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By making use of known identities of terminating well-poised q-series, we shall demonstrate
several remarkable summation formulae involving products of two Fibonomial/Lucanomial
coefficients or quotients of two such coefficients over a third one.
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1. Introduction and outline
For an indeterminate x, Horadam and Mahon [11, 15] introduced two Fibonacci–like

polynomial sequences {Un} and {Vn} by the linear recurrence relations
Un = 2xUn−1 + Un−2 and Vn = 2xVn−1 + Vn−2

with different initial conditions
U0 = 0, U1 = 1 and V0 = 2, V1 = 2x.

The Binet forms for these polynomials read as

Un = αn − βn

α − β
and Vn = αn + βn

where
α := α(x) = x +

√
x2 + 1 and β := β(x) = x −

√
x2 + 1

with
α + β = 2x and αβ = −1.

When α, β = 1±
√

5
2 (or equivalently x = 1

2), these sequences {Un} and {Vn} will reduce,
respectively, to the Fibonacci sequence {Fn} and the Lucas sequence {Ln}. Instead, for
α, β = 1 ±

√
2 (or equivalently x = 1), these sequences {Un} and {Vn} will become the

Pell sequence {Pn} and the Pell–Lucas sequence {Qn}.
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For n, k ∈ N with n ≥ k ≥ 1, define the generalized Fibonomial and Lucanomial
coefficients by {

n

k

}
Um

=
k∏

j=1

U(n−j+1)m
Ujm

=
UnmU(n−1)m · · · U(n−k+1)m

UmU2m · · · Ukm
,

{
n

k

}
Vm

=
k∏

j=1

V(n−j+1)m
Ujm

=
VnmV(n−1)m · · · V(n−k+1)m

VmV2m · · · Vkm
;

with the boundary conditions{
n

0

}
Um

=
{

n

0

}
Vm

=
{

n

n

}
Um

=
{

n

n

}
Vm

= 1.

In particular for m = 1, the reduced coefficients
{

n

k

}
U1

and
{

n

k

}
V1

will be denoted

briefly by
{

n

k

}
U

and
{

n

k

}
V

, respectively. When Un = Fn and Vn = Ln, the generalized

Fibonomial and Lucanomial coefficients become the usual Fibonomial and Lucanomial
coefficients (cf. [13, 14,16,17]), explicitly given by{

n

k

}
F

= FnFn−1 . . . Fn−k+1
F1F2 . . . Fk

and
{

n

k

}
L

= LnLn−1 . . . Ln−k+1
L1L2 . . . Lk

.

For an indeterminate y, recall the shifted factorial in base q

(y; q)0 ≡ 1 and (y; q)n = (1 − y)(1 − qy) · · · (1 − qn−1y) for n ∈ N.

Then the generalized Gaussian binomial coefficient (cf. [7, 8]) is defined by[
m

k

]
p,q

= (p; q)m

(p; q)k(p; q)m−k
= (−p/q)kqkm−(k

2) (q1−m/p; q)k

(p; q)k
, (1.1)

where m, k ∈ N0 with k ≤ m. When p = q, this reduces to the usual q-binomial coefficient[
m

k

]
q

=
[

m

k

]
q,q

= (−1)kqkm−(k
2) (q−m; q)k

(q; q)k
. (1.2)

By introducing the following function of α and β

ρ := ρ(x) = β

α
= −α−2 = −β2 = x −

√
x2 + 1

x +
√

x2 + 1
, (1.3)

we can express
Un = αn−1 1 − ρn

1 − ρ
and Vn = αn(

1 + ρn)
. (1.4)

Consequently, we are led to the following two fundamental relations between the gen-
eralized Fibonomial/Lucanomial coefficients and the generalized Gaussian binomial coef-
ficients: {

n

k

}
U

= αk(n−k)
[

n

k

]
ρ

and
{

n

k

}
V

= αk(n−k)
[

n

k

]
−ρ,ρ

. (1.5)

Analogous to binomial coefficients, there has been growing interest in studying Fibono-
mial coefficients and their properties (see for example [4, 12, 13, 17]). By converting the
q-binomial coefficients into Fibonomial coefficients, the authors [7, 8] recently examined
quadratic and cubic sums of Fibonomial and Lucanomial coefficients.

By employing known identities from the q-series theory (cf. [10]), we shall further in-
vestigate Fibonomial/Lucanomial sums in this paper. In Section 2, we shall prove three
main theorems that evaluate, in closed form, twelve sums of generalized Gaussian coeffi-
cients in different bases. Then these summation theorems will be utilized in Section 3 to
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deduce 18 further formulae involving products of two Fibonomial/Lucanomial coefficients
or quotients of two such coefficients over a third one. To our knowledge, these formulae
about Fibonomial/Lucanomial coefficients don’t seem to have appeared previously in the
literature.

2. q-Binomial sums with different bases
Following Bailey [1, Chapter 8] and Gasper–Rahman [10], the basic hypergeometric

series (shortly called q-series) reads as

1+λϕλ

[
a0, a1, · · · , aλ

b1, · · · , bλ

∣∣∣q; z

]
=

∞∑
n=0

zn

(q; q)n

(a0; q)n(a1; q)n · · · (aλ; q)n

(b1; q)n; q)n · · · (bλ; q)n
.

Throughout this section, we shall utilize known summation formulae for the following
terminating well–poised q-series

3ϕ2

[
q−2n, b, d

q1−2n/b, q1−2n/d

∣∣∣q; qε−n

bd

]
,

where n ∈ N0, ε ∈ Z and b, d, ∈ C. Some partial results appeared in [2, 3, 5, 9]. A full
coverage was made by the first author [6, §1.2]. Three main theorems will be proved that
express q-binomial sums in closed formulae.

Theorem 2.1 (n ∈ N0).

(a)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

−q,q

q(k
2)−kn−k = 2(−1)nΛn(q)

q2n+1(1 + qn)(1 + qn−1)

[
2n

n

]
q

[
2n

n

]−1

−q,q

,

(b)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

−q,q

q(k
2)−kn = 2(−1)n

1 + qn

[
2n

n

]
q

[
2n

n

]−1

−q,q

,

(c)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

−q,q

q(k
2)−kn+k = 2(−q)n

1 + qn

[
2n

n

]
q

[
2n

n

]−1

−q,q

,

(d)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

−q,q

q(k
2)−kn+2k = 2(−q)nΛn(q)

q(1 + qn)(1 + qn−1)

[
2n

n

]
q

[
2n

n

]−1

−q,q

;

where Λn(q) stands for

Λn(q) =
{

2qn + 2q2n+1 − 1 − q3n+1
}

.

Proof. According to (1.1) and (1.2), define the finite sum An(λ) by

An(λ) =
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

−q,q

q(k
2)−k(n+1)+kλ

=
2n∑

k=0
(−1)k (−q; q)k(q−2n; q)2

k

(q; q)2
k(−q−2n; q)k

qk(λ−1+n).



Fibonomial and Lucanomial sums through well-poised q-series 65

The last sum can be written in terms of well–poised q-series and then evaluated in closed
form (cf. [6, §1.2]) as

3ϕ2

[
q−2n, −q, q−2n

q, −q−2n

∣∣∣q; −qλ−1+n
]

= (−1; q)n(q−2n; q)n

(q; q)n(−q−2n; q)n

×



1 − 2qn − 2q2n+1 + q3n+1

−q2n+1(1 + qn−1)
, λ = 0;

1, λ = 1;
qn, λ = 2;

1 − 2qn − 2q2n+1 + q3n+1

−q1−n(1 + qn−1)
, λ = 3.

Observing further that

(−1; q)n(q−2n; q)n

(q; q)n(−q−2n; q)n
= (−1)n (−1; q)n(−q; q)n(q; q)2n

(q; q)2
n(−q; q)2n

= 2(−1)n

1 + qn

[2n

n

]
q

[2n

n

]−1

−q,q

,

we deduce the four formulae in Theorem 2.1 from An(λ) with λ = 0, 1, 2, 3. □

Theorem 2.2 (n ∈ N0).

(a)
2n∑

k=0
(−1)k

[
4n

2k

]
q

[
2n

k

]
q2

q3k(k−2n)−3k = (−1)n∆n(q)
q3n2+n+1(1 − q6n−1)

[2n

n

]
q2

[3n

n

]
q,q2

,

(b)
2n∑

k=0
(−1)k

[
4n

2k

]
q

[
2n

k

]
q2

q3k(k−2n)−k = (−1)n

q3n2+n

[2n

n

]
q2

[3n

n

]
q,q2

,

(c)
2n∑

k=0
(−1)k

[
4n

2k

]
q

[
2n

k

]
q2

q3k(k−2n)+k = (−1)n

q3n2−n

[2n

n

]
q2

[3n

n

]
q,q2

,

(d)
2n∑

k=0
(−1)k

[
4n

2k

]
q

[
2n

k

]
q2

q3k(k−2n)+3k = (−1)n∆n(q)
q3n2−5n+1(1 − q6n−1)

[2n

n

]
q2

[3n

n

]
q,q2

;

where we denote ∆n(q) for brevity by

∆n(q) =
{

1 + 2q − 2q2n − q2n+1
}

.

Proof. According to (1.1) and (1.2), define the finite sum Bn(µ) by

Bn(µ) =
2n∑

k=0
(−1)k

[
4n

2k

]
q

[
2n

k

]
q2

q3k(k−1−2n)+2kµ

=
2n∑

k=0

(q−4n; q)2k(q−4n; q2)k

(q; q)2k(q2; q2)k
qk(2µ−1+6n).
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Expressing the last sum in terms of well–poised q-series, we can evaluate it in closed form
(cf. [6, §1.2]) as

3ϕ2

[
q−4n, q−4n, q1−4n

q, q2

∣∣∣q2; q2µ−1+6n
]

= (q−4n; q2)n(q1+4n; q2)n

(q; q2)n(q2; q2)n

×



1 + 2q − 2q2n − q2n+1

q(1 − q6n−1)
, µ = 0;

1, µ = 1;
q2n, µ = 2;

q6n−1(1 + 2q − 2q2n − q2n+1)
(1 − q6n−1)

, µ = 3.

Taking into account that

(q−4n; q2)n(q1+4n; q2)n

(q; q2)n(q2; q2)n
= (−1)n (−q; q)2n(q1+4n; q2)n

q3n2+n(q2; q2)n
= (−1)n

q3n2+n

[2n

n

]
q2

[3n

n

]
q,q2

,

we find the four identities in Theorem 2.2 from Bn(µ) with µ = 0, 1, 2, 3. □

Theorem 2.3 (n ∈ N0).

(a)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

q3

qkn−(k
2)−2k = (q; q)n(q; q)2n

q3n(q3; q3)n

[2n + 1
n

]
q

[2n + 2
n

]
q

[2n

n

]−1

q3
,

(b)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

q3

qkn−(k
2)−k = q−n(q; q)2

2n

(q; q)n(q3; q3)n

[2n + 1
n

]
q

[2n

n

]−1

q3
,

(c)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

q3

qkn−(k
2) = (q; q)2

2n

(q; q)n(q3; q3)n

[2n + 1
n

]
q

[2n

n

]−1

q3
,

(d)
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

q3

qkn−(k
2)+k = (q; q)n(q; q)2n

(q3; q3)n

[2n + 1
n

]
q

[2n + 2
n

]
q

[2n

n

]−1

q3
.

Proof. According to (1.1) and (1.2), define the finite sum Cn(ν) by

Cn(ν) =
2n∑

k=0
(−1)k

[
2n

k

]2

q

[
2n

k

]−1

q3

qk(n−2)−(k
2)+kν

=
2n∑

k=0

(q−2n; q)2
k(q3; q3)k

(q; q)2
k(q−6n; q3)k

qk(ν−2−n).

Writing the last sum in terms of well–poised q-series and denoting by ω a cubic root of
the unity, we can evaluate it in closed form (cf. [6, §1.2]) as

3ϕ2

[
q−2n, qω, qω2

q−2nω, q−2nω2

∣∣∣q; qν−2−n
]

= (q−2n; q)n(q−1−2n; q)n

(q−2nω; q)n(q−2nω2; q)n

×



(1 + qn+1)(1 − q2n+1)
q2n(1 − qn+2)

, ν = 0;

1, ν = 1;
qn, ν = 2;

qn(1 + qn+1)(1 − q2n+1)
(1 − qn+2)

, ν = 3.
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In view of the equality

(q−2n; q)n(q−1−2n; q)n

(q−2nω; q)n(q−2nω2; q)n
= q−n (1 − q2n+1)(qn+1; q)3

n

(1 − qn+1)(q3n+3; q3)n

= q−n(q; q)2
2n

(q; q)n(q3; q3)n

[2n + 1
n

]
q

[2n

n

]−1

q3
,

the four identities displayed in Theorem 2.3 are consequently obtained from Cn(ν) for
ν = 0, 1, 2, 3. □

3. Applications to Fibonomial sums
For the summation formulae established in the last section, by specifying q = ρ and

then combining the resulting equations, we shall derive further identities for Fibonomial
and Lucanomial coefficients.

Firstly, by applying Theorem 2.1, we deduce six identities below in Proposition 3.1 and
Corollary 3.2. Because proofs for them are almost identical, we shall only give a detailed
proof for the first one (a) in Proposition 3.1.

Proposition 3.1 (n ∈ N0).

(a)
2n∑

k=0
Uk

{
2n

k

}2

U

{
2n

k

}−1

V

(−1)(
k
2)+k(n+1) = 2(−1)n Un

Vn

{
2n

n

}
U

{
2n

n

}−1

V

,

(b)
2n∑

k=0
U3

k

{
2n

k

}2

U

{
2n

k

}−1

V

(−1)(
k
2)+kn = 2(−1)n U3

nV2n+1
Vn−1

{
2n

n

}
U

{
2n

n

}−1

V

,

(c)
2n∑

k=0
U3k

{2n

k

}2

U

{2n

k

}−1

V

(−1)(
k
2)+kn =2(−1)n

{2n

n

}
U

{2n

n

}−1

V

×U3nVn+1
VnVn−1

{
V3n+1 − 2(−1)nVn+1

}
.

Proof. First recalling (1.4), we have the equalities

Uk = 1 − ρk

1 − ρ
(ρ− 1

2 i)k−1, (3.1)

U3
k = (1 − ρk)3

(1 − ρ)3 (ρ− 1
2 i)3k−3, (3.2)

U3k = 1 − ρ3k

1 − ρ
(ρ− 1

2 i)3k−1. (3.3)

Then by means of (1.5), we can rewrite{2n

k

}2

U

=
[2n

k

]2

ρ

(ρ− 1
2 i)2k(2n−k),

{2n

k

}−1

V

=
[2n

k

]−1

−ρ,ρ

(ρ− 1
2 i)k(k−2n).

Now, the sum on the left hand side in Equation (a) can be expressed as

Φ = −ρ
1
2 i

1 − ρ

2n∑
k=0

(−1)k
[2n

k

]2

ρ

[2n

k

]−1

−ρ,ρ

ρ(k
2)−kn{

1 − ρk}
.
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Splitting further the last sum into two according to the terms inside braces “{· · · }" and
then evaluating them by formulae (b) and (c) in Theorem 2.1, we get the following ex-
pression

Φ = −ρ
1
2 i

1 − ρ

[2n

n

]
ρ

[2n

n

]−1

−ρ,ρ

{2(−1)n

1 + ρn
− 2(−ρ)n

1 + ρn

}

= 2(−1)n+1ρ
1
2 i(1 − ρn)

(1 + ρn)(1 − ρ)

[2n

n

]
ρ

[2n

n

]−1

−ρ,ρ

= 2(−1)n U2
Vn

{2n

n

}
U

{2n

n

}−1

V

,

which confirmed the first identity (a). The two other identities (b) and (c) can be done in
exactly the same manner except that we have to make use use of (3.2) and (3.3), instead
of (3.1). □

Again from (1.4), we can express

Vk = (1 + ρk)(ρ− 1
2 i)k, (3.4)

V 3
k = (1 + ρk)3(ρ− 1

2 i)3k, (3.5)

V3k = (1 + ρ3k)(ρ− 1
2 i)3k. (3.6)

By following the same procedure as the proof for Proposition 3.1, we can establish three
identities as in the corollary below.

Corollary 3.2 (n ∈ N0).

(A)
2n∑

k=0
Vk

{2n

k

}2

U

{2n

k

}−1

V

(−1)(
k
2)+k(n+1) = 2(−1)n

{2n

n

}
U

{2n

n

}−1

V

,

(B)
2n∑

k=0
V 3

k

{2n

k

}2

U

{2n

k

}−1

V

(−1)(
k
2)+kn = 2(−1)n

{2n

n

}
U

{2n

n

}−1

V

×
{

5 + 3Vn+1
Vn−1

− 3(−1)n V3n+1
Vn−1

+ V5n+1
Vn−1

}
,

(C)
2n∑

k=0
V3k

{2n

k

}2

U

{2n

k

}−1

V

(−1)(
k
2)+kn = 2(−1)n

{2n

n

}
U

{2n

n

}−1

V

×1 − (−1)nV2n

Vn−1

{
2Vn+1 − (−1)nV3n+1

}
.

Proposition 3.3 (n ∈ N0).

(a)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

U2k = (−1)nU2n

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

,

(b)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

U3
2k = (−1)n−1 U4nU2

2n

U6n−1

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

,

(c)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

U6k= (−1)n U6n

U6n−1

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

×
{

3U2n−1 − V2n

}
.
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Proof. According to (1.4), we have the equalities

U2k = 1 − ρ2k

1 − ρ
(ρ− 1

2 i)2k−1, (3.7)

U3
2k = (1 − ρ2k)3

(1 − ρ)3 (ρ− 1
2 i)6k−3, (3.8)

U6k = 1 − ρ6k

1 − ρ
(ρ− 1

2 i)6k−1. (3.9)

In view of (1.5), we can express

U3
2k = (1 − ρ2k)3

(1 − ρ)3 ρ
3
2 −3ki2k+3,{4n

2k

}
U

=
[4n

2k

]
ρ

ρ2k2−4nk,{2n

k

}
U2

=
[2n

k

]
ρ2

ρk2−2nk(−1)k.

They are utilized to convert the sum on the left hand side in Equation (b) to the following
one

Ψ = −ρ
3
2 i

(1 − ρ)3

2n∑
k=0

(−1)k

[
4n

2k

]
ρ

[
2n

k

]
ρ2

ρ3k(k−2n)−3k
{

1 − ρ2k
}3

.

Now making expansion into four terms{
1 − ρ2k

}3
= 1 − 3ρ2k + 3ρ4k − ρ6k

and then evaluating the corresponding sums by Theorem 2.2, the resulting expression can
be written as

Ψ = −ρ
3
2 i

(1 − ρ)3

[2n

n

]
ρ2

[3n

n

]
ρ,ρ2

×
{ (−1)n∆n(ρ)

ρ3n2+n+1(1 − ρ6n−1)
− 3(−1)n

ρ3n2+n
+ 3(−1)n

ρ3n2−n
− (−1)n∆n(ρ)

ρ3n2−5n+1(1 − ρ6n−1)

}

= −ρ
3
2 i

(1 − ρ)3

[2n

n

]
ρ2

[3n

n

]
ρ,ρ2

{(−1)n∆n(ρ)(1 − ρ6n)
ρ3n2+n+1(1 − ρ6n−1)

− 3(−1)n

ρ3n2+n
(1 − ρ2n)

}
.

Keeping in mind that

∆n(ρ) =
{

1 + 2ρ − 2ρ2n − ρ2n+1
}

,

we can factorize the above expression inside the braces “{· · · }" into

(−1)n (1 − ρ)(1 − ρ4n)(1 − ρ2n)2

ρ3n2+n+1(1 − ρ6n−1)
.

By substitution, we have

Ψ = −ρ
3
2 i

(1 − ρ)3

[2n

n

]
ρ2

[3n

n

]
ρ,ρ2

× (−1)n (1 − ρ)(1 − ρ2n)2(1 − ρ4n)
ρ3n2+n+1(1 − ρ6n−1)

= −ρ−3n3
[2n

n

]
ρ2

[3n

n

]
ρ,ρ2

× ρ
1
2 −n(−1)ni(1 − ρ2n)2(1 − ρ4n)

(1 − ρ)2(1 − ρ6n−1)
.



70 W. Chu, E. Kılıç

Observing that

ρ
1
2 −n(−1)ni(1 − ρ2n)2(1 − ρ4n)

(1 − ρ)2(1 − ρ6n−1)
= U4nU2

2n

U6n−1
,[2n

n

]
ρ2

[3n

n

]
ρ,ρ2

=
[6n

2n

]
ρ

[2n

n

]
ρ2

[3n

n

]−1

ρ2

= (−1)nρ3n2
{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

,

we arrive at

Ψ = (−1)n−1 U4nU2
2n

U6n−1

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

,

which proves the identity (b). By applying (3.7) and (3.9), we can confirm the two other
identities (a) and (c) in the same way. □

Instead of (3.7–3.9), we have, in accordance with (1.4), the equalities

V2k = (1 + ρ2k)(ρ− 1
2 i)2k, (3.10)

V 3
2k = (1 + ρ2k)3(ρ− 1

2 i)6k, (3.11)

V6k = (1 + ρ6k)(ρ− 1
2 i)6k. (3.12)

By carrying out the same proof as for Proposition 3.3 and making use of the above three
substitutions, we can derive the following three summation formulae.

Corollary 3.4 (n ∈ N0).

(A)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

V2k = (−1)nV2n

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

,

(B)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

V 3
2k = (−1)n U4n

U2n

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

×
{

5 + 3U2n+1
U6n−1

− 3U2n−1
U6n−1

− U6n+1
U6n−1

}
,

(C)
2n∑

k=0
(−1)k

{
4n

2k

}
U

{
2n

k

}
U2

V6k = (−1)nV6n

U6n−1

{6n

2n

}
U

{2n

n

}
U2

{3n

n

}−1

U2

×
{

3U2n−1 − V2n

}
.

By utilizing the substituting equalities given in (3.1–3.3) and (3.4–3.6), we can prove
from Theorem 2.3 further six formulae below in Proposition 3.5 and Corollary 3.6.

Proposition 3.5 (n ∈ N0).

(a)
2n∑

k=0
Uk

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k
2)+n(k+1) = (4 + 4x2)nUn

2n∏
k=n+1

U2
k Uk+1
U3k

,

(b)
2n∑

k=0
U3

k

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k+1

2 )+n(k+1) = (4 + 4x2)n−1 U2
n

Un+2

2n∏
k=n+1

U2
k Uk+1
U3k

×
{

V4n+2 − 1 − (−1)nV2n + 2(−1)nV2n+2
}

,

(c)
2n∑

k=0
U3k

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k+1

2 )+n(k+1) = (4 + 4x2)nU3n

2n∏
k=n+1

UkUk+1Uk+2
U3k

.
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Corollary 3.6 (n ∈ N0).

(A)
2n∑

k=0
Vk

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k
2)+n(k+1) = (4 + 4x2)nVn

2n∏
k=n+1

U2
k Uk+1
U3k

,

(B)
2n∑

k=0
V 3

k

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k+1

2 )+n(k+1) = (4 + 4x2)n Vn

Un+2

2n∏
k=n+1

U2
k Uk+1
U3k

×
{

UnV4n+2 + 2Vn+1 + 2Un+2 − (−1)nU3n

}
,

(C)
2n∑

k=0
V3k

{2n

k

}2

U

{2n

k

}−1

U3

(−1)(
k+1

2 )+n(k+1) = (4 + 4x2)nV3n

2n∏
k=n+1

UkUk+1Uk+2
U3k

.

Finally, we take the above identity (C) to exemplify the proofs. Keeping in mind (3.6)
and then rewriting the two braced coefficients in the summand{2n

k

}2

U

=
[2n

k

]2

ρ

ρk2−2nk(−1)k,

{2n

k

}−1

U3

=
[2n

k

]−1

ρ3
ρ3nk− 3k2

2 (−1)nkik2 ;

we can express the sum in the identity (C) as the ρ-binomial sum below

Ω = (−1)n
2n∑

k=0
(−1)k

[
2n

k

]2

ρ

[
2n

k

]−1

ρ3

ρkn−(k
2)−2k{

1 + ρ3k}
.

The last sum can be evaluated by formulae (a) and (d) in Theorem 3.6 as follows:

Ω = (−1)n(1 + ρ−3n)
[2n + 1

n

]
ρ

[2n + 2
n

]
ρ

[2n

n

]−1

ρ3

(ρ; ρ)n(ρ; ρ)2n

(ρ3; ρ3)n

= (−1)n(1 + ρ−3n)(ρ; ρ)2n(ρ; ρ)2n+1(ρ; ρ)2n+2(ρ3; ρ3)n

(ρ; ρ)n(ρ; ρ)n+1(ρ; ρ)n+2(ρ3; ρ3)2n

= (−1)n(1 + ρ−3n)(ρ1+n; ρ)n(ρ2+n; ρ)n(ρ3+n; ρ)n

(ρ3+3n; ρ3)n

= (−1)n(1 + ρ−3n)
2n∏

k=n+1

(1 − ρk)(1 − ρk+1)(1 − ρk+2)
(1 − ρ3k)

= (−1)n (1 − ρ)2n

ρn
V3n

2n∏
k=n+1

UkUk+1Uk+2
U3k

.

In view of (1.3), the identity (C) follows by making the simplification below

(−1)n (1 − ρ)2n

ρn
= (4 + 4x2)n. □

4. Conclusive comments
The summation formulae presented in this paper show that there is a significantly deep

connection between the basic hypergeometric series and the sums regarding Fibonomial
and Lucanomial coefficients as well as their variants. The authors believe that through
this connection, it is possible to employ the q-series theory to evaluate efficiently those
seemingly difficult sums involving Fibonomial–like coefficients. The interested reader is
encouraged to make further exploration.
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