ 0, we get

K′
1 (t) ≤ −kχ (t) E(t)

E(0)
Φ′
(

ε0
E(t)
E(0)

)
= −kχ (t) Φ0

(
E(t)
E(0)

)
, (4.15)

where Φ0(t) = tΦ′(ε0t). Note that
Φ′

0(t) = Φ′(ε0t) + ε0tΦ′′(ε0t).
So, using the strict convexity of Φ on (0, ε], we find that Φ0(t) > 0, Φ′

0(t) > 0 on (0, 1].
With K(t) := α1K1(t)

E(0) it is obvious that K(t) ≤ E(t)
E(0) ≤ 1. Now, using (4.12) and (4.15), we

have
K(t) ∼ E(t), (4.16)

and, for some µ2 > 0,
K′(t) ≤ −µ2χ (t) Φ0(K(t)). (4.17)

Inequality (4.17) implies that d
dt [Φ1(K(t))] ≥ µ2χ (t), where

Φ1 (t) =
∫ 1

t

1
Φ0(s)

ds.
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So, by integrating over [0, t], we get, for some µ3 > 0,

K(t) ≤ Φ−1
1

(
µ2

∫ t

0
χ (s) ds + µ3

)
. (4.18)

Here, we used the fact that Φ1 is strictly decreasing on (0, 1]. Therefore, by using (4.16)
and (4.18), we get (4.1). □
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