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Abstract

A related fixed point theorem for two pairs of set valued mappings on
two complete metric spaces is proved..
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1. Introduction

In the following we let (X, d) be a complete metric space and B(X) the set of all
nonempty subsets of X. As in [1] and [2] we define the function δ(A,B) with A and B in
B(X) by δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}. If A consists of a single point a we write
δ(A,B) = δ(a,B). If B also consists of single point b we write δ(A,B) = δ(a,B) = d(a, b).
It follows immediately that δ(A,B) = δ(B,A) ≥ 0, δ(A,B) = 0 implies A = B and this
set is a singleton, and δ(A,B) ≤ δ(A,C) + δ(C,B) for all A, B in B(X).

If now {An : n = 1, 2, . . .} is a sequence of sets in B(X), we say that it converges to
the closed set A in B(X) if

(i) each point a ∈ A is the limit of some convergent sequence {an ∈ An : n =
1, 2, . . .}, and

(ii) for arbitrary ε > 0, there exists an integer N such that An ⊂ Aε for n > N,

where Aε is the union of all open spheres with centres in A and radius ε.

The set A is then said to be the limit of the sequence {An}.

The following lemma was proved in [2].

1.1. Lemma. If {An} and {Bn} are sequences of bounded subsets of a complete met-

ric space (X, d) which converge to the bounded subsets A and B, respectively, then the

sequence {δ(An, Bn)} converges to δ(A,B).
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Now let F be a mapping of X into B(X). We say that the mapping F is continuous
at a point x if whenever {xn} is a sequence of points in X converging to x, the sequence
{Fxn} in B(X) converges to Fx in B(X).

We say that F is a continuous mapping of X into B(X) if F is continuous at each
point x in X. We say that a point z in X is a fixed point of F if z is in Fz.

If A is in B(X) we define the set FA =
⋃

a∈A
Fa.

The following theorem was proved in [4].

1.2. Theorem. Let (X, d1) and (Y, d2) be complete metrics spaces, let F be a mapping

of X into B(Y ) and G a mapping of Y into B(X) satisfying the inequalities

δ1(GFx,GFx
′) ≤ cmax{d1(x, x

′), δ1(x,GFx), δ1(x
′
, GFx

′), δ2(Fx, Fx
′)},

δ2(FGy, FGy
′) ≤ cmax{d2(y, y

′), δ2(y, FGy), δ2(y
′
, FGy

′), δ1(Gy,Gy
′)}

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. If F is continuous, then GF has a

unique fixed point z in X and FG has a unique fixed point w in Y .

2. Results

We now prove the following generalization of Theorem 1.2.

2.1. Theorem. Let (X, d1) and (Y, d2) be complete metrics spaces, let F and G be map-

pings of X into B(Y ) and P and Q mappings of Y into B(X) satisfying the inequalities

δ1(PFx,QGx
′) ≤ cmax{d1(x, x

′), δ1(x, PFx), δ1(x
′
, QGx

′), δ2(Fx,Gx
′)},(1)

δ2(GPy, FQy
′) ≤ cmax{d2(y, y

′), δ2(y,GPy), δ2(y
′
, FQy

′), δ1(Py,Qy
′)}(2)

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. If F and G are continuous,then PF

and QG have a unique fixed point z in X and GP and FQ have a unique fixed point w

in Y .

Proof. Let x1 be an arbitrary point in X. Define sequences {xn} and {yn} in X and Y

respectively as follows. Choose a point y1 in Fx1, a point x2 in Py1, a point y2 in Gx2

and then a point x3 in Qy2. In general, having chosen xn in X and yn in Y , choose a
point y2n−1 in Fx2n−1, a point x2n in Py2n−1, a point y2n in Gx2n and then a point
x2n+1 in Qy2n for n = 1, 2, . . . . Then, using inequality (1), we have

d1(x2n+2, x2n+1) ≤ δ1(PFx2n+1, QGx2n)

≤ cmax{d1(x2n+1, x2n), δ1(x2n+1, PFx2n+1),

δ1(x2n, QGx2n), δ2(Fx2n+1, Gx2n)}

≤ cmax{δ1(QGx2n, PFx2n−1), δ1(QGx2n, PFx2n+1),

δ1(PFx2n−1, QGx2n), δ2(Fx2n+1, Gx2n)}

= cmax{δ1(PFx2n−1, QGx2n), δ2(GPy2n−1, FQy2n)},(3)

since

δ2(Fx2n+1, Gx2n) ≤ δ2(GPy2n−1, FQy2n).

Similarly, using inequality (1) again, we have

d1(x2n+2, x2n+3) ≤ δ1(PFx2n+1, QGx2n+2)

≤ cmax{δ1(PFx2n+1, QGx2n), δ2(GPy2n+1, FQy2n)}.(4)
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Using inequality (2), we have

d2(y2n+1, y2n+2) ≤ δ2(FQy2n, GPy2n+1)

≤ cmax{d2(y2n, y2n+1), δ2(y2n+1, GPy2n+1),

δ2(y2n, FQy2n), δ1(Py2n+1, Qy2n)}

≤ cmax{δ2(GPy2n−1, FQy2n), δ2(FQy2n, GPy2n+1),

δ2(GPy2n−1, FQy2n), δ1(Py2n+1, Qy2n)}

≤ cmax{δ2(GPy2n−1, FQy2n), δ1(PFx2n+1, QGx2n)},(5)

since

δ1(Py2n+1, Qy2n) ≤ δ1(PFx2n+1, QGx2n).

Similarly, using inequality (2) again, we have

d2(y2n+2, y2n+3) ≤ δ2(GPy2n+1, FQy2n+2)

≤ cmax{δ2(GPy2n+1, FQy2n), δ1(PFx2n+1, QGx2n+2)}.(6)

We will now prove that

δ1(PFx2n+1, QGx2n) ≤ c
n
K,(7)

δ1(PFx2n+1, QGx2n+2) ≤ c
n
K,(8)

δ2(FQy2n, GPy2n+1) ≤ c
n
K,(9)

δ2(GPy2n+1, FQy2n+2) ≤ c
n
K,(10)

where

K = max{δ1(PFx1, QGx2), δ1(PFx3, QGx2), δ1(PFx3, QGx4),

δ2(GPy1, FQy2), δ2(GPy3, FQy2)},

for n = 1, 2, . . . .

Inequalities (7) to (10) clearly hold when n = 1. Suppose inequalities (7) to (10) hold
for some n. Then it follows from inequality (3) that

δ1(PFx2n+3, QGx2n+2) ≤ cmax{δ1(PFx2n+1, QGx2n+2), δ2(GPy2n+1, FQy2n+2)}

≤ c
n+1

K

on using our assumptions on inequalities (8) and (10). Inequality (7) now follows by
induction.

Using inequality (5), we have

δ2(FQy2n+2, GPy2n+3) ≤ cmax{δ2(GPy2n+1, FQy2n+2), δ1(PFx2n+3, QGx2n+2)}

≤ c
n+1

K,

on using inequality (7) and our assumption on inequality (10). Inequality (9) now follows
by induction.

Using inequality (4), we have

δ1(PFx2n+3, QGx2n+4) ≤ cmax{δ1(PFx2n+3, QGx2n+2), δ2(GPy2n+3, FQy2n+2)}

≤ c
n+1

K,

on using inequalities (7) and (9). Inequality (8) now follows by induction.

Finally, using inequality (6), we have

δ2(GPy2n+3, FQy2n+4) ≤ cmax{δ2(GPy2n+3, FQy2n+2), δ1(PFx2n+3, QGx2n+4)}

≤ c
n+1

K,
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on using inequalities (8) and (9). Inequality (10) now follows by induction.

It follows that, for r = 1, 2, . . .,

d1(x2n+1, x2n+r+1) ≤ d1(x2n+1, x2n+2) + d1(x2n+2, x2n+3) + . . .

+ d1(x2n+r, x2n+r+1)

≤ δ1(QGx2n, PFx2n+1) + δ1(PFx2n+1, QGx2n+2) + · · ·

≤ (cn + c
n + c

n+1 + c
n+1 + · · · )K

< ε,

for n greater than some N , since c < 1. The sequence {xn} is therefore a Cauchy sequence
in the complete metric space X, and so has a limit z in X. Similarly the sequence {yn}
is a Cauchy sequence in the complete metric space Y and so has a limit w in Y .

Further, with m > n, we have

δ1(QGx2n, PFx2m+1) ≤ δ1(QGx2n, PFx2n+1) + δ1(PFx2n+1, QGx2n+2)+

+ · · ·+ δ1(QGx2m, PFx2m+1)

≤ (cn + c
n + c

n+1 + c
n+1 + · · · )K

< ε(11)

for n > N . Next, we have

δ1(z,QGx2n) ≤ d1(z, x2m+2) + δ1(x2m+2, QGx2n)

≤ d1(z, x2m+2) + δ1(PFx2m+1, QGx2n),

since x2m+2 ∈ PFx2m+1. Thus, on using inequality (11), we have

δ1(z,QGx2n) ≤ d1(z, x2m+2) + ε

for m > n > N . Letting m tend to infinity it follows that

δ1(z,QGx2n) ≤ ε

for n > N , and so

(12) lim
n→∞

QGx2n = {z},

since ε is arbitrary.

Similarly,

lim
n→∞

PFx2n+1 = {z},(13)

lim
n→∞

GPy2n+1 = {w} = lim
n→∞

FQy2n.(14)

From the continuity of F of G, we have

lim
n→∞

Fx2n+1 = Fz = {w},(15)

lim
n→∞

Gx2n = Gz = {w}.(16)

Using inequality (1), we now have

δ1(PFz,QGx2n) ≤ cmax{d1(z, x2n), δ1(z, PFz), δ1(x2n, QGx2n), δ2(Fz,Gx2n)}.

Letting n tend to infinity, and using equations (12) and (16), we have

δ1(PFz, z) ≤ c δ1(PFz, z).

Since c < 1, we must have

(17) PFz = {z} = Pw,

on using equation (15), proving that z is a fixed point of PF .
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Using inequality (1) again, we now have

δ1(x2n+2, QGz) ≤ δ1(PFx2n+1, QGz)

≤ cmax{d1(x2n+1, z), δ1(x2n+1, PFx2n+1),

δ1(z,QGz), δ2(Fx2n+1, Gz)}.

Letting n tend to infinity, and using equations (13), (15) and (16), we have

δ1(z,QGz) ≤ c δ1(z,QGz).

Since c < 1, we must have

(18) QGz = {z} = Qw,

on using equation (16), proving that z is also a fixed point of QG.

It now follows from equations (15) and (18) that

FQw = Fz = {w},

and it follows from equations (16) and (17) that

GPw = Gz = {w}.

Therefore, w is a fixed point of FQ and GP.

To prove uniqueness, suppose that PF and QG have a second common fixed point z′.
Then using inequalities (1) and (2), we have

max{δ1(z
′
, QGz

′), δ1(z
′
, PFz

′)} ≤ δ1(PFz
′
, QGz

′)

≤ cmax{d1(z
′
, z
′), δ1(z

′
, PFz

′), δ1(z
′
, QGz

′), δ2(Fz
′
, Gz

′)}

= cδ2(Fz
′
, Gz

′)

≤ cδ2(GPFz
′
, FQGz

′)

≤ c
2 max{δ2(Fz

′
, Gz

′), δ2(Fz
′
, GPFz

′), δ2(Gz
′
, FQGz

′), δ1(PFz
′
, QGz

′)}

≤ c
2 max{δ2(GPFz

′
, FQGz

′)}, δ1(PFz
′
, QGz

′)

= c
2
δ2(PFz

′
, QGz

′)

and it follows that

max{δ1(z
′
, QGz

′), δ1(z
′
, PFz

′)} = δ1(PFz
′
, QGz

′) = δ2(Fz
′
, Gz

′) = 0,

since c < 1. Thus Fz′ and Gz′ are singletons and

PFz
′ = QGz

′ = {z′}.

Using inequalities (1) and (2) again, we have

d1(z, z
′) = δ1(PFz,QGz

′)

≤ cmax{d1(z, z
′), δ1(z, PFz), δ1(z

′
, QGz

′), δ2(Fz,Gz
′)}

= cd2(Fz,Gz
′)

= cd2(Gz, Fz
′)

≤ cδ2(GPFz, FQGz
′)

≤ c
2 max{d2(Fz,Gz

′), δ2(Fz,GPFz), δ2(Gz
′
, FQGz

′), δ1(PFz,QGz
′)}

= c
2 max{d2(Fz, Fz

′), d1(z, z
′)}

= c
2
d1(z, z

′).

Since c < 1, the uniqueness of z follows.
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Similarly, w is the unique fixed point of GP and FQ. This completes the proof of the
theorem. ¤

If we let F and G be single valued mappings of X into Y and let P and Q be single
valued mappings of Y into X, we obtain the following corollary, which generalizes a result
given in [3].

2.2. Corollary. Let (X, d1) and (Y, d2) be complete metric spaces. If F and G are

continuous mappings of X into Y and P and Q are mappings of Y into X satisfying the

inequalities

d1(PFx,QGx
′) ≤ cmax{d1(x, x

′), d1(x, PFx), d1(x
′
, QGx

′), d2(Fx,Gx
′)},

d2(GPy, FQy
′) ≤ cmax{d2(y, y

′), d2(y,GPy), d2(y
′
, FQy

′), d1(Py,Qy
′)}

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1, then PF and QG have a unique fixed

point z in X and GP and FQ have a unique fixed point w in Y .
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