Hacettepe Journal of Mathematics and Statistics Volume 32 (2003), 27 – 32

RELATED FIXED POINTS FOR TWO PAIRS OF SET VALUED MAPPINGS ON TWO METRIC SPACES

Vijendra K. Chourasia[∗] and Brian Fisher†

Received 10. 07. 2003 : Accepted 05. 01. 2004

Abstract

A related fixed point theorem for two pairs of set valued mappings on two complete metric spaces is proved..

Keywords: Set valued mapping, Complete metric space, Fixed point. 2000 AMS Classification: 47 H 10, 54 H 25.

1. Introduction

In the following we let (X, d) be a complete metric space and $B(X)$ the set of all nonempty subsets of X. As in [1] and [2] we define the function $\delta(A, B)$ with A and B in $B(X)$ by $\delta(A, B) = \sup \{d(a, b) : a \in A, b \in B\}$. If A consists of a single point a we write $\delta(A, B) = \delta(a, B)$. If B also consists of single point b we write $\delta(A, B) = \delta(a, B) = d(a, b)$. It follows immediately that $\delta(A, B) = \delta(B, A) \geq 0$, $\delta(A, B) = 0$ implies $A = B$ and this set is a singleton, and $\delta(A, B) \leq \delta(A, C) + \delta(C, B)$ for all A, B in $B(X)$.

If now $\{A_n : n = 1, 2, \ldots\}$ is a sequence of sets in $B(X)$, we say that it converges to the closed set A in $B(X)$ if

- (i) each point $a \in A$ is the limit of some convergent sequence $\{a_n \in A_n : n = a\}$ $1, 2, \ldots\}$, and
- (ii) for arbitrary $\epsilon > 0$, there exists an integer N such that $A_n \subset A_{\epsilon}$ for $n > N$, where A_{ϵ} is the union of all open spheres with centres in A and radius ϵ .

The set A is then said to be the *limit* of the sequence $\{A_n\}$.

The following lemma was proved in [2].

1.1. Lemma. If $\{A_n\}$ and $\{B_n\}$ are sequences of bounded subsets of a complete metric space (X, d) which converge to the bounded subsets A and B, respectively, then the sequence $\{\delta(A_n, B_n)\}\$ converges to $\delta(A, B)$.

[∗]Department of Mathematics, R. D. Govt. College, Mandla, M. P. 481661, India.

[†]Department of Mathematics and Computer Science, University of Leicester, LE1 7RH, U.K. E-mail: fbr@le.ac.uk

Now let F be a mapping of X into $B(X)$. We say that the mapping F is continuous at a point x if whenever $\{x_n\}$ is a sequence of points in X converging to x, the sequence ${Fx_n}$ in $B(X)$ converges to Fx in $B(X)$.

We say that F is a continuous mapping of X into $B(X)$ if F is continuous at each point x in X. We say that a point z in X is a fixed point of F if z is in Fz .

If A is in $B(X)$ we define the set $FA = \bigcup_{a \in A} Fa$.

The following theorem was proved in [4].

1.2. Theorem. Let (X, d_1) and (Y, d_2) be complete metrics spaces, let F be a mapping of X into $B(Y)$ and G a mapping of Y into $B(X)$ satisfying the inequalities

$$
\delta_1(GFx,GFx') \le c \max\{d_1(x, x'), \delta_1(x, GFx), \delta_1(x', GFx'), \delta_2(Fx, Fx')\},
$$

$$
\delta_2(FGy, FGy') \le c \max\{d_2(y, y'), \delta_2(y, FGy), \delta_2(y', FGy'), \delta_1(Gy, Gy')\}
$$

for all x, x' in X and y, y' in Y, where $0 \leq c < 1$. If F is continuous, then GF has a unique fixed point z in X and FG has a unique fixed point w in Y .

2. Results

We now prove the following generalization of Theorem 1.2.

2.1. Theorem. Let (X, d_1) and (Y, d_2) be complete metrics spaces, let F and G be mappings of X into $B(Y)$ and P and Q mappings of Y into $B(X)$ satisfying the inequalities

(1) $\delta_1(PFx, QGx') \leq c \max\{d_1(x, x'), \delta_1(x, PFx), \delta_1(x', QGx'), \delta_2(Fx, Gx')\},\$

$$
(2) \qquad \delta_2(GPy, FQy') \leq c \max\{d_2(y, y'), \ \delta_2(y, GPy), \ \delta_2(y', FQy'), \ \delta_1(Py, Qy')\}
$$

for all x, x' in X and y, y' in Y, where $0 \leq c < 1$. If F and G are continuous, then PF and QG have a unique fixed point z in X and GP and FQ have a unique fixed point w in Y .

Proof. Let x_1 be an arbitrary point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X and Y respectively as follows. Choose a point y_1 in Fx_1 , a point x_2 in Py_1 , a point y_2 in Gx_2 and then a point x_3 in Qy_2 . In general, having chosen x_n in X and y_n in Y, choose a point y_{2n-1} in Fx_{2n-1} , a point x_{2n} in Py_{2n-1} , a point y_{2n} in Gx_{2n} and then a point x_{2n+1} in Qy_{2n} for $n = 1, 2, \ldots$ Then, using inequality (1), we have

$$
d_1(x_{2n+2}, x_{2n+1}) \leq \delta_1(PFx_{2n+1}, QGx_{2n})
$$

\n
$$
\leq c \max\{d_1(x_{2n+1}, x_{2n}), \delta_1(x_{2n+1}, PFx_{2n+1}),
$$

\n
$$
\delta_1(x_{2n}, QGx_{2n}), \delta_2(Fx_{2n+1}, Gx_{2n})\}
$$

\n
$$
\leq c \max\{\delta_1(QGx_{2n}, PFx_{2n-1}), \delta_1(QGx_{2n}, PFx_{2n+1}),
$$

\n
$$
\delta_1(PFx_{2n-1}, QGx_{2n}), \delta_2(Fx_{2n+1}, Gx_{2n})\}
$$

\n(3)
\n
$$
= c \max\{\delta_1(PFx_{2n-1}, QGx_{2n}), \delta_2(GPy_{2n-1}, FQy_{2n})\},
$$

since

$$
\delta_2(Fx_{2n+1}, Gx_{2n}) \le \delta_2(GPy_{2n-1}, FQy_{2n}).
$$

Similarly, using inequality (1) again, we have

$$
\begin{aligned} d_1(x_{2n+2}, x_{2n+3}) &\leq \delta_1(PFx_{2n+1}, QGx_{2n+2})\\ &\leq c \max\{\delta_1(PFx_{2n+1}, QGx_{2n}), \ \delta_2(GPy_{2n+1}, FQy_{2n})\}. \end{aligned}
$$

Related Fixed Points 20

Using inequality (2), we have

 $d_2(y_{2n+1}, y_{2n+2}) \leq \delta_2(FQy_{2n}, GPy_{2n+1})$ $\leq c \max\{d_2(y_{2n}, y_{2n+1}), \delta_2(y_{2n+1}, GPy_{2n+1}),\}$ $\delta_2(y_{2n}, FQy_{2n}), \ \delta_1(Py_{2n+1}, Qy_{2n})\}$ $\leq c \max\{\delta_2(GPy_{2n-1}, FQy_{2n}), \ \delta_2(FQy_{2n}, GPy_{2n+1}),\}$ δ₂(GPy_{2n-1}, FQy_{2n}), δ₁(Py_{2n+1}, Qy_{2n})} (5) $\leq c \max\{\delta_2(GPy_{2n-1}, FQy_{2n}), \delta_1(PFx_{2n+1}, QGx_{2n})\},\$

since

$$
\delta_1(Py_{2n+1}, Qy_{2n}) \le \delta_1(PFx_{2n+1}, QGx_{2n}).
$$

Similarly, using inequality (2) again, we have

$$
d_2(y_{2n+2}, y_{2n+3}) \le \delta_2(GPy_{2n+1}, FQy_{2n+2})
$$

(6)
$$
\le c \max\{\delta_2(GPy_{2n+1}, FQy_{2n}), \delta_1(PFx_{2n+1}, QGx_{2n+2})\}.
$$

We will now prove that

(7) $\delta_1(PFx_{2n+1}, QGx_{2n}) \leq c^n K,$

(8) $\delta_1(PFx_{2n+1}, QGx_{2n+2}) \leq c^n K,$

(9) $\delta_2(FQy_{2n}, GPy_{2n+1}) \leq c^n K,$

(10) $\delta_2(GPy_{2n+1}, FQy_{2n+2}) \leq c^n K,$

where

$$
K = \max\{\delta_1(PFx_1, QGx_2), \ \delta_1(PFx_3, QGx_2), \delta_1(PFx_3, QGx_4),\
$$

$$
\delta_2(GPy_1, FQy_2), \ \delta_2(GPy_3, FQy_2)\},
$$

for $n = 1, 2, \ldots$.

Inequalities (7) to (10) clearly hold when $n = 1$. Suppose inequalities (7) to (10) hold for some n . Then it follows from inequality (3) that

$$
\delta_1(PFx_{2n+3}, QGx_{2n+2}) \le c \max\{\delta_1(PFx_{2n+1}, QGx_{2n+2}), \ \delta_2(GPy_{2n+1}, FQy_{2n+2})\}
$$

$$
\le c^{n+1}K
$$

on using our assumptions on inequalities (8) and (10). Inequality (7) now follows by induction.

Using inequality (5), we have

$$
\delta_2(FQy_{2n+2}, GPy_{2n+3}) \le c \max\{\delta_2(GPy_{2n+1}, FQy_{2n+2}), \ \delta_1(PFx_{2n+3}, QGx_{2n+2})\}
$$

$$
\le c^{n+1}K,
$$

on using inequality (7) and our assumption on inequality (10). Inequality (9) now follows by induction.

Using inequality (4), we have

$$
\delta_1(PFx_{2n+3}, QGx_{2n+4}) \le c \max\{\delta_1(PFx_{2n+3}, QGx_{2n+2}), \ \delta_2(GPy_{2n+3}, FQy_{2n+2})\}
$$

$$
\le c^{n+1}K,
$$

on using inequalities (7) and (9). Inequality (8) now follows by induction.

Finally, using inequality (6), we have

$$
\delta_2(GPy_{2n+3}, FQy_{2n+4}) \le c \max\{\delta_2(GPy_{2n+3}, FQy_{2n+2}), \ \delta_1(PFx_{2n+3}, QGx_{2n+4})\}
$$

$$
\le c^{n+1}K,
$$

on using inequalities (8) and (9). Inequality (10) now follows by induction.

It follows that, for
$$
r = 1, 2, ...
$$
,
\n
$$
d_1(x_{2n+1}, x_{2n+r+1}) \leq d_1(x_{2n+1}, x_{2n+2}) + d_1(x_{2n+2}, x_{2n+3}) + ... + d_1(x_{2n+r}, x_{2n+r+1})
$$
\n
$$
\leq \delta_1(QGx_{2n}, PFx_{2n+1}) + \delta_1(PFx_{2n+1}, QGx_{2n+2}) + ...
$$
\n
$$
\leq (c^n + c^n + c^{n+1} + c^{n+1} + ...)K
$$
\n
$$
< \epsilon,
$$

for n greater than some N, since $c < 1$. The sequence $\{x_n\}$ is therefore a Cauchy sequence in the complete metric space X, and so has a limit z in X. Similarly the sequence $\{y_n\}$ is a Cauchy sequence in the complete metric space Y and so has a limit w in Y .

Further, with $m > n$, we have

$$
\delta_1(QGx_{2n}, PFx_{2m+1}) \leq \delta_1(QGx_{2n}, PFx_{2n+1}) + \delta_1(PFx_{2n+1}, QGx_{2n+2}) + \cdots + \delta_1(QGx_{2m}, PFx_{2m+1})
$$

$$
\leq (c^n + c^n + c^{n+1} + c^{n+1} + \cdots)K
$$

(11)
$$
< \epsilon
$$

for $n > N$. Next, we have

$$
\delta_1(z, QGx_{2n}) \le d_1(z, x_{2m+2}) + \delta_1(x_{2m+2}, QGx_{2n})
$$

\n
$$
\le d_1(z, x_{2m+2}) + \delta_1(PFx_{2m+1}, QGx_{2n}),
$$

since $x_{2m+2} \in PFx_{2m+1}$. Thus, on using inequality (11), we have

$$
\delta_1(z, QGx_{2n}) \le d_1(z, x_{2m+2}) + \epsilon
$$

for $m > n > N$. Letting m tend to infinity it follows that

 $\delta_1(z, QGx_{2n}) \leq \epsilon$

for $n > N$, and so

$$
(12) \qquad \lim_{n \to \infty} QGx_{2n} = \{z\},
$$

since ϵ is arbitrary.

Similarly,

- (13) $\lim_{n \to \infty} PFx_{2n+1} = \{z\},\,$
- (14) $\lim_{n \to \infty} GPy_{2n+1} = \{w\} = \lim_{n \to \infty} FQy_{2n}.$

From the continuity of F of G , we have

- (15) $\lim_{n \to \infty} Fx_{2n+1} = Fz = \{w\},\,$
- (16) $\lim_{n \to \infty} Gx_{2n} = Gz = \{w\}.$

Using inequality (1), we now have

$$
\delta_1(PFz, QGx_{2n}) \leq c \max\{d_1(z, x_{2n}), \ \delta_1(z, PFz), \delta_1(x_{2n}, QGx_{2n}), \ \delta_2(Fz, Gx_{2n})\}.
$$

Letting *n* tend to infinity, and using equations (12) and (16), we have

$$
\delta_1(PFz, z) \leq c \,\delta_1(PFz, z).
$$

Since $c < 1$, we must have

(17) $PFz = \{z\} = Pw,$

on using equation (15), proving that z is a fixed point of PF .

Related Fixed Points 31

Using inequality (1) again, we now have

$$
\delta_1(x_{2n+2}, QGz) \leq \delta_1(PFx_{2n+1}, QGz)
$$

$$
\leq c \max\{d_1(x_{2n+1}, z), \delta_1(x_{2n+1}, PFx_{2n+1}),
$$

$$
\delta_1(z, QGz), \ \delta_2(Fx_{2n+1}, Gz)\}.
$$

Letting n tend to infinity, and using equations (13) , (15) and (16) , we have

$$
\delta_1(z, QGz) \leq c \,\delta_1(z, QGz).
$$

Since $c < 1$, we must have

(18) $QGz = \{z\} = Qw,$

on using equation (16), proving that z is also a fixed point of QG .

It now follows from equations (15) and (18) that

$$
FQw = Fz = \{w\},\
$$

and it follows from equations (16) and (17) that

$$
GPw = Gz = \{w\}.
$$

Therefore, w is a fixed point of FQ and GP .

To prove uniqueness, suppose that PF and QG have a second common fixed point z' . Then using inequalities (1) and (2) , we have

$$
\max{\delta_1(z', QGz'), \ \delta_1(z', PFz')\}} \leq \delta_1(PFz', QGz')
$$

\n
$$
\leq c \max\{d_1(z', z'), \ \delta_1(z', PFz'), \ \delta_1(z', QGz'), \ \delta_2(Fz', Gz')\}
$$

\n
$$
= c\delta_2(Fz', Gz')
$$

\n
$$
\leq c\delta_2(GPFz', FQGz')
$$

\n
$$
\leq c^2 \max\{\delta_2(Fz', Gz'), \ \delta_2(Fz', GPFz'), \ \delta_2(Gz', FQGz'), \ \delta_1(PFz', QGz')\}
$$

\n
$$
\leq c^2 \max\{\delta_2(GPFz', FQGz')\}, \ \delta_1(PFz', QGz')
$$

\n
$$
= c^2 \delta_2(PFz', QGz')
$$

and it follows that

$$
\max\{\delta_1(z',QGz'), \ \delta_1(z',PFz')\} = \delta_1(PFz',QGz') = \delta_2(Fz',Gz') = 0,
$$

since $c < 1$. Thus Fz' and Gz' are singletons and

$$
PFz' = QGz' = \{z'\}.
$$

Using inequalities (1) and (2) again, we have

$$
d_1(z, z') = \delta_1(PFz, QGz')
$$

\n
$$
\leq c \max\{d_1(z, z'), \delta_1(z, PFz), \delta_1(z', QGz'), \delta_2(Fz, Gz')\}
$$

\n
$$
= cd_2(Fz, Gz')
$$

\n
$$
= cd_2(Gz, Fz')
$$

\n
$$
\leq c\delta_2(QPFz, FQGz')
$$

\n
$$
\leq c^2 \max\{d_2(Fz, Gz'), \delta_2(Fz, GPFz), \delta_2(Gz', FQGz'), \delta_1(PFz, QGz')\}
$$

\n
$$
= c^2 \max\{d_2(Fz, Fz'), d_1(z, z')\}
$$

\n
$$
= c^2 d_1(z, z').
$$

Since $c < 1$, the uniqueness of z follows.

Similarly, w is the unique fixed point of GP and FQ . This completes the proof of the theorem. \Box

If we let F and G be single valued mappings of X into Y and let P and Q be single valued mappings of Y into X , we obtain the following corollary, which generalizes a result given in [3].

2.2. Corollary. Let (X, d_1) and (Y, d_2) be complete metric spaces. If F and G are continuous mappings of X into Y and P and Q are mappings of Y into X satisfying the inequalities

$$
d_1(PFx, QGx') \le c \max\{d_1(x, x'), d_1(x, PFx), d_1(x', QGx'), d_2(Fx, Gx')\},
$$

$$
d_2(GPy, FQy') \le c \max\{d_2(y, y'), d_2(y, GPy), d_2(y', FQy'), d_1(Py, Qy')\}
$$

for all x, x' in X and y, y' in Y, where $0 \leq c < 1$, then PF and QG have a unique fixed point z in X and GP and FQ have a unique fixed point w in Y .

References

- [1] Fisher, B. Set-valued mappings on metric spaces, Fund. Math. 112, 141–145, 1981.
- [2] Fisher, B. Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq. 18, 69–77, 1981.
- [3] Fisher, B. Related fixed points on two metric spaces, Math. Sem. Notes. 10, 17–29, 1982.
- $[4]$ Fisher, B. and Türkoğlu, D. Related fixed points for set valued mappings on two metric spaces, Internat. J. Math. Math. Sci. 23 (3), 205–210, 2000.