CONTRA SEMI-I-CONTINUOUS FUNCTIONS

Jamal M. Mustafa *

Received 12:01:2009 : Accepted 19:12:2009

Abstract

In this paper, we apply the notion of *semi-I-open* sets in ideal topological spaces to present and study a new class of functions called *contra semi-I-continuous* functions. Relationships between this new class and other classes of functions are established.

Keywords: Ideal topological space, Semi-I-open sets, Contra semi-I-continuous functions, Contra I-irresolute functions, Perfectly contra I-irresolute functions.

2000 AMS Classification: 54 C 08, 54 C 10.

1. Introduction

In 1996, Dontchev [1] introduced a new class of functions called contra-continuous functions. He defined a function $f: X \to Y$ to be *contra-continuous* if the preimage of every open set of Y is closed in X. A new weaker form of this class of functions, called *contra-semi-continuous* functions, is introduced and investigated by Dontchev and Noiri [2]. In this direction, we will introduce the concept of *contra semi-I-continuous* functions via the notion of semi-I-open sets. We also obtain some properties of such functions.

The subject of ideals in topological spaces has been studied by Kuratowski [6] and Vaidyanathaswamy [9]. An ideal on a topological space (X, τ) is defined as a non-empty collection I of subsets of X satisfying the following two conditions:

(1) If $A \in I$ and $B \subseteq A$, then $B \in I$;

(2) If $A \in I$ and $B \in I$, then $A \cup B \in I$.

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . For a subset $A \subseteq X$, the set

 $A^*(I) = \{ x \in X : U \cap A \notin I \}$

for every $U \in \tau$ with $x \in U$, is called the *local function* of A with respect to I and τ [5]. We simply write A^* instead of $A^*(I)$ in case there is no chance of confusion. It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

Throughout this paper, for a subset A of a topological space (X, τ) , Cl (A) and Int (A) denote the closure and the interior of A, respectively.

^{*}Department of Mathematics , Al al-Bayt University, P.O.Box: 130095, Mafraq, Jordan. E-mail: jjmmrr971@yahoo.com

A subset A of an ideal topological space (X, τ, I) is said to be *semi-I-open* [3] (resp., *semi-open* [7], *I-open* [5]) if $A \subseteq \operatorname{Cl}^*(\operatorname{Int}(A))$ (resp., $A \subseteq \operatorname{Cl}(\operatorname{Int}(A))$, $A \subseteq \operatorname{Int}(A^*)$). The *complement* of a semi-*I*-open (resp., semi-open, *I*-open) set is called *semi-I-closed* [3] (resp., *semi-closed* [7], *I*-closed [5]). If the set A is semi-*I*-open and semi-*I*-closed, then it is called *semi-I-clopen*.

2. Contra semi-*I*-continuous functions

2.1. Definition. A function $f: (X, \tau, I) \to (Y, \rho)$ is called *contra semi-I-continuous* if $f^{-1}(V)$ is semi-*I*-closed in X for each open set V in Y.

2.2. Theorem. For a function $f: (X, \tau, I) \to (Y, \rho)$, the following are equivalent:

- a) f is contra semi-I-continuous.
- b) For every closed subset F of Y, $f^{-1}(F)$ is semi-I-open in X.
- c) For each $x \in X$ and each closed subset F of Y with $f(x) \in F$, there exists a semi-I-open subset U of X with $x \in U$ such that $f(U) \subseteq F$.

Proof. The implications (a) \implies (b) and (b) \implies (c) are obvious.

(c) \Longrightarrow (b) Let F be any closed subset of Y. If $x \in f^{-1}(F)$ then $f(x) \in F$, and there exists a semi-*I*-open subset U_x of X with $x \in U_x$ such that $f(U_x) \subseteq F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. Now, by [4, Theorem 3.4] we have that $f^{-1}(F)$ is semi-*I*-open.

Recall that a function $f: (X, \tau, I) \to (Y, \rho)$ is called *contra semi-continuous* [2] if the preimage of every open subset of Y is semi-closed in X.

Since every semi-*I*-open set is semi-open, then every contra semi-*I*-continuous function is contra semi-continuous, but the converse need not be true as shown by the following example:

2.3. Example. Let $X = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{2\}, \{3\}, \{2, 3\}, \{1, 2\}, \{1, 2, 3\}, \{2, 3, 4\}\}$ and $I = \{\emptyset, \{3\}\}$. Let $f : (X, \tau, I) \to (X, \tau)$ be defined by f(1) = 2, f(2) = 1, f(3) = 4and f(4) = 3. Observe that f is contra semi-continuous. But f is not contra semi-Icontinuous, since $\{1, 2\}$ is open and $f^{-1}(\{1, 2\}) = \{1, 2\}$ is not semi-I-closed.

A function $f: (X, \tau, I) \to (Y, \rho)$ is called *contra I-continuous* if the preimage of every open subset of Y is an I-closed subset of X.

The following two examples show that the concepts of contra-*I*-continuity and contra semi-*I*-continuity are independent of each other.

2.4. Example. Let $X = \{1, 2\}, \tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{1\}\}$. Let $f : (X, \tau, I) \rightarrow (X, \tau)$ be defined by f(1) = 2 and f(2) = 1. Observe that f is contra semi-I-continuous. But f is not contra-I-continuous since $\{1\}$ is open and $f^{-1}(\{1\}) = \{2\}$ is not I-closed.

2.5. Example. Let $X = Y = \{1, 2\}, \tau = \{\emptyset, X\}, I = \{\emptyset, \{1\}\}$ and $\rho = \{\emptyset, Y, \{1\}\}$. Let $f : (X, \tau, I) \to (Y, \rho)$ be the identity function. Observe that f is contra *I*-continuous. But f is not contra semi-*I*-continuous, since $\{1\}$ is open in Y and $f^{-1}(\{1\}) = \{1\}$ is not semi-*I*-closed in X.

Recall that a function $f : (X, \tau, I) \to (Y, \rho)$ is called *semi-I-continuous* [3] if the preimage of every open subset of Y is semi-*I*-open in X.

The following two examples show that the concepts of semi-*I*-continuity and contra semi-*I*-continuity are independent of each other.

2.6. Example. Let $X = \{1, 2\}$, $\tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{2\}\}$. Let $f : (X, \tau, I) \to (X, \tau)$ be defined by f(1) = 2 and f(2) = 1. Observe that f is contra semi-I-continuous. But f is not semi-I-continuous, since $\{1\}$ is open and $f^{-1}(\{1\}) = \{2\}$ is not semi-I-open.

2.7. Example. Let $X = \mathbb{R}$, τ the usual topology and $I = \{\emptyset, \{1\}\}$. The identity function $f : (R, \tau, I) \to (R, \tau)$ is semi-*I*-continuous. But f is not contra semi-*I*-continuous, since the inverse image of (0, 1) is not semi-*I*-closed.

2.8. Theorem. If a function $f : (X, \tau, I) \to (Y, \rho)$ is contra semi-*I*-continuous and *Y* is regular, then *f* is semi-*I*-continuous.

Proof. Let $x \in X$ and let V be an open subset of Y with $f(x) \in V$. Since Y is regular, there exists an open set W in Y such that $f(x) \in W \subseteq \operatorname{Cl}(W) \subseteq V$. Since f is contra semi-*I*-continuous, by Theorem 2.2. there exists a semi-*I*-open set U in X with $x \in U$ such that $f(U) \subseteq \operatorname{Cl}(W)$. Then $f(U) \subseteq \operatorname{Cl}(W) \subseteq V$. Hence, by [4, Theorem 4.1], f is semi-*I*-continuous.

Note that if $f: (X, \tau, I) \to (Y, \rho)$ is semi-*I*-continuous and Y is regular, then f need not be contra semi-*I*-continuous, as shown in Example 2.7.

2.9. Definition. A topological space (X, τ, I) is said to be *semi-I-connected* if X is not the union of two disjoint non-empty semi-*I*-open subsets of X.

2.10. Theorem. If $f : (X, \tau, I) \to (Y, \rho)$ is a contra semi-*I*-continuous function from a semi-*I*-connected space X onto any space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper non-empty clopen set in Y. Then $f^{-1}(A)$ is a proper non-empty semi-I-clopen subset of X, which contradicts the fact that X is semi-I-connected.

2.11. Theorem. A contra semi-I-continuous image of a semi-I-connected space is connected.

Proof. Let $f: (X, \tau, I) \to (Y, \rho)$ be a contra semi-*I*-continuous function from a semi-*I*-connected space X onto a space Y. Assume that Y is disconnected. Then $Y = A \cup B$, where A and B are non-empty clopen sets in Y with $A \cap B = \emptyset$. Since f is contra semi-*I*-continuous, we have that $f^{-1}(A)$ and $f^{-1}(B)$ are semi-*I*-open non-empty sets in X with $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(Y) = X$ and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\emptyset) = \emptyset$. This means that X is not semi-*I*-connected, which is a contradiction. Then Y is connected.

2.12. Theorem. Let (X, τ, I) be a semi-*I*-connected space and (Y, ρ) a T_1 -space. If $f: (X, \tau, I) \to (Y, \rho)$ is a contra semi-*I*-continuous function, then f is constant.

Proof. Let $\Delta = \{f^{-1}(\{y\}) : y \in Y\}$. Since (Y, ρ) is T_1, Δ is a disjoint semi-*I*-open partition of *X*. If $|\Delta| \ge 2$, then *X* is the union of two non-empty semi-*I*-open sets. Since (X, τ, I) is semi-*I*-connected, $|\Delta| = 1$. Therefore, *f* is constant.

2.13. Definition. A space (X, τ, I) is said to be *semi-I-T*₂ if for each pair of distinct points x and y in X, there exists two semi-*I*-open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

2.14. Theorem. Let $f : (X, \tau, I) \to (Y, \rho)$ be a contra semi-*I*-continuous injection. If Y is a Urysohn space, then X is semi-*I*- T_2 .

Proof. Let x and y be a pair of distinct points in X. Then $f(x) \neq f(y)$. Since Y is a Urysohn space, there exist open sets U and V of Y such that $f(x) \in U$, $f(y) \in V$ and $\operatorname{Cl}(U) \cap \operatorname{Cl}(V) = \emptyset$. Since f is contra semi-I-continuous at x and y, there exist semi-I-open sets A and B in X such that $x \in A$, $y \in B$ and $f(A) \subseteq \operatorname{Cl}(U)$, $f(B) \subseteq \operatorname{Cl}(V)$. Then, $f(A) \cap f(B) = \emptyset$, so $A \cap B = \emptyset$. Hence, X is semi-I-T₂.

2.15. Definition. A space (X, τ, I) is said to be semi-*I*-normal if each pair of non-empty disjoint closed sets can be separated by disjoint semi-*I*-open sets.

2.16. Definition. [8] A space (X, τ) is said to be *ultra normal* if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

2.17. Theorem. If $f : (X, \tau, I) \to (Y, \rho)$ is a contra semi-*I*-continuous, closed injection and Y is ultra normal, then X is semi-*I*-normal.

Proof. Let C_1 and C_2 be disjoint closed subsets of X. Since f is closed and injective, $f(C_1)$ and $f(C_2)$ are disjoint closed subsets of Y. But Y is ultra normal, so $f(C_1)$ and $f(C_2)$ are separated by disjoint clopen sets V_1 and V_2 , respectively. Since f is contra semi-*I*-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are semi-*I*-open, with $C_1 \subseteq f^{-1}(V_1)$, $C_2 \subseteq f^{-1}(V_2)$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Hence, X is semi-*I*-normal.

2.18. Definition. [1] A space (X, τ) is said to be *strongly S-closed* if every closed cover of X has a finite subcover.

2.19. Definition. A space (X, τ, I) is said to be semi-*I*-compact if every semi-*I*-open cover of X has a finite subcover.

2.20. Definition. A subset A of a space (X, τ, I) is said to be *semi-I-compact relative* to X if every cover of A by semi-*I*-open subsets of X has a finite subcover.

2.21. Theorem. If $f : (X, \tau, I) \to (Y, \rho)$ is contra semi-*I*-continuous and *K* is semi-*I*-compact relative to *X*, then f(K) is strongly *S*-closed in *Y*.

Proof. Let $\{C_{\alpha} : \alpha \in \Delta\}$ be any cover of f(K) by closed subsets of the subspace f(K). For each $\alpha \in \Delta$, there exists a closed set F_{α} of Y such that $C_{\alpha} = F_{\alpha} \cap f(K)$. For each $x \in K$, there exists $\alpha_x \in \Delta$ such that $f(x) \in F_{\alpha_x}$. Now by Theorem 2.2, there exists a semi-*I*-open set U_x of X with $x \in U_x$ such that $f(U_x) \subseteq F_{\alpha_x}$.

Since the family $\{U_x : x \in K\}$ is a cover of K by sets semi-I-open in X, there exists a finite subset K_0 of K such that $K \subseteq \bigcup \{U_x : x \in K_0\}$. Therefore we obtain $f(K) \subseteq \bigcup \{f(U_x) : x \in K_0\}$, which is a subset of $\bigcup \{F_{\alpha_x} : x \in K_0\}$. Thus $f(K) \subseteq \bigcup \{C_{\alpha_x} : x \in K_0\}$, and hence f(K) is strongly S-closed.

2.22. Corollary. If $f : (X, \tau, I) \to (Y, \rho)$ is a contra semi-I-continuous surjection and X is semi-I-compact, then Y is strongly S-closed.

2.23. Definition. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is called *contra I-irresolute* if $f^{-1}(V)$ is semi-*I*-closed in X for each semi-*J*-open set V of Y.

Recall that a function $f : (X, \tau, I) \to (Y, \rho, J)$ is said to be *I*-irresolute [4] if $f^{-1}(V)$ is semi-*I*-open in X for each semi-*J*-open set V of Y. In fact, contra *I*-irresoluteness and *I*-irresoluteness are independent, as shown by the following two examples.

2.24. Example. The function f in Example 2.6 is contra I-irresolute but not I-irresolute.

2.25. Example. Let (X, τ, I) be the ideal topological space in Example 2.6. Then the identity function on the space (X, τ, I) is an example of an *I*-irresolute function which is not contra *I*-irresolute.

Also, every contra I-irresolute function is contra semi-I-continuous, but the converse is not true as shown by the following example.

2.26. Example. Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{2\}\}$. Define a function $f : (X, \tau, I) \to (X, \tau, I)$ by f(1) = 2, f(2) = 1 and f(3) = 3. Then f is contra semi-I-continuous but f is not contra I-irresolute.

The following results can be easily verified and the proofs are omitted.

2.27. Theorem. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is contra *I*-irresolute if and only if the inverse image of each semi-*J*-closed set in Y is semi-*I*-open in X.

2.28. Theorem. Let $f: (X, \tau, I) \to (Y, \rho, J)$ and $g: (Y, \rho, J) \to (Z, \sigma, K)$. Then

- 1) gof is contra I-irresolute if g is I-irresolute and f is contra I-irresolute.
- 2) gof is contra I-irresolute if g is contra I-irresolute and f is I-irresolute. \Box

2.29. Theorem. Let $f: (X, \tau, I) \to (Y, \rho, J)$ and $g: (Y, \rho, J) \to (Z, \sigma)$. Then

- 1) gof is contra semi-I-continuous if g is continuous and f is contra semi-Icontinuous.
- 2) gof is contra semi-I-continuous if g is semi-I-continuous and f is contra Iirresolute.

Recall that a function $f: (X, \tau) \to (Y, \rho, J)$ is called *semi-I-open* [4] if for each $U \in \tau$, f(U) is semi-*I*-open in Y.

2.30. Theorem. Let $f: (X, \tau, I) \to (Y, \rho, J)$ be surjective, *I*-irresolute and semi-*I*-open, and let $g: (Y, \rho, J) \to (Z, \sigma)$ be any function. Then gof is contra semi-*I*-continuous if and only if g is contra semi-*I*-continuous.

Proof. \implies Let gof be contra semi-*I*-continuous and *C* a closed subset of *Z*. Then $(gof)^{-1}(C)$ is a semi-*I*-open subset of *X*. That is $f^{-1}(g^{-1}(C))$ is semi-*I*-open. Since *f* is semi-*I*-open, $f(f^{-1}(g^{-1}(C)))$ is a semi-*I*-open subset of *Y*. So $g^{-1}(C)$ is semi-*I*-open in *Y*. Therefore, *g* is contra semi-*I*-continuous.

 \Leftarrow Straightforward.

2.31. Definition. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is called *perfectly contra I*-*irresolute* if the inverse image of every semi-*J*-open set in *Y* is semi-*I*-clopen in *X*.

2.32. Example. Let $X = Y = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}, I = \{\emptyset, \{4\}\}, \rho = \{\emptyset, Y, \{2\}\} \text{ and } J = \{\emptyset, \{2\}\}.$ Let $f : (X, \tau, I) \to (Y, \rho, J)$ be defined by f(1) = 3, f(2) = 4, f(3) = 1 and f(4) = 2. Then f is perfectly contra I-irresolute.

Every perfectly contra I-irresolute function is contra I-irresolute and I-irresolute. The following two examples show that a contra I-irresolute function may not be perfectly contra I-irresolute, and an I-irresolute function may not be perfectly contra I-irresolute.

2.33. Example. The function in Example 2.6 is contra *I*-irresolute, but not perfectly contra *I*-irresolute.

2.34. Example. Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{2\}\}$. Let $f : (X, \tau, I) \rightarrow (X, \tau, I)$ be the identity function. Then f is I-irresolute, but not perfectly contra I-irresolute.

2.35. Theorem. For a function $f : (X, \tau, I) \to (Y, \rho, J)$ the following conditions are equivalent:

- 1) f is perfectly contra I-irresolute.
- 2) f is contra I-irresolute and I-irresolute.

References

- Dontchev, J. Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19, 303–310, 1996.
- [2] Dontchev, J. and Noiri, T. Contra-semicontinuous functions, Mathematica Pannonica 10(2), 159-168, 1999.
- [3] Hatir, E. and Noiri, T. On decomposition of continuity via idealization, Acta Math. Hungar. 96, 341–349, 2002.
- Hatir, E. and Noiri, T. On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar. 107 (4), 345–353, 2005.
- [5] Janković, D. and Hamlett, T. R. Compatible extensions of ideals, Boll. Un. Mat. Ital. 7 (6-B), 453–465, 1992.
- [6] Kuratowski, K. Topology, Vol.I (Academic Press, New York, 1966).
- [7] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36–41, 1963.
- [8] Staum, R. The algebra of bounded continuous functions into a non-archimedean field, Pacific J. Math. 50, 169–185, 1974.
- [9] Vaidyanathaswamy, R. The localization theory in set topology, Proc. Indian Acad. Sci. 20, 51–61, 1954.