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Abstract
Zero-inflated negative binomial model is an appropriate choice to model count response
variables with excessive zeros and overdispersion simultaneously. This paper addressed
parameter estimation in the zero-inflated negative binomial model when there are many
predictors, so that some of them are inactive and have not influence on the response vari-
able. We proposed parameter estimation based on the linear shrinkage, pretest, shrinkage
pretest, Stein-type, and positive Stein-type estimators. We obtained the asymptotic dis-
tributional biases and risks of the suggested estimators theoretically. We also conducted
a Monte Carlo simulation study to compare the performance of each estimator with the
unrestricted estimator in terms of simulated relative efficiency. Based on the results, the
performances of the proposed estimators were better than that of the unrestricted esti-
mator. The suggested estimators were applied to the wildlife fish data to appraise their
performance.
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1. Introduction
Many fields such as public health, insurance, and epidemiology may consist of count

variables. In that case, Poisson and negative binomial models are two effective methods
in order to explain the relationship between the response variable and a set of explanatory
variables. Based on the Poisson regression model, the variance and mean of the response
variable are equal. However, this restriction is violated in many applications because the
data are often overdispersed, i.e. the variance of the response variable is significantly
more than its mean. The negative binomial model is an appropriate choice for accounting
overdispersion. However, when there are many zeros in the data, the zero-inflated negative
binomial (ZINB) model (introduced by [11]) is useful for analyzing such data. The ZINB
model is a mixture of two data generation groups. One is called "not at risk class" group
that generates only zeros and the other group is called "at risk class" or "count component"
that generates count data form an ordinary negative binomial distribution. The ZINB
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model has been studied by several authors. Interested readers are referred to [8,23,24,27–
29].

The main goal of this study is to estimate the regression parameters in the zero-inflated
negative binomial model via the linear shrinkage, pretest, shrinkage pretest, Stein-type,
and positive Stein-type under prior information that is incorporated in the model through
a linear restriction on the parameters [2]. Based on the pretest procedure introduced by
[9], any uncertain prior information can be validated through a pretest, and depending
on such validation, the information may be incorporated into the model as a restriction
sub-model. The linear shrinkage (LS) estimator proposed by [26] uses a linear function
of the unrestricted and restricted estimators along with a shrinkage parameter. Ahmed
[1] suggested a shrinkage pretest (SP) strategy that combines both the pretest and the
linear shrinkage approaches. The shrinkage estimator or Stein-type estimator proposed
by [25], takes an approach by shrinking the full model estimator to a sub-model estimator.
For more information about these strategies see [2, 22]. The shrinkage estimators have
been applied by several authors for improving and estimation of parameter in regression
models. Some of them are [5–7,15,18–20].

In this study, we proposed the shrinkage strategies in the zero-inflated negative binomial
model to improve estimation of parameters when the model is assumed to be sparse. We
established the asymptotic distributional biases and risks of the estimators when the linear
restriction may be wrong. The simulated relative efficiency of the proposed estimators was
also obtained and compared with the unrestricted maximum likelihood estimator (MLE)
through a Monte Carlo simulation and a real dataset.

The rest of this article is organized as follows. The zero-inflated negative binomial
model, unrestricted, restricted, and shrinkage estimators are introduced in Section 2. The
asymptotic distributional biases and risks of the proposed estimators are presented in
Section 3. The details of Monte Carlo simulation study are described in Section 4. A real
data example is given in Section 5. The conclusions are presented in Section 6.

2. Statistical model and improved estimators
Zero-inflated negative binomial model is suitable for analysing count data with excess

zeros and overdispersion problems. Suppose that the dependent variable Yi, i = 1, 2, ..., n
is generated independently from a zero-inflated negative binomial distribution, such that
Yi has a degenerate distribution at zero with probability τi and follows a negative binomial
distribution with mean µi and overdispersion parameter θ > 0 with probability 1−τi. The
probability distribution of a ZINB random variable is given by

f(yi | τi, µi) =


τi + (1 − τi)

(
1

1+θ µi

) 1
θ if yi = 0

(1 − τi)
( Γ(yi + 1

θ )
Γ(1

θ ) Γ(yi + 1)

)(
θ µi

1+θ µi

)yi
(

1
1+θ µi

) 1
θ if yi > 0,

(2.1)

where log(µi) = x′
iβ denotes the log link related to the count part and log( τi

1−τi
) = z′

iγ

indicates the logit link related to the not at risk class, xi = (xi1, xi2, ..., xip)′ and zi =
(zi1, zi2, ..., ziq)′ are vectors of predictors related to the count component and not at risk
class, respectively. β = (β1, β2, ..., βp)′ is the parameter vector of count component and
γ = (γ1, γ2, ..., γq)′ is the parameter vector in not at risk class. We assume that δ = (β′, γ ′)′

is a k × 1 vector of all unknown parameters, such that k = p + q. The mean and variance
of Yi are as follows:

E(Yi|xi) = µi(1 − τi),
V ar(Yi|xi) = µi(1 − τi)(1 + µi(τi + θ)),
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when θ → 0, the zero-inflated negative binomial distribution reduces to the zero-inflated
Poisson distribution.

In order to apply shrinkage strategies, we study two models. One is the full model that
includes all k parameters and we estimate them with the maximum likelihood method
which is named unrestricted estimator. The other model is the candidate sub-model
containing only active parameters, where δ satisfies the linear restriction

H δ = h, (2.2)

where H is a p2 × k matrix of full rank and h is a p2 × 1 vector of known constants, here
p2 is the number of inactive (non significant) parameters in δ.

The log-likelihood function of ZINB model based on a random sample y = (y1, y2, ..., yn)
is given by

l = l(β, γ) = l(µi, τi; yi) =
n∑

i=1

{
I(yi = 0) ln

(
τi

1 − τi
+

( 1
1 + θµi

) 1
θ

)}

+
n∑

i=1

{
I(yi > 0)

[
yi ln(µi) + yi ln(θ) − (yi + 1

θ
) ln(1 + θµi)

+ ln
(
Γ(yi + 1

θ
)
)

− ln
(
Γ(yi + 1)

)
− ln

(
Γ(1

θ
)
)]}

+
n∑

i=1
ln(1 − τi), (2.3)

where I(yi = 0) is an indicator function that equals to 1 if yi = 0 and 0 otherwise. Also,
I(yi > 0) = 1 − I(yi = 0).

The MLE or unrestricted estimator of δ = (β′, γ ′)′ denoted by δ̂ = (β̂′
, γ̂ ′)′ obtains by

solving the first order derivatives of log-likelihood function (2.3) with respect to βj and γt

that are given by

∂ l(β, γ)
∂ βj

= −
n∑

i=1
I(yi = 0) xij ex′

i β

{ (
1

1+θ e
x′

i
β

) 1
θ +1

ez′
i

γ +
(

1
1+θ e

x′
i

β

) 1
θ

}

+
n∑

i=1
I(yi > 0) xij

{
yi − θ (yi + 1

θ
)
( ex′

i β

1 + θ ex′
i

β

)}
= 0, (2.4)

∂ l(β, γ)
∂ γt

=
n∑

i=1
I(yi = 0) zit

{
ez′

i γ

ez′
i

γ +
(

1
1+θ e

x′
i

β

) 1
θ

}

−
n∑

i=1
I(yi = 0) zit

( ez′
i γ

1 + ez′
i

γ

)
−

n∑
i=1

I(yi > 0) zit

( ez′
i γ

1 + ez′
i

γ

)
= 0, (2.5)

where j = 1, 2, . . . , p and t = 1, 2, . . . , q. It’s clear that Equations (2.4) and (2.5) are
nonlinear in βj and γt therefore, the unrestricted estimator must be obtained using the
numerical methods as Expectation Maximization (EM) and Newton-Raphson algorithms.
Under certain regularity conditions, as n → ∞,

√
n(δ̂ − δ) ∼ Nk(0, I−1), where 0 is a

k × 1 vector with zero elements and I is the expected Fisher information matrix that can
be partitioned as follows:

I =
[
Iβ,β Iβ,γ

Iγ,β Iγ,γ

]
, (2.6)
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where the elements of Iβ,β, Iβ,γ = I ′
γ,β, and Iγ,γ are defined as

Iβ,β = −E

(
∂2 l

∂β ∂β′

)
, Iβ,γ = I ′

γ,β = −E

(
∂2 l

∂β ∂γ ′

)
, Iγ,γ = −E

(
∂2 l

∂γ ∂γ ′

)
,

where for j, r = 1, 2, ..., p and t, s = 1, 2, ..., q,

∂2 l

∂βj ∂βr
= −

n∑
i=1

xijxir
µi

(1 + θµi)2

{
I(yi = 0)

((1 − τi)[1 − τi + τi(1 − µi)(1 + θµi)
1
θ ]

[1 − τi + τi(1 + θµi)
1
θ ]2

)
+ I(yi > 0)(θyi + 1)

}
,

∂2 l

∂βj ∂γt
=

n∑
i=1

xijzit

{
I(yi = 0) µi τi(1 − τi)

(1 + θµi)1− 1
θ [1 − τi + τi(1 + θµi)

1
θ ]2

}
,

∂2 l

∂γt ∂γs
=

n∑
i=1

zitzisτi(1 − τi)
{

I(yi = 0)
( (1 + θµi)

1
θ

[1 − τi + τi(1 + θµi)
1
θ ]2

− 1
)

− I(yi > 0)
}

.

We denote the restricted estimator of δ = (β′, γ ′)′ by δ̃ = (β̃′
, γ̃ ′)′ that obtain by max-

imizing the log-likelihood function (2.3) under the linear restriction H δ − h = 0. Based
on [12], the restricted estimator is given by

δ̃ = δ̂ − I−1H′(H I−1H′)−1(Hδ̂ − h). (2.7)

The likelihood ratio test statistic Tn for testing H0 : Hδ = h versus H1 : Hδ ̸= h is
defined as

Tn = 2
(
l(δ̂) − l(δ̃)

)
, (2.8)

where l(δ̂) and l(δ̃) are values of the log-likelihood function at the unrestricted and re-
stricted estimators, respectively. Under H0, as n → ∞, the test statistic Tn is asymptot-
ically distributed as χ2(p2) [3].

We now introduce the linear shrinkage, preliminary test, shrinkage pretest, Stein-type,
and positive Stein-type estimators in ZINB model.

2.1. The linear shrinkage estimator
Based on the level of confidence subspace information 0 ≤ λ ≤ 1, the linear shrinkage

(LS) estimator δ̂
LS of δ is defined as a linear function of δ̂ and δ̃, as

δ̂
LS = λ δ̃ + (1 − λ) δ̂. (2.9)

The optimum value of λ is chosen by minimizing the mean squared error of LS estimator
[30]. Larger values of λ indicate more assurance in subspace information.

2.2. The preliminary test estimator

The preliminary test or pretest estimator δ̂
P T of δ is a function of the unrestricted and

restricted estimators and the test statistic Tn as follows:

δ̂
P T = δ̂ − (δ̂ − δ̃) I(Tn ≤ Tn,α), (2.10)

where I(.) is an indicator function. If Tn ≤ Tn,α, then δ̂
P T = δ̃, otherwise δ̂

P T = δ̂, and
Tn,α is the upper value of a χ2(p2) distribution. In other words, the test statistic Tn is
compared to χ2

1−α(p2).
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2.3. The shrinkage pretest estimator

Ahmed [1] proposed the shrinkage pretest (SP ) estimator δ̂
SP of δ by replacing δ̃ with

δ̂
LS in Equation (2.10):

δ̂
SP = δ̂ − (δ̂ − δ̂

LS) I(Tn ≤ Tn,α) (2.11)
The performance of the SP estimator is better than the pretest estimator when candidate
sub-model is incorrect.

2.4. The Stein-type estimator

The Stein-type estimator δ̂
S of δ is a function of the test statistic Tn, the unrestricted

and restricted estimators as follows:

δ̂
S = δ̂ −

(p2 − 2
Tn

)
(δ̂ − δ̃), p2 ≥ 3 (2.12)

This strategy shrinks the unrestricted estimator to a sub-model or restricted estimator.

2.5. The positive Stein-type estimator

The positive Stein-type estimator δ̂
S+

of δ controls the over-shrinking problem in Stein-
type estimator is given by

δ̂
S+

= δ̂ −
(p2 − 2

Tn

)+
(δ̂ − δ̃), p2 ≥ 3, (2.13)

where z+ = max(0, z).

3. Asymptotic distribution bias and risk
In this section, following [14,15], among others, we study the asymptotic distributional

biases and risks of the estimators defined in Section 2 when the subspace information Hδ =
h is wrong. For fixed alternatives, the test statistics Tn converges in probability to ∞, as
n → ∞. So, the pretest, shrinkage pretest, Stein-type, and positive Stein-type estimators,
which are dependent on Tn, will be asymptotically converges to unrestricted estimator.
Thus, their asymptotic risks yield to be the same [17]. Therefore, the asymptotic properties
of the estimators are studied under the sequence of local alternatives that is given by

K(n) : Hδ = h + ω√
n

, (3.1)

where ω = (ω1, ω2, ..., ωp2)′ ∈ Rp2 is a vector with real numbers. The vector ω√
n

is the
distance between the true model and the restricted model. To obtain the asymptotic risks
(ADR) of the estimators, we define the following weighted quadratic loss function:

L(δ̂∗
, δ; Q) =

(√
n(δ̂∗ − δ)

)′
Q

(√
n(δ̂∗ − δ)

)
, (3.2)

where δ̂
∗ is any of the proposed estimators in the previous section and Q is a weight

matrix. When Q is chosen as the identity matrix I, the usual quadratic loss function
is defined, which we use it in our simulation studies in next section. The cumulative
distribution function of δ̂

∗ under K(n) is given by

G(x) = lim
n→∞

P
(√

n(δ̂∗ − δ) ≤ x
K(n)

)
, (3.3)

where G(x) is a non-degenerate distribution function. Now, we can define the asymptotic
distributional risk by

ADR(δ̂∗; Q) =
∫

...

∫
x′Q x dG(x) = trace(QV), (3.4)
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where V(δ̂∗) is the dispersion matrix for the distribution G(x) and defined as

V(δ̂∗) = lim
n→∞

E
(√

n(δ̂∗ − δ)
√

n(δ̂∗ − δ)′
)

=
∫

...

∫
x′x dG(x). (3.5)

The ADB of an estimator δ̂
∗ is defined as

ADB(δ̂∗) = lim
n→∞

E
(√

n(δ̂∗ − δ)
)

=
∫

...

∫
x dG(x). (3.6)

We now present the following lemmas which are useful to obtain the ADB and ADR of
all estimators.

Lemma 3.1. Under the sequence of local alternatives K(n) and the regularity conditions,
as n → ∞

Zn =
√

n(δ̂ − δ) D−→ Z ∼ Nk(0, I−1),

Rn =
√

n(Hδ̂ − h) D−→ R ∼ Nk(ω, H I−1H′),

Vn =
√

n(δ̃ − δ) D−→ V ∼ Nk(−Jω, I−1 − JH I−1),

Bn =
√

n(δ̂ − δ̃) D−→ B ∼ Nk(Jω,JHI−1),(
Zn

Bn

)
D−→

(
Z
B

)
∼ N2k

[ (
0
Jω

)
,

(
I−1 JHI−1

JH I−1 JH I−1

) ]
,

(
Vn

Bn

)
D−→

(
V
B

)
∼ N2k

[ (
−Jω
Jω

)
,

(
I−1 − JH I−1 0

0 JH I−1

) ]
,

where J = I−1H′(H I−1H′)−1.

Proof. See Appendix 1. �

Lemma 3.2. Under the sequence of local alternatives K(n) and the regularity conditions,
as n → ∞, the test statistic Tn converges to χ2

p2(∆∗) with p2 degrees of freedom and
non-centrality parameter ∆∗ = ω′(H I−1H′)−1ω.

Proof. See [10]. �

Lemma 3.3. Let y be a p2-dimensional random vector distributed as Np2(µy, Σy). Then,
for any measurable function φ, we have

E[y φ(y′y)] = µy E[φ(χ2
p2+2(∆∗))], (3.7)

E[y′y φ(y′y)] = Σy E[φ(χ2
p2+2(∆∗))] + µ′

y µyE[φ(χ2
p2+4(∆∗))], (3.8)

where ∆∗ is the non-centrality parameter.

Proof. See [16]. �

Now, we present the asymptotic properties of the proposed estimators in the following
theorems.
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Theorem 3.4. Under the sequence of local alternatives K(n) and the regularity conditions,
as n → ∞, the ADBs of the estimators are given as

ADB(δ̂) = 0,

ADB(δ̃) = −Jω,

ADB(δ̂LS) = −λJω,

ADB(δ̂P T ) = −JωΨp2+2(χ2
p2,α; ∆∗),

ADB(δ̂SP ) = −λJωΨp2+2(χ2
p2,α; ∆∗),

ADB(δ̂S) = −(p2 − 2)Jω E
( 1

χ2
p2+2(∆∗)

)
,

ADB(δ̂S+
) = ADB(δ̂S) − Jω Ψp2+2(χ2

p2,α; ∆∗)

+ (p2 − 2)Jω E

(
I(χ2

p2+2(∆∗) < p2 − 2)
χ2

p2+2(∆∗)

)
.

where Ψv(.; ∆∗) is the cumulative distribution function of the χ2
v(∆∗) distribution.

Proof. See Appendix 2. �
Theorem 3.5. Under the local alternatives K(n) and the regularity conditions, as n → ∞,
the ADRs of the estimators are

ADR(δ̂; Q) = trace(Q I−1),

ADR(δ̃; Q) = ADR(δ̂; Q) − trace(QJH I−1) + ∆∗
Q,

ADR(δ̂LS ; Q) = ADR(δ̂; Q) − λ (2 − λ) trace(QJH I−1) + λ2∆∗
Q,

ADR(δ̂P T ; Q) = ADR(δ̂; Q) − trace(QJH I−1)Ψp2+2(χ2
p2,α; ∆∗)

+ ∆∗
Q [2Ψp2+2(χ2

p2,α; ∆∗) − Ψp2+4(χ2
p2,α; ∆∗)],

ADR(δ̂SP ; Q) = ADR(δ̂; Q) − λ (2 − λ) trace(QJH I−1)Ψp2+2(χ2
p2,α; ∆∗)

+ ∆∗
Q [2 λΨp2+2(χ2

p2,α; ∆∗) − λ (2 − λ)Ψp2+4(χ2
p2,α; ∆∗)],

ADR(δ̂S ; Q) = ADR(δ̂; Q) − 2 (p2 − 2) trace(QJH I−1)
{

E
[ 1
χ2

p2+2(∆∗)

]
− (p2 − 2) E

[ 1
(χ2

p2+2(∆∗))2

]}
+ (p2 − 2) ∆∗

Q

{
2 E

[ 1
χ2

p2+2(∆∗)

]
− 2 E

[ 1
(χ2

p2+2(∆∗))2

]
+ (p2 − 2) E

[ 1
(χ2

p2+4(∆∗))2

]}
,

ADR(δ̂S+
; Q) = ADR(δ̂S ; Q) − ∆∗

Q E
(
(1 − p2 − 2

χ2
p2+4(∆∗)

)2 I(χ2
p2+4(∆∗) < p2 − 2)

)
− trace(QJH I−1) E

(
(1 − p2 − 2

χ2
p2+2(∆∗)

)2 I(χ2
p2+4(∆∗) < p2 − 2)

)
+ 2 ∆∗

Q E
(
(1 − p2 − 2

χ2
p2+4(∆∗)

) I(χ2
p2+4(∆∗) < p2 − 2)

)
.

where ∆∗
Q = ω′ (J′QJ) ω and I(.) is an indicator function.

Proof. See Appendix 3. �
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By comparing the ADRs of the estimators, we see that when ∆∗ = 0 or is near zero, the
risk of the restricted estimator becomes unbounded, i.e. ADR(δ̃) < ADR(δ̂). The linear
shrinkage estimator performs better than the unrestricted estimator at and near ∆∗ = 0.
The risk of the pretest estimator is smaller than that of the shrinkage pretest estimator at
∆∗ = 0. As ∆∗ increases, the shrinkage pretest estimator dominates the pretest estimator.
By comparing the risks of the Stein-type, positive Stein-type, and unrestricted estimators,
it’s clear that ADR(δ̂S+

) ≤ ADR(δ̂S) ≤ ADR(δ̂) for all ∆∗ ≥ 0.

4. A Monte Carlo simulation experiment
Based on many studies in the field of shrinkage strategies, such as [17–19], we assess

the performance of the suggested estimators with respect to the unrestricted estimator
via Monte Carlo simulation study with statistical software R to confirm the theoretical
results. To obtain the unrestricted estimator of parameters, we use zeroinfl function in
pscl package. We generate the response variable form ZINB model with sample size of
n = 300 using the following mixture of two models

log(µi) = x′
iβ, log( τi

1 − τi
) = z′

iγ, i = 1, 2, ..., n,

where µi = ex′
iβ, τi = ez′

i
γ

1+e
z′

i
γ
, the xi are generated from Np(0, S) with covariances sts =

φ|t−s| for t, s = 1, 2, ..., p, p = 6, 8 and the correlation φ = 0.5. Also, zi is generated from
uniform distribution U(0, 1). We consider the number of predictors k = p + q = 9, 12, 15
with (p, q) = (6, 3), (6, 6), (8, 7). We select the level of significance α = 0.05, 0.50, 0.10
for the pretest and shrinkage pretest methods and the level of confidence in the prior
information for the LS and SP estimators is set to λ = 0.25, 0.50, 0.75. We consider the
parameter vector of δ as

δk×1 = (β′
p×1, γ ′

q×1)′ = (β1, β2, ..., βp, γ1, γ2, ..., γq)′.

To check the performance of the proposed estimators, we consider two restrictions on δ as
follows:

• Case (i): When (p, q) = (6, 3), (6, 6), we assume that βp, γ2, γ3, ...γq︸ ︷︷ ︸
p2

are the in-

active parameters. Thus, p2 = 3, 6 and the H matrix and h vector in the linear
restriction (2.2) are as

H = [0p2×(p−1), b1
p2×1, 0p2×1, b2

p2×(k−(p+1))], h = 0p2×1,

where 0s×t is a matrix (vector) with zero elements and b1 and b2 are vector and
matrix with one and zero elements. We set η1 = (βp, γ2, γ3, γq)′ as the inactive
parameters vector.

• Case (ii): When (p, q) = (8, 7), we set β6, β7, β8, γ2, γ3, ..., γ7︸ ︷︷ ︸
p2

as non significant

parameters. In this case, p2 = 9 and the H and h are as follows:

H9×15 =



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


, h9×1 =



0
0
0
0
0
0
0
0
0


.

We set η2 = (β6, β7, β8, γ2, γ3, ..., γ7)′ as the inactive parameters vector.
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We test the following hypothesis:
Case(i) : H0 : η1 = 0 versus H1 : η1 ̸= 0
Case(ii) : H0 : η2 = 0 versus H1 : η2 ̸= 0

We next define the parameter ∆ as follows:

∆ = ∥δ − δtrue∥2 =
k∑

r=1
(δr − δtrue

r )2, (4.1)

where || . || is the Euclidean norm, δ is the parameter vector in the simulated model, and
δtrue is the true parameter. We set ∆ ∈ [0, 1] in our simulations. Samples are generated
using the overdispersion parameter θ = 1.5, and the true parameter as

Case(i) : δtrue = (0.2, 0.5, 0.05, −0.15, 1.2, 0, 0.3, 0, 0, ..., 0︸ ︷︷ ︸
p2−1

)′, p2 = 3, 6

Case(ii) : δtrue = (0.2, 0.5, 0.05, −0.15, 1.2, 0, 0, 0, 0.3, 0, 0, ..., 0︸ ︷︷ ︸
p2−3

)′, p2 = 9

Based on the definition of ∆, when candidate sub-model is correct, i.e. H0 is true, δ = δtrue

and ∆ = 0. When candidate sub-model is incorrect (∆ > 0), the elements of δ are as
Case(i) : δ = (0.2, 0.5, 0.05, −0.15, 1.2, c, 0.3, 0, 0, ..., 0︸ ︷︷ ︸

p2−1

)′, p2 = 3, 6

Case(ii) : δ = (0.2, 0.5, 0.05, −0.15, 1.2, c, 0, 0, 0.3, 0, 0, ..., 0︸ ︷︷ ︸
p2−3

)′, p2 = 9

where c is a scalar with various values. We set c = {0.0, 0.44, 0.63, 0.77, 0.89, 1.0},
thus ∆ = c2 = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. The number of replications is set to 1000 for
all cases. The R codes related to this paper can be provided by the author upon request
by email at (zahrazandi163@yahoo.com). Based on the simulated data, we estimate the
simulated mean squared errors (SMSE) of all the estimators defined in Section 2 as
follows:

SMSE(δ̂∗) = 1
1000

1000∑
r=1

(δ − δ̂
∗)′

r (δ − δ̂
∗)r

To compare the performance of the estimators, we use the simulated relative efficiency
(SRE) criterion that is defined as follows:

SRE(δ̂, δ̂
∗) = SMSE(δ̂)

SMSE(δ̂∗)
, (4.2)

where δ̂ is the unrestricted estimator. A value of SRE greater than one indicates that δ̂
∗

performs better than δ̂.

4.1. The results of simulation
The simulated relative efficiencies (SREs) for all the proposed estimators are reported

in Table 1 for λ = 0.25, 0.50, and 0.75 when ∆ = 0. The SREs for all estimators
are greater than one and the performance of the restricted estimator is the best. The
pretest estimator performs better than the shrinkage pretest estimator at ∆ = 0. The
simulation results in Tables 2-4 and Figure 1 reveal that when ∆ moves away from zero,
the SREs of all estimators decline sharply. The SRE of the pretest and shrinkage pretest
estimators is inversely related to α. When α decreases, the SRE of the PT and SP
increases, and vice versa. The shrinkage pretest estimator also depends on λ, such that
its SRE increases when λ increases. When λ increases, the simulated relative efficiency of
the linear shrinkage estimator increases. The positive Stein-type estimator is better than
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the Stein-type estimator at all parameter space. The SRE of all estimators increases when
p2 increases.

Table 1. The simulated relative efficiencies of δ̃, δ̂
LS

, δ̂
P T

, δ̂
SP

, δ̂
S

, and δ̂
S+

with
respect to δ̂ at ∆ = 0.

Number of inactive predictors p2.
Estimator 3 6 9
RE 4.304 11.114 12.613
LS λ = 0.25 1.522 1.668 1.682

λ = 0.50 2.411 3.183 3.267
λ = 0.75 3.660 6.928 7.444

PT α = 0.01 4.219 10.516 12.609
α = 0.05 3.923 9.166 11.638
α = 0.10 3.128 6.531 9.181

SP λ = 0.25 α = 0.01 1.517 1.662 1.682
α = 0.05 1.494 1.645 1.672
α = 0.10 1.437 1.594 1.645

λ = 0.50 α = 0.01 2.390 3.145 3.266
α = 0.05 2.313 3.042 3.212
α = 0.10 2.077 2.763 3.044

λ = 0.75 α = 0.01 3.601 6.704 7.443
α = 0.05 3.392 6.155 7.108
α = 0.10 2.810 4.905 6.163

S 1.274 2.413 2.064
S+ 1.840 4.881 8.456

Table 2. The simulated relative efficiencies of δ̃, δ̂
LS

, δ̂
P T

, δ̂
SP

, δ̂
S

, and δ̂
S+

with
respect to δ̂ for λ = 0.25.

P T SP
α α

p2 ∆ RE LS 0.01 0.05 0.10 0.01 0.05 0.10 S S+

3 0.0 4.304 1.522 4.219 3.923 3.128 1.517 1.499 1.437 1.274 1.840
0.2 3.434 1.510 3.334 2.894 2.412 1.501 1.449 1.390 1.205 1.626
0.4 2.172 1.483 2.007 1.612 1.356 1.441 1.319 1.215 1.319 1.338
0.6 1.351 1.442 1.142 1.017 1.000 1.268 1.107 1.056 1.188 1.188
0.8 0.885 1.391 0.872 0.927 0.963 1.074 1.007 1.002 1.115 1.115
1.0 0.613 1.330 0.899 0.979 0.990 1.001 0.889 0.999 1.077 1.077

6 0.0 11.114 1.668 10.156 9.166 6.531 1.662 1.645 1.594 2.413 4.881
0.2 8.713 1.663 8.341 6.499 4.396 1.657 1.616 1.535 2.561 3.926
0.4 5.388 1.650 4.755 3.134 2.404 1.419 1.498 1.401 2.386 2.653
0.6 3.306 1.629 2.292 1.543 1.292 1.470 1.262 1.161 1.904 1.923
0.8 2.149 1.602 1.259 1.067 1.026 1.210 1.071 1.036 1.561 1.561
1.0 1.483 1.568 1.000 0.990 0.993 1.051 1.010 1.003 1.371 1.371

9 0.0 12.613 1.682 12.609 11.638 9.181 1.682 1.672 1.645 2.064 8.456
0.2 10.153 1.678 10.150 9.485 6.846 1.678 1.654 1.620 2.677 6.752
0.4 6.472 1.668 6.327 4.782 4.005 1.663 1.601 1.556 3.248 4.260
0.6 4.043 1.651 3.375 2.270 1.771 1.589 1.428 1.310 2.690 2.794
0.8 2.653 1.629 1.742 1.274 1.134 1.382 1.181 1.099 2.068 2.072
1.0 1.840 1.602 1.110 1.021 1.009 1.137 1.039 1.019 1.698 1.698
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Table 3. The simulated relative efficiencies of δ̃, δ̂
LS

, δ̂
P T

, δ̂
SP

, δ̂
S

, and δ̂
S+

with
respect to δ̂ for λ = 0.50.

P T SP
α α

p2 ∆ RE LS 0.01 0.05 0.10 0.01 0.05 0.10 S S+

3 0.0 4.304 2.411 4.219 3.923 3.128 2.390 2.313 2.077 1.274 1.840
0.2 3.434 2.317 3.334 2.849 2.412 2.282 2.090 1.893 1.205 1.626
0.4 2.172 2.102 2.007 1.612 1.356 1.968 1.628 1.388 1.319 1.338
0.6 1.351 1.826 1.142 1.017 1.000 1.434 1.152 1.076 1.188 1.188
0.8 0.885 1.545 0.872 0.927 0.963 1.072 0.996 0.997 1.115 1.115
1.0 0.613 1.292 0.899 0.979 0.990 0.983 0.995 0.997 1.077 1.077

6 0.0 11.114 3.183 10.516 9.166 6.531 3.145 3.042 2.763 2.413 4.881
0.2 8.713 3.117 8.341 6.499 4.396 3.080 2.851 2.460 2.561 3.926
0.4 5.388 2.949 4.755 3.134 2.404 2.790 2.255 1.919 2.386 2.653
0.6 3.306 2.712 2.292 1.543 1.292 2.084 1.505 1.288 1.904 1.923
0.8 2.149 2.439 1.259 1.067 1.026 1.362 1.110 1.053 1.561 1.561
1.0 1.483 2.161 1.000 0.990 0.993 1.069 1.012 1.003 1.371 1.371

9 0.0 12.613 3.267 12.609 11.638 9.181 3.266 3.212 3.044 2.064 8.456
0.2 10.153 3.215 10.150 9.485 6.846 3.214 3.069 2.880 2.677 6.752
0.4 6.472 3.075 6.327 4.782 4.005 3.048 2.720 2.508 3.248 4.260
0.6 4.043 2.869 3.375 2.270 1.771 2.574 1.971 1.634 2.690 2.794
0.8 2.653 2.623 1.742 1.274 1.134 1.785 1.315 1.163 2.068 2.072
1.0 1.840 2.364 1.110 1.021 1.009 1.215 1.056 1.027 1.698 1.698

Table 4. The simulated relative efficiencies of δ̃, δ̂
LS

, δ̂
P T

, δ̂
SP

, δ̂
S

, and δ̂
S+

with
respect to δ̂ for λ = 0.75.

P T SP
α α

p2 ∆ RE LS 0.01 0.05 0.10 0.01 0.05 0.10 S S+

3 0.0 4.304 3.660 4.219 3.923 3.128 3.601 3.392 2.810 1.274 1.840
0.2 3.434 3.248 3.334 2.849 2.412 3.163 2.736 2.344 1.205 1.626
0.4 2.172 2.472 2.007 1.612 1.356 2.257 1.759 1.446 1.319 1.338
0.6 1.351 1.775 1.142 1.017 1.000 1.377 1.118 1.056 1.188 1.188
0.8 0.885 1.275 0.872 0.927 0.963 0.995 0.969 0.983 1.115 1.115
1.0 0.613 0.937 0.899 0.979 0.990 0.974 0.988 0.994 1.077 1.077

6 0.0 11.114 6.928 10.516 9.166 6.531 6.704 6.155 4.904 2.413 4.881
0.2 8.713 6.303 8.341 6.499 4.396 6.117 5.109 3.771 2.561 3.926
0.4 5.388 5.028 4.755 3.134 2.404 4.490 3.056 2.371 2.386 2.653
0.6 3.306 3.774 2.292 1.543 1.292 2.509 1.622 1.336 1.904 1.923
0.8 2.149 2.801 1.259 1.067 1.026 1.382 1.108 1.049 1.561 1.561
1.0 1.483 2.106 1.000 0.990 0.993 1.051 1.005 1.000 1.371 1.371

9 0.0 12.613 7.444 12.609 11.638 9.181 7.443 7.108 6.163 2.064 8.456
0.2 10.153 6.885 10.150 8.485 6.846 6.884 6.113 5.259 2.677 6.752
0.4 6.472 5.654 6.327 4.782 4.005 5.545 4.364 3.735 3.248 4.260
0.6 4.043 4.363 3.375 2.270 1.771 3.605 2.377 1.832 2.690 2.794
0.8 2.653 3.308 1.742 1.274 1.134 1.959 1.352 1.176 2.068 2.072
1.0 1.840 2.525 1.110 1.021 1.009 1.205 1.050 1.024 1.698 1.698

5. Wildlife fish data
We now apply the wildlife fish dataset which is analyzed by [4,21]. The dataset consists

of 250 groups that went to a state park to caught fish. The dependent and predictor
variables are described in Table 5. The histogram of the dependent variable in Figure
2 confirms that there are excessive zeros in the data (about 50%), thus the dependent
variable is inflated by zeros.
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Figure 1. The simulated relative efficiencies of δ̃, δ̂
LS

, δ̂
P T

, δ̂
SP

, δ̂
S

, and δ̂
S+

with respect to δ̂. Here, p2 = 3, 6, 9, λ = 0.75.

Table 5. The dependent variable and predictors in the real data.

Variable Description
Dependent variable
count the number of fish that were caught
Predictors
nofish X1 (Z1) whether the trip was not just for fishing? 0 if no and 1 if yes
livebait X2 (Z2) whether live bait was used or not? 0 if no and 1 if yes
camper X3 (Z3) whether or not they brought a camper?
persons X4 (Z4) how many total persons on the trip?
child X5 (Z5) how many children present?

Following [13], the standard fit test for ZINB model is the Vuong test. By using it
at 95% confidence level for our data, the value of Vuong statistic is V = −5.13. Since
V < −1.96 indicates that ZINB is the preferred model. Following [15], all predictors are
included in both count component and not at risk class of the ZINB model, so p = 5, q = 5,
and k = p+q = 10. To specify the active and inactive covariates, we have applied variable
selection methods based on AIC and BIC. These criteria show that the coefficients of
nofish (β1), persons (β4), and child (β5) are the significant parameters for the count
part and the coefficient of child (γ5) is the significant parameter for the not at risk class.
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Figure 2. The Histogram of the dependent variable in the real data.

Thus, the linear restriction H δ = h is as follows:

H =


0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

 ×



β1
β2
β3
β4
β5
γ1
γ2
γ3
γ4
γ5


=


0
0
0
0
0
0



Table 6. Estimates, standard errors (in parentheses), and the SRE of the sig-
nificant parameters in the wildlife fish dataset with respect to the unrestricted
estimator when ∆ = 0, α = 0.05, and λ = 0.75.

Estimator β̂1 β̂4 β̂5 γ̂5 SRE
UE −0.104 0.075 −0.119 0.798 1000

(0.339) (0.229) (0.372) (5.091)
RE −0.100 0.075 −0.113 0.048 14.241

(0.325) (0.226) (0.355) (0.176)
LS −0.101 0.075 −0.115 0.235 8.094

(0.328) (0.226) (0.359) (1.327)
P T −0.103 0.073 −0.115 0.421 2.115

(0.332) (0.221) (0.362) (4.001)
SP −0.103 0.073 −0.116 0.515 1.987

(0.334) (0.223) (0.365) (4.080)
S −0.102 0.076 −0.119 0.436 1.689

(0.334) (0.241) (0.378) (4.261)
S+ −0.103 0.077 −0.120 0.543 2.133

(0.334) (0.242) (0.380) (3.804)
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Thus, β2, β3, γ1, γ2, γ3, γ4 are equal to zero and β1, β4, β5, γ5 are the significant parame-
ters. We have estimated the significant parameters based on the shrinkage estimators and
compare their performance with the unrestricted estimator. Therefore, we have chosen
m = 150 observations with replacement at 100 times from the original data set using boot-
strap sampling to compute the relative efficiencies, estimation of the active estimators, and
their standard errors. The results are reported in Table 6 for λ = 0.75 and α = 0.05 at
∆ = 0.

6. Conclusion
In this paper, we considered the estimation of parameters in the zero-inflated nega-

tive binomial regression model based on the shrinkage estimators and we compared their
performance to the unrestricted estimator. We computed the properties of the suggested
estimators based on simulated relative efficiency using Monte Carlo experiments in R
program.

Based on the simulation results, the performance of the restricted estimator was the
best when candidate sub model was correct. The linear shrinkage estimator had much
higher relative efficiency when λ approaches to one. The pretest estimator outperformed
the shrinkage pretest estimator when subspace information was correct or nearly correct,
while the shrinkage pretest estimator dominated the pretest estimator when ∆ moved
away from zero. The estimators based on the Stein-type and positive Stein-type strate-
gies outperformed the unrestricted estimator. The performance of the positive Stein-type
shrinkage estimator was better than that of the Stein-type estimator in all parts of the
parameter space.

Acknowledgment. The authors are thankful to the reviewers for the insightful com-
ments and suggestions that have resulted in a much improved version of this paper.
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Appendix 1
Proof of Lemma 3.1. Based on the sequence of local alternatives in Equation (3.1), we
show Rn is asymptotically normally distributed with mean and variance as follows:

Rn =
√

n(H δ̂ − h)

=
√

n(H δ̂ − H δ + H δ − h)

= H
√

n(δ̂ − δ) +
√

n (H δ − h)
= H Zn + ω,

as n → ∞, Zn
D−→ Z ∼ Nk(0, I−1). So, Rn

D−→ R ∼ Nk(E(R), V ar(R)), where
E(R) = H E(Z) + ω

= ω,

V ar(R) = H V ar(Z) H′

= H I−1H′.

Then
Vn =

√
n(δ̃ − δ)

=
√

n(δ̂ − J(Hδ̂ − h) − δ)

=
√

n(δ̂ − δ) − J
√

n(Hδ̂ − h)
= Zn − JRn

= Zn − J (H Zn + ω)
= (Ik − JH) Zn − Jω,

where Ik is the identity matrix of order k × k. As n → ∞, Zn
D−→ Z ∼ Nk(0, I−1). Thus,

Vn
D−→ V ∼ Nk(E(V), V ar(V)) where

E(V) = E((Ik − JH) Z − Jω)
= (Ik − JH) E(Z) − Jω

= −Jω,

V ar(V) = V ar((Ik − JH) Z − Jω)
= V ar((Ik − JH) Z)
= (Ik − JH) I−1(Ik − JH)′

= I−1 − JH I−1.

Now, we write
Bn =

√
n(δ̂ − δ̃)

=
√

n(δ̂ − [δ̂ − J(Hδ̂ − h)])
= JRn

= J (H Zn + ω)
= JH Zn + Jω,

so as n → ∞, Zn
D−→ Z ∼ Nk(0, I−1) and Bn

D−→ B ∼ Nk(E(B), V ar(B)), where
E(B) = E(JH Z + Jω)

= JH E(Z) + Jω)
= Jω,
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V ar(B) = V ar(JH Z + Jω)
= (JH) V ar(Z) (JH)′

= JH I−1 (JH)′

= JH I−1.

The joint distribution of Zn and Bn is as follows:(
Zn

Bn

)
=

(
Ik Zn + 0

JH Zn + Jω

)
=

(
Ik

JH

)
Zn +

(
0
Jω

)
,

so as n → ∞, Zn
D−→ Z ∼ Nk(0, I−1) and

(
Zn

Bn

)
D−→

(
Z
B

)
∼ N2k(µ1, σ1) where

µ1 = E

[ (
Ik

JH

)
Z +

(
0
Jω

) ]

=
(

Ik

JH

)
E(Z) +

(
0
Jω

)
=

(
0
Jω

)
,

σ1 = V ar

[ (
Ik

JH

)
Z +

(
0
Jω

) ]

= V ar

[ (
Ik

JH

)
Z

]

=
(

Ik

JH

)
V ar[ Z]

(
Ik (JH)′)

=
(

Ik

JH

)
I−1 (

Ik (JH)′)
=

(
I−1 I−1 (JH)′

JH I−1 JH I−1 (JH)′

)
=

(
I−1 JH I−1

JH I−1 JH I−1

)
.

In a similar way, we consider(
Vn

Bn

)
=

(
(Ik − JH) Zn − Jω

JH Zn + Jω

)
=

(
Ik − JH

JH

)
Zn +

(
−Ik

Ik

)
Jω.

Therefore, as n → ∞, Zn
D−→ Z ∼ Nk(0, I−1) and

(
Vn

Bn

)
D−→

(
V
B

)
∼ N2k(µ2, σ2) where

µ2 = E

[ (
Ik − JH

JH

)
Z +

(
−Ik

Ik

)
Jω

]

=
(

Ik − JH
JH

)
E(Z) +

(
−Ik

Ik

)
Jω

=
(

−Jω
Jω,

)
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σ2 = V ae

[ (
Ik − JH

JH

)
Z +

(
−Ik

Ik

)
Jω

]

=
(

Ik − JH
JH

)
V ar(Z)

(
(Ik − JH)′ (JH)′)

=
(

Ik − JH
JH

)
I−1 (

(Ik − JH)′ (JH)′)
=

(
(Ik − JH) I−1 (Ik − JH)′ (Ik − JH) I−1 (JH)′

JH I−1 (Ik − JH)′ JH I−1 (JH)′

)
=

(
I−1 − JH I−1 0

0 JH I−1

)
.

�

Appendix 2
Proof of Theorem 3.4. Here, we provide the proof of bias expressions. Based on Lemma
3.1 we have

ADB(δ̂) = lim
n→∞

E[
√

n (δ̂ − δ)] = E(Z) = 0,

ADB(δ̃) = lim
n→∞

E[
√

n (δ̃ − δ)] = E(V) = −Jω,

ADB(δ̂LS) = lim
n→∞

E[
√

n (δ̂LS − δ)]

= lim
n→∞

E[
√

n (λ δ̃ + (1 − λ) δ̂ − δ)]

= lim
n→∞

E[
√

n (δ̂ − δ) − λ
√

n(δ̂ − δ̃)]

= E(Z) − λ E(B)
= −λJω,

ADB(δ̂SP ) = lim
n→∞

E[
√

n (δ̂SP − δ)]

= lim
n→∞

E[
√

n (δ̂ − λ (δ̂ − δ̃) I(Tn ≤ Tn,α) − δ)]

= lim
n→∞

E[
√

n(δ̂ − δ) − λ
√

n (δ̂ − δ̃) I(Tn ≤ Tn,α)]

= E(Z) − λ E(B I( χ2
p2(∆∗) ≤ χ2

p2,α))
= −λ E(B I( χ2

p2(∆∗) ≤ χ2
p2,α)),

based on Equation (3.7), we can write

ADB(δ̂SP ) = −λJω E[I( χ2
p2+2(∆∗) ≤ χ2

p2,α)]
= −λJω P (χ2

p2+2(∆∗) ≤ χ2
p2,α)

= −λJω Ψp2+2(χ2
p2,α; ∆∗).

If λ = 1,

ADB(δ̂P T ) = −Jω Ψp2+2(χ2
p2,α; ∆∗).
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In a similar way, we can obtain

ADB(δ̂S) = lim
n→∞

E[
√

n (δ̂S − δ)]

= lim
n→∞

E[
√

n (δ̃ + (1 − (p2 − 2) T−1
n ) (δ̂ − δ̃) − δ)]

= lim
n→∞

[
E[

√
n (δ̃ − δ] + E[

√
n (δ̂ − δ̃)] − (p2 − 2) E[T−1

n

√
n (δ̂ − δ̃)]

]
= lim

n→∞

[
E[

√
n (δ̂ − δ)] − (p2 − 2) E[T−1

n

√
n (δ̂ − δ̃)]

]
= E(Z) − (p2 − 2) E(T−1

n B)

= −(p2 − 2)Jω E
[ 1
χ2

p2+2(∆∗)

]
,

ADB(δ̂S+
) = lim

n→∞
E[

√
n (δ̂S+

− δ)]

= lim
n→∞

E[
√

n [δ̂S − δ − (1 − (p2 − 2) T−1
n ) (δ̂ − δ̃) I(Tn < p2 − 2)]

= ADB(δ̂S) − lim
n→∞

E
√

n [(δ̂ − δ̃) (1 − (p2 − 2) T−1
n ) I(Tn < p2 − 2)]

= ADB(δ̂S) − E[B (1 − (p2 − 2) T−1
n ) I(Tn < p2 − 2)]

= ADB(δ̂S) − E[B I(Tn < p2 − 2)] + (p2 − 2) E[B T−1
n I(Tn < p2 − 2)]

= ADB(δ̂S) − Jω Ψp2+2(χ2
p2,α; ∆∗)

+ (p2 − 2)Jω E

(
I(χ2

p2+2(∆∗) < p2 − 2)
χ2

p2+2(∆∗)

)
.

�

Appendix 3
Proof of Theorem 3.5. We first derive the asymptotic covariance of the estimators as
defined in Equation (3.5)

V(δ̂) = lim
n→∞

E
(√

n(δ̂ − δ)
√

n(δ̂ − δ)′
)

= lim
n→∞

E(Zn Z′
n)

= E(Z Z′)
= V ar(Z) + E(Z) E(Z′)
= I−1,

V(δ̃) = lim
n→∞

E
(√

n(δ̃ − δ)
√

n(δ̃ − δ)′
)

= lim
n→∞

E(Vn V′
n)

= E(V V′),
= V ar(V) + E(V) E(V′)
= I−1 − JH I−1 + (Jω) (Jω)′,
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V(δ̂LS) = lim
n→∞

E
(√

n(δ̂LS − δ)
√

n(δ̂LS − δ)′
)

= lim
n→∞

E[(Zn − λ Bn) (Zn − λ Bn)′]

= E[(Z − λ B) (Z − λ B)′]
= E[Z Z′] − 2λ E[Z B′] + λ2 E[B B′]
= I−1 − 2λ E[Z B′]︸ ︷︷ ︸

e1

+λ2 [JH I−1 + (Jω) (Jω)′].

Using the conditional expectation of a multivariate normal distribution, e1 becomes

e1 = E[Z B′]
= E

(
E[Z B′ |B]

)
= E

(
B′ E[Z | B]

)
= E

(
{E[Z + (JH I−1) (JH I−1)−1 (B − Jω)} B′)

= E
(

(B − Jω)} B′)
= E(B B′) − Jω E(B′)
= JH I−1

Therefore,
V(δ̂LS) = I−1 − λ (2 − λ)JH I−1 + λ2 (Jω) (Jω)′.

Next, we obtain V(δ̂SP ) as follows:

V(δ̂SP ) = lim
n→∞

E
(√

n(δ̂SP − δ)
√

n(δ̂SP − δ)′
)

= lim
n→∞

E[ {Zn − λ Bn I(Tn ≤ Tn,α)} {Zn − λ Bn I(Tn ≤ Tn,α)}′ ]

= lim
n→∞

E(Zn Z′
n) − 2λ lim

n→∞
E(Zn B′

n I(Tn ≤ Tn,α))

+ λ2 lim
n→∞

E(Bn B′
n I(Tn ≤ Tn,α))

= E(Z Z′) − 2λ E(Z B′ I(χ2
p2(∆∗) ≤ χ2

p2,α)) + λ2 E(B B′ I(χ2
p2(∆∗) ≤ χ2

p2,α))
= I−1 − 2λ E(Z B′ I(χ2

p2(∆∗) ≤ χ2
p2,α))︸ ︷︷ ︸

e2

+λ2 E(B B′ I(χ2
p2(∆∗) ≤ χ2

p2,α))︸ ︷︷ ︸
e3

,

using Equation (3.8), we have

e3 = JH I−1 Ψp2+2(χ2
p2,α; ∆∗) + (Jω) (Jω)′ Ψp2+4(χ2

p2,α; ∆∗),

and by using conditional expectation, e2 becomes

e2 = E[Z B′ I(χ2
p2(∆∗) ≤ χ2

p2,α)]
= E

[
E(Z B′ I(χ2

p2(∆∗) ≤ χ2
p2,α) | B)

]
= E

[
E(Z | B) B′ I(χ2

p2(∆∗) ≤ χ2
p2,α)

]
= E

[
{E(Z) + (B − Jω))}B′ I(χ2

p2(∆∗) ≤ χ2
p2,α)

]
= E[B B′ I(χ2

p2(∆∗) ≤ χ2
p2,α)]︸ ︷︷ ︸

e3

−Jω E[B′ I(χ2
p2(∆∗) ≤ χ2

p2,α)]

= JH I−1 Ψp2+2(χ2
p2,α; ∆∗) − (Jω) (Jω)′ [Ψp2+2(χ2

p2,α; ∆∗) − Ψp2+4(χ2
p2,α; ∆∗)].
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Therefore,

V(δ̂SP ) = I−1 − λ (2 − λ)JH I−1 Ψp2+2(χ2
p2,α; ∆∗)

+ (Jω) (Jω)′ [2λ Ψp2+2(χ2
p2,α; ∆∗) − λ (2 − λ) Ψp2+4(χ2

p2,α; ∆∗)].

For λ = 1, V(δ̂P T ) reduces to

V(δ̂P T ) = I−1 − JH I−1 Ψp2+2(χ2
p2,α; ∆∗)

+ (Jω) (Jω)′ [2 Ψp2+2(χ2
p2,α; ∆∗) − Ψp2+4(χ2

p2,α; ∆∗)].

Now, we obtain V(δ̂S) as follows:

V(δ̂S) = lim
n→∞

E
(√

n(δ̂S − δ)
√

n(δ̂S − δ)′
)

= lim
n→∞

E
[√

n
(
δ̃ + (1 − (p2 − 2)T−1

n ) (δ̂ − δ̃) − δ
)

×
√

n
(
δ̃ + (1 − (p2 − 2)T−1

n ) (δ̂ − δ̃) − δ
)′]

= lim
n→∞

E[(Zn − (p2 − 2) T−1
n Bn) (Zn − (p2 − 2) T−1

n Bn)′]

= E[(Z − (p2 − 2) T−1
n B) (Z − (p2 − 2) T−1

n B)′]
= E[(Z Z′] − 2(p2 − 2) E[B Z′ T−1

n ]︸ ︷︷ ︸
e4

+(p2 − 2)2 E[B B′ T−2
n︸ ︷︷ ︸

e5

],

similar to e1, we can write e4 as follows:

e4 = E[B Z′ T−1
n ]

= E[B B′ T−1
n ] − Jω E[B T−1

n ]

= JH I−1 E
[ 1
χ2

p2+2(∆∗)

]
− (Jω) (Jω)′

(
E

[ 1
χ2

p2+2(∆∗)

]
− E

[ 1
χ2

p2+4(∆∗)

])
,

and by using Equation (3.8), e5 becomes

e5 = E[B B′ T−2
n ]

= JH I−1 E
[ 1
(χ2

p2+2(∆∗))2

]
+ (Jω) (Jω)′ E

[ 1
(χ2

p2+4(∆∗))2

]
.

Therefore,

V(δ̂S) = I−1 − 2(p2 − 2)JH I−1 E
[ 1
χ2

p2+2(∆∗)

]
+ 2(p2 − 2) (Jω) (Jω)′

{
E

[ 1
χ2

p2+2(∆∗)

]
− E

[ 1
χ2

p2+4(∆∗)

]}
+ (p2 − 2)2 JH I−1 E

[ 1
(χ2

p2+2(∆∗))2

]
+ (Jω) (Jω)′ E

[ 1
(χ2

p2+4(∆∗))2

]
= I−1 + (p2 − 2)JH I−1

{
(p2 − 2) E

[ 1
(χ2

p2+2(∆∗))2

]
− 2E

[ 1
χ2

p2+2(∆∗)

]}
+ (p2 − 2) (Jω) (Jω)′

{
− 2E

[ 1
χ2

p2+4(∆∗)

]
+ 2E

[ 1
χ2

p2+2(∆∗)

]
+ (p2 − 2) E

[ 1
(χ2

p2+4(∆∗))2

]}
.
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Finally, we can write V(δ̂S+
) as follows:

V(δ̂S+
) = lim

n→∞
E

(√
n(δ̂S+

− δ)
√

n(δ̂S+
− δ)′

)
= lim

n→∞
E

[√
n

(
δ̂

S − (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2) (δ̂ − δ̃)) − δ

)
×

√
n

(
δ̂

S − (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2) (δ̂ − δ̃)) − δ

)′]
= V(δ̂S) − 2E[B V′ (1 − (p2 − 2) T−1

n ) I(Tn < (p2 − 2)]
− 2E[B B′ (1 − (p2 − 2) T−1

n )2 I(Tn < (p2 − 2)]
+ E[B B′ (1 − (p2 − 2) T−1

n )2 I(Tn < (p2 − 2)]

= V(δ̂S) − 2 E[B V′ (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2)]︸ ︷︷ ︸

e6

− E[B B′ (1 − (p2 − 2) T−1
n )2 I(Tn < (p2 − 2)]︸ ︷︷ ︸

e7

,

now we obtain e6

e6 = E[B V′ (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2)]

= E[B E{V′ (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2) | B}]

= E[B E{−Jω + 0 × (JH I−1)−1 (B − Jω)}′

× (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2)]

= −E[BJω (1 − (p2 − 2) T−1
n ) I(Tn < (p2 − 2)]

= −(Jω) (Jω)′ E
[(

1 − p2 − 2
χ2

p2+2(∆∗)

)
I(χ2

p2+2(∆∗) < p2 − 2)
]
,

and based on Equation (3.8), e7 becomes
e7 = E[B B′ (1 − (p2 − 2) T−1

n )2 I(Tn < (p2 − 2)]

= JH I−1 E
[(

1 − p2 − 2
χ2

p2+2(∆∗)

)2
I(χ2

p2+2(∆∗) < p2 − 2)
]

+ (Jω) (Jω)′ E
[(

1 − p2 − 2
χ2

p2+4(∆∗)

)2
I(χ2

p2+4(∆∗) < p2 − 2)
]
.

Therefore, V(δ̂S+
) becomes

V(δ̂S+
) = V(δ̂S) + 2(Jω) (Jω)′ E

[(
1 − p2 − 2

χ2
p2+2(∆∗)

)
I(χ2

p2+2(∆∗) < p2 − 2)
]

− (Jω) (Jω)′ E
[(

1 − p2 − 2
χ2

p2+4(∆∗)

)2
I(χ2

p2+4(∆∗) < p2 − 2)
]

− JH I−1 E
[(

1 − p2 − 2
χ2

p2+2(∆∗)

)2
I(χ2

p2+2(∆∗) < p2 − 2)
]
.

Now, the proof of Theorem 3.5 can be derived using the above results by following the
definition of ADR. �


