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Abstract

The fuzzy stability problems for the Cauchy quadratic functional equa-
tion and the Jensen quadratic functional equation in fuzzy Banach
spaces have been investigated by Moslehian et al. Th.M. Rassias in-
troduced the following equality

m∑

i,j=1

‖xi − xj‖
2 = 2m

m∑

i=1

‖xi‖
2
,

m∑

i=1

xi = 0,

for a fixed integer m ≥ 3. By the above equality, we define the following
functional equation

(0.1)
m∑

i,j=1

f(xi − xj) = 2m
m∑

i=1

f(xi),
m∑

i=1

xi = 0.

In this paper, we prove the generalized Hyers-Ulam stability of the
functional equation (0.1) in fuzzy Banach spaces.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [41]
concerning the stability of group homomorphisms. Hyers [13] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was general-
ized by Aoki [1] for additive mappings and by Th.M. Rassias [30] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th.M. Rassias [30] has had a
lot of influence in the development of the generalized Hyers-Ulam stability of functional
equations.

A generalization of the Th.M. Rassias theorem was obtained by Găvruta [12] by re-
placing the unbounded Cauchy difference by a general control function in the spirit of
Th.M. Rassias’ approach. During the last two decades a number of papers and research
monographs have been published on various generalizations and applications of the gen-
eralized Hyers-Ulam stability to a number of functional equations and mappings (see
[4, 7, 15], [21]–[27], [32]–[39]).

A square norm on an inner product space satisfies the parallelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. The first author to treat the stability of the
quadratic equation was F. Skof [40] by proving that if f is a mapping from a normed space
X into a Banach space Y satisfying ‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε for some
ε > 0, then there is a unique quadratic mapping g : X → Y such that ‖f(x)− g(x)‖ ≤ ε

2
.

Cholewa [6] and Czerwik [8, 9] got important results on the generalized Hyers-Ulam
stability problem for the quadratic functional equation.

A square norm on an inner product space satisfies

3∑

i,j=1

‖xi − xj‖
2 = 6

3∑

i=1

‖xi‖
2

for all x1, x2, x3 ∈ R with x1 + x2 + x3 = 0 (see [31]).

From the above equality we can define the functional equation

h(x− y) + h(2x+ y) + h(x+ 2y) = 3h(x) + 3h(y) + 3h(x+ y),

which can be also called a quadratic functional equation. In fact, h(x) = ax2 in R satisfies
the above quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping.

In [28], Park investigated the functional equation (0.1) and proved the generalized
Hyers-Ulam stability of the functional equation (0.1) in real Banach spaces. In [29], Park
and Jang proved the generalized Hyers-Ulam stability of the functional equation (0.1) in
fuzzy Banach spaces by using the fixed point method.

Katsaras [16] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms on
a vector space from various points of view [10, 18, 42]. In particular, Bag and Samanta
[2], following Cheng and Mordeson [5], gave an idea of fuzzy norm in such a manner that
the corresponding fuzzy metric is of Kramosil and Michalek type [17]. They established
a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated
some properties of fuzzy normed spaces [3].
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We use the definition of fuzzy normed spaces given in [2, 19, 20] to investigate a fuzzy
version of the generalized Hyers-Ulam stability for the functional equation (0.1) in the
fuzzy normed vector space setting.

1.1. Definition. [2, 19, 20] Let X be a real vector space. A function N : X×R → [0, 1]
is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|
) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = 1;
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given
in [19, 20].

1.2. Definition. [2, 19, 20] Let (X,N) be a fuzzy normed vector space. A sequence
{xn} in X is said to be convergent, or to converge, if there exists an x ∈ X such that
limn→∞ N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence
{xn} and we denote it by N-limn→∞ xn = x.

1.3. Definition. [2, 19, 20] Let (X,N) be a fuzzy normed vector space. A sequence
{xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such
that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete

and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y

is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then
f : X → Y is said to be continuous on X (see [3]).

This paper is organized as follows: In Section 2, we prove the generalized Hyers-Ulam
stability of the functional equation (0.1) in fuzzy Banach spaces for the even case. In
Section 3, we prove the generalized Hyers-Ulam stability of the functional equation (0.1)
in fuzzy Banach spaces for the odd case.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space.

2. Generalized Hyers-Ulam stability of the functional equation
(0.1): the even case

In this section, we prove the generalized Hyers-Ulam stability of the functional equa-
tion (0.1) in fuzzy Banach spaces for the even case.

2.1. Lemma. [28] Let V and W be real vector spaces. If a mapping f : V → W satisfies

(2.1)

m∑

i,j=1

f(xi − xj) = 2m

m∑

i=1

f(xi)

for all x1, . . . , xm ∈ V with
∑m

i=1 xi = 0, then the mapping f : V → W is realized as the

sum of an additive mapping and a quadratic mapping. �
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For a given mapping f : X → Y , we define

Df(x1, . . . , xm) :=
m∑

i,j=1

f(xi − xj)− 2m
m∑

i=1

f(xi)

for all x1, . . . , xm ∈ X with
∑m

i=1 xi = 0.

2.2. Theorem. Let ϕ : Xm → [0,∞) be a function such that

(2.2) ϕ̃(x1, . . . , xm) :=

∞∑

j=1

4−j
ϕ
(
2jx1, . . . , 2

j
xm

)
< ∞

for all x1, . . . , xm ∈ X. Let f : X → Y be an even mapping with f(0) = 0 such that

(2.3) lim
t→∞

N (Df(x1, . . . , xm), tϕ(x1, . . . , xm)) = 1

uniformly on Xm. Then Q(x) := N-limn→∞ 4−nf (2nx) exists for each x ∈ X and

defines a quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

(2.4) N (Df(x1, . . . , xm), δϕ̃(x1, . . . , xm)) ≥ α

for all x1, . . . , xm ∈ X, then

(2.5) N


f(x)−Q(x), δϕ̃(x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times

)


 ≥ α

for all x ∈ X.

Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

(2.6) lim
t→∞

N(f(x)−Q(x), tϕ̃(x,−x, 0, . . . , 0︸ ︷︷ ︸
m−2 times

)) = 1

uniformly on X.

Proof. For a given ε > 0, by (2.3), we can find some t0 > 0 such that

(2.7) N (Df(x1, . . . , xm), tϕ(x1, . . . , xm)) ≥ 1− ε

for all t ≥ t0. Letting x1 = x, x2 = −x and x3 = . . . = xm = 0 in (2.7), we get

(2.8) N


2f (2x)− 8f(x), tϕ(x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times

)


 ≥ 1− ǫ

for all x ∈ X. By induction on n, we will show that

(2.9) N


f(2nx)− 4nf (x) , t

n∑

k=1

4n−k
ϕ


2k−1

x,−2k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ 1− ε

for all t ≥ t0, all x ∈ X and all n ∈ N.

It follows from (2.8) that

N


f(2x)− 4f (x) , tϕ


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ 1− ǫ

for all x ∈ X. Thus we get (2.9) for n = 1.
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Assume that (2.9) holds for n ∈ N. Then

N


4n+1

f(x)− f
(
2n+1

x
)
, t

n+1∑

k=1

4n−k+1
ϕ


2k−1

x,−2k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times







≥ min





N


4n+1

f(x)− 4f (2nx) , t0

n∑

k=1

4n−k
ϕ


2k−1

x,−2k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ,

N


4f (2nx)− f

(
2n+1

x
)
, t0ϕ


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times












≥ min{1− ε, 1− ε} = 1− ε.

This completes the induction argument. Letting t = t0 and replacing n and x by p and
2nx in (2.9), respectively, we get

(2.10)
N




f (2nx)

4n
−

f
(
2n+px

)

4n+p
,

t0

4n+p

p∑

k=1

4p−k
ϕ


2n+k−1

x,−2n+k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times







≥ 1− ε

for all integers n ≥ 0, p > 0.

It follows from (2.2) and the equality

p∑

k=1

4−n−k
ϕ


2n+k−1

x,−2n+k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times




=

n+p∑

k=n+1

4−k
ϕ


2k−1

x,−2k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times




that for a given δ > 0 there is an n0 ∈ N such that

t0

n+p∑

k=n+1

4−k
ϕ


2k−1

x,−2k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times


 < δ

for all n ≥ n0 and p > 0. Now we deduce from (2.9) that

N
(
4−n

f (2nx)− 4−(n+p)
f
(
2n+p

x
)
, δ
)

≥ N
(
4−n

f (2nx)− 4−(n+p)
f
(
2n+p

x
)
,

t0

4n+p

p∑

k=1

4p−k
ϕ


2n+k−1

x,−2n+k−1
x, 0, . . . , 0︸ ︷︷ ︸

m−2 times







≥ 1− ε

for each n ≥ n0 and all p > 0. Thus the sequence
{
4−nf (2nx)

}
is Cauchy in Y . Since Y

is a fuzzy Banach space, the sequence
{
4−nf (2nx)

}
converges to some Q(x) ∈ Y . So we

can define a mapping Q : X → Y by Q(x) := N-limn→∞ 4−nf (2nx), namely, for each
t > 0 and x ∈ X, limn→∞ N

(
4−nf (2nx)−Q(x), t

)
= 1.
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It is obvious that Q : X → Y is even, since f : X → Y is even.

Let x1, . . . , xm ∈ X. Fix t > 0 and 0 < ε < 1. Since

lim
n→∞

4−n
ϕ


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times


 = 0,

there is an n1 > n0 such that t0ϕ


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times


 < 4nt

(m2+m+2)
for all n ≥ n1.

Hence for each k ≥ n1, we have

N(DQ(x1 . . . , xm), t) = N

(
m∑

i,j=1

Q(xi − xj)− 2m
m∑

i=1

Q(xi), t

)

≥ min1≤i,j≤m

{
N

(
Q(xi − xj)− 4−k

f
(
2kxi − 2kxj

)
,

t

m2 +m+ 2

)
,

N

(
2mQ(xi)− 2m4−k

f
(
2kxi

)
,

t

m2 +m+ 2

)
,

N

(
Df

(
2kx1, . . . , 2

k
xm

)
,

2t

(m2 +m+ 2)

)}
.

The first m2+m terms on the right-hand side of the above inequality tend to 1 as k → ∞,
and the last term is greater than

N
(
Df

(
2kx1, . . . , 2

k
xm

)
, t0ϕ

(
2kx1, . . . , 2

k
xm

))
,

which is greater than or equal to 1− ε. Thus

N(DQ(x1, . . . , xm), t) ≥ 1− ε

for all t > 0. Since N (DQ(x1, . . . , xm), t) = 1 for all t > 0, by (N2), DQ(x1, . . . , xm) = 0
for all x ∈ X. By [28, Lemma 2.1], the mapping Q : X → Y is quadratic.

Now let for some positive δ and α, (2.4) hold. Let

ϕn(x1, . . . xm) :=
n∑

k=1

4−k
ϕ
(
2kx1, . . . 2

k
xm

)

for all x1, . . . , xm ∈ X. Let x ∈ X. By the same reasoning as in the beginning of the
proof, one can deduce from (2.4) that

(2.11) N


4nf(x)− f(2nx), δ

n∑

k=1

4n−k
ϕ


2kx,−2kx, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ α
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for all positive integers n. Let t > 0. We have

(2.12)

N


f(x)−Q(x), δϕn


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times


+ t




≥ min





N


f(x)− 4−n

f (2nx) , δϕn


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ,

N
(
4−n

f (2nx)−Q(x), t
)
}

Combining (2.11) and (2.12) and the fact that limn→∞ N
(
4−nf (2nx)−Q(x), t

)
= 1, we

observe that

N


f(x)−Q(x), δϕn


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times


+ t


 ≥ α

for large enough n ∈ N. Since the function N(f(x)−Q(x), ·) is continuous, we see that

N


f(x)−Q(x), δϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times


+ t


 ≥ α.

Letting t → 0, we conclude that

N


f(x)−Q(x), δϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ α.

To end the proof, it remains to prove the uniqueness assertion. Let T be another quadratic
mapping satisfying (2.1) and (2.6). Fix c > 0. Given ε > 0, by (2.6) for Q and T , we can
find some t0 > 0 such that

N


f(x)−Q(x), tϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ 1− ε,

N


f(x)− T (x), tϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ 1− ε

for all x ∈ X and all t ≥ t0. Fix some x ∈ X and find some integer n0 such that

t0

∞∑

k=n

4−k
ϕ


2kx,−2kx, 0, . . . , 0︸ ︷︷ ︸

m−2 times


 <

c

2
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for all n ≥ n0. Since

∞∑

k=n

4−k
ϕ


2kx,−2kx, 0, . . . , 0︸ ︷︷ ︸

m−2 times




= 4−n

∞∑

k=n

4(n−k)
ϕ


2k−n2nx,−2k−n2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times




= 4−n

∞∑

l=0

4−l
ϕ


2l2nx,−2l2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times




= 4−n
ϕ̃


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times


 ,

we have

N(Q(x)− T (x), c)

≥ min
{
N
(
4−n

f (2nx)−Q(x),
c

2

)
, N
(
T (x)− 4−n

f (2nx) ,
c

2

)}

= min

{
N
(
f (2nx)−Q (2nx) , 4n

c

2

)
, N

(
T (2nx)− f (2nx) , 4n

c

(
2)

)}

≥ min





N


f (2nx)−Q (2nx) , 4nt0

∞∑

k=n

4−k
ϕ


2kx,−2kx, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ,

N


T (2nx)− f (2nx) , 4nt0

∞∑

k=n

4−k
ϕ


2kx,−2kx, 0, . . . , 0︸ ︷︷ ︸

m−2 times












= min





N


f (2nx)−Q (2nx) , t0ϕ̃


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ,

N


T (2nx)− f (2nx) , t0ϕ̃


2nx,−2nx, 0, . . . , 0︸ ︷︷ ︸

m−2 times












≥ 1− ε.

It follows that N(Q(x)− T (x), c) = 1 for all c > 0. Thus Q(x) = T (x) for all x ∈ X. �

2.3. Corollary. Let θ ≥ 0 and let p be a real number with p > 2. Let f : X → Y be an

even mapping such that

(2.13) lim
t→∞

N

(
Df(x1, . . . xm), tθ

m∑

i=1

‖xi‖
p

)
= 1

uniformly on Xm. Then Q(x) := N-limn→∞ 4−nf(2nx) exists for each x ∈ X and defines

a quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N

(
Df (x1, . . . , xm) , δθ

m∑

i=1

‖xi‖
p

)
≥ α
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for all x1 . . . , xm ∈ X, then

N

(
f(x)−Q(x),

2p

2p − 4
δθ‖x‖p

)
≥ α

for all x ∈ X.

Furthermore, the quadratic mapping Q : X → Y is the unique mapping such that

lim
t→∞

N

(
f(x)−Q(x),

2p

2p − 4
tθ‖x‖p

)
= 1

uniformly on X.

Proof. Define ϕ(x1, . . . , xm) := θ
∑m

i=1(‖xi‖
p) and apply Theorem 2.2 to get the result,

as desired. �

Similarly, we can obtain the following. We will omit the proof.

2.4. Theorem. Let ϕ : Xm → [0,∞) be a function such that

ϕ̃(x1, . . . , xm) :=

∞∑

n=0

4nϕ
(x1

2n
, . . . ,

xm

2n

)
< ∞

for all x1, . . . , xm ∈ X. Let f : X → Y be an even mapping satisfying (2.3) and f(0) = 0.
Then Q(x) := N-limn→∞ 4nf( x

2n
) exists for each x ∈ X and defines a quadratic mapping

Q : X → Y such that if for some δ > 0, α > 0

N (Df (x1, . . . , xm) , δϕ(x1, . . . , xm)) ≥ α

for all x1, . . . , xm ∈ X, then

N


f(x)−Q(x), δϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 ≥ α

for all x ∈ X.

Furthermore, the quadratic mapping Q : X → Y is the unique mapping such that

lim
t→∞

N


f(x)−Q(x), tϕ̃


x,−x, 0, . . . , 0︸ ︷︷ ︸

m−2 times





 = 1

uniformly on X. �

2.5. Corollary. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let f : X → Y

be an even mapping satisfying (2.13). Then Q(x) := N-limn→∞ 4nf( 2
n

x
) exists for each

x ∈ X and defines a quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N

(
Df (x1, . . . , xm) , δθ

m∑

i=1

(‖xi‖
p)

)
≥ α

for all x1, . . . , xm ∈ X, then

N

(
f(x)−Q(x),

2p

4− 2p
δθ‖x‖p

)
≥ α

for all x ∈ X.

Furthermore, the quadratic mapping Q : X → Y is the unique mapping such that

lim
t→∞

N

(
f(x)−Q(x),

2p

4− 2p
tθ‖x‖p

)
= 1

uniformly on X.
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Proof. Define ϕ(x1, . . . , xm) := θ
∑m

i=1(‖xi‖
p) and apply Theorem 2.4 to get the result,

as desired. �

3. Generalized Hyers-Ulam stability of the functional equation
(0.1): the odd case

In this section, we prove the generalized Hyers-Ulam stability of the functional equa-
tion (0.1) in fuzzy Banach spaces for the odd case.

3.1. Theorem. Let ϕ : Xm → [0,∞) be a function such that

ϕ̃(x1, . . . , xm) :=
∞∑

j=1

2jϕ
(x1

2j
, . . . ,

xm

2j

)
< ∞

for all x1, . . . , xm ∈ X. Let f : X → Y be an odd mapping such that

(3.1) lim
t→∞

N (Df(x1, . . . , xm), tϕ̃(x1, . . . , xm)) = 1

uniformly on Xm. Then A(x) := N-limn→∞ 2nf
(

x

2n

)
exists for each x ∈ X and defines

an additive mapping A : X → Y such that if for some δ > 0, α > 0

N (Df(x1, . . . , xm), δϕ̃(x1, . . . , xm)) ≥ α

for all x1, . . . , xm ∈ X, then

N


f(x)−A(x), δϕ̃(x, x,−2x, 0, . . . , 0︸ ︷︷ ︸

m−3 times

)


 ≥ α

for all x ∈ X.

Furthermore, the additive mapping A : X → Y is a unique mapping such that

lim
t→∞

N(f(x)− A(x), tϕ̃(x, x,−2x, 0, . . . , 0︸ ︷︷ ︸
m−3 times

)) = 1

uniformly on X.

Proof. For a given ε > 0, by (3.1), we can find some t0 > 0 such that

(3.2) N (Df(x1, . . . , xm), tϕ(x1 . . . , xm)) ≥ 1− ε

for all t ≥ t0. Letting x1 = x, x2 = x, x3 = −2x and x3 = . . . = xm = 0 in (3.2), we get

N


f (2x)− 2f(x), tϕ(x, x,−2x, 0, . . . , 0︸ ︷︷ ︸

m−3 times

)


 ≥ 1− ǫ

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

3.2. Corollary. Let θ ≥ 0 and let p be a real number with p > 1. Let f : X → Y be an

odd mapping such that

(3.3) lim
t→∞

N

(
Df(x1, . . . xm), tθ

m∑

i=1

‖xi‖
p

)
= 1

uniformly on Xm. Then A(x) := N-limn→∞ 2nf( x

2n
) exists for each x ∈ X and defines

an additive mapping A : X → Y such that if for some δ > 0, α > 0

N

(
Df (x1, . . . , xm) , δθ

m∑

i=1

‖xi‖
p

)
≥ α
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for all x1 . . . , xm ∈ X, then

N

(
f(x)− A(x),

2p

2p − 2
δθ‖x‖p

)
≥ α

for all x ∈ X.

Furthermore, the additive mapping A : X → Y is a unique mapping such that

lim
t→∞

N

(
f(x)− A(x),

2p

2p − 2
tθ‖x‖p

)
= 1

uniformly on X.

Proof. Define ϕ(x1, . . . , xm) := θ
∑m

i=1(‖xi‖
p) and apply Theorem 3.1 to get the result,

as desired. �

Similarly, we can obtain the following. We will omit the proof.

3.3. Theorem. Let ϕ : Xm → [0,∞) be a function such that

ϕ̃(x1, . . . , xm) :=
∞∑

n=0

2−n
ϕ (2nx1, . . . , 2

n
xm) < ∞

for all x1, . . . , xm ∈ X. Let f : X → Y be an odd mapping satisfying (3.1). Then

A(x) := N-limn→∞ 2−nf(2nx) exists for each x ∈ X and defines an additive mapping

A : X → Y such that if for some δ > 0, α > 0

N (Df (x1, . . . , xm) , δϕ(x1, . . . , xm)) ≥ α

for all x1, . . . , xm ∈ X, then

N


f(x)− A(x), δϕ̃


x, x,−2x, 0, . . . , 0︸ ︷︷ ︸

m−3 times





 ≥ α

for all x ∈ X.

Furthermore, the additive mapping A : X → Y is a unique mapping such that

lim
t→∞

N


f(x)− A(x), tϕ̃


x, x,−2x, 0, . . . , 0︸ ︷︷ ︸

m−3 times





 = 1

uniformly on X.

3.4. Corollary. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let f : X → Y

be an odd mapping satisfying (3.3). Then A(x) := N-limn→∞ 2−nf(2nx) exists for each

x ∈ X and defines an additive mapping A : X → Y such that if for some δ > 0, α > 0

N

(
Df (x1, . . . , xm) , δθ

m∑

i=1

(‖xi‖
p)

)
≥ α

for all x1, . . . , xm ∈ X, then

N

(
f(x)− A(x),

2p

2− 2p
δθ‖x‖p

)
≥ α

for all x ∈ X.

Furthermore, the additive mapping A : X → Y is a unique mapping such that

lim
t→∞

N

(
f(x)− A(x),

2p

2− 2p
tθ‖x‖p

)
= 1

uniformly on X.
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Proof. Define ϕ(x1, . . . , xm) := θ
∑m

i=1(‖xi‖
p) and apply Theorem 3.3 to get the result,

as desired. �
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Variables (Birkhäuser, Basel, 1998).
[15] Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis

(Hadronic Press lnc., Palm Harbor, Florida, 2001).
[16] Katsaras, A.K. Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12, 143–154,

1984.
[17] Kramosil, I. and Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetica 11,

326–334, 1975.
[18] Krishna, S.V. and Sarma, K.K.M. Separation of fuzzy normed linear spaces, Fuzzy Sets

and Systems 63, 207–217, 1994.
[19] Mirmostafaee, A.K., Mirzavaziri, M. and Moslehian, M. S. Fuzzy stability of the Jensen

functional equation, Fuzzy Sets and Systems 159, 730–738, 2008.
[20] Mirmostafaee, A.K. and Moslehian, M. S. Fuzzy versions of Hyers-Ulam-Rassias theorem,

Fuzzy Sets and Systems 159, 720–729, 2008.
[21] Park, C. On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl.

275, 711–720, 2002.



Fuzzy Stability of a Functional Equation 723

[22] Park, C. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equa-

tions in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175, 2007.
[23] Park, C. Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed

point approach, Fixed Point Theory and Applications 2008, Art. ID 493751, 2008.
[24] Park, C. and Cui, J. Generalized stability of C∗-ternary quadratic mappings, Abstract Appl.

Anal. 2007, Art. ID 23282, 2007.
[25] Park, C. and Najati, A. Homomorphisms and derivations in C∗-algebras, Abstract Appl.

Anal. 2007, Art. ID 80630, 2007.
[26] Park, C., Cho, Y. and Han, M. Functional inequalities associated with Jordan-von Neumann

type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820, 2007.
[27] Park, C., Park, W. and Najati, A. Functional equations related to inner product spaces,

Abstract Appl. Anal. 2009, Art. ID 907121, 2009.
[28] Park, C. Fixed points, inner product spaces and functional equations (preprint).
[29] Park, C. and Jang, S. Fuzzy stability of functional equations induced by inner product: a

fixed point approach (preprint).
[30] Rassias, Th.M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.

Soc. 72, 297–300, 1978.
[31] Rassias, Th.M. On characterizations of inner product spaces and generalizations of the H.

Bohr inequality, in Topics in Mathematical Analysis (ed. Th.M. Rassias) (World Scientific

Publ. Co., Singapore, 1989), 803–819.
[32] Rassias, Th.M. On the stability of the quadratic functional equation and its applications,

Studia Univ. Babes-Bolyai XLIII, 89–124, 1998.
[33] Rassias, Th.M. The problem of S.M. Ulam for approximately multiplicative mappings, J.

Math. Anal. Appl. 246, 352–378, 2000.
[34] Rassias, Th.M. On the stability of functional equations in Banach spaces, J. Math. Anal.

Appl. 251, 264–284.
[35] Rassias, Th.M. On the stability of functional equations and a problem of Ulam, Acta Appl.

Math. 62, 23–130, 2000.
[36] Rassias, Th.M. Problem 16; 2, Report of the 27th International Symp. on Functional Equa-

tions, Aequationes Math. 39, 292–293; 309, 1990.
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