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Abstract

In this study Gibbs sampling, a widely used simulation method, is ap-
plied to the steady model, a simple variation of the dynamic linear
model, and the model parameters are estimated. The estimates ob-
tained from Gibbs sampling and the results for the standard Kalman
filter are compared and are found to be close. These similarities in the
results indicate the success of the stochastic simulation. In this study,
a variance modulation on the steady model is also applied and Gibbs
sampling is proposed to overcome analytic problems. In the variance
adaptation, defined as aµb

t (a, b > 0), estimates for the model parame-
ters are obtained for different values of a and b.

Keywords: Bayesian approach, BUGS, Gibbs sampling, Steady model, Variance mod-
ulation

1. Introduction

Statistical inference is concerned with drawing conclusions about quantities that are
not observed. Once a model is built, there are many ways to proceed with inference.
The Bayesian approach considers all unknown quantities as random variables. Obtaining
the posterior distribution for the unknown parameter is an important step, but not the
final one. One must be able to extract meaningful information from this distribution.
This is usually achieved by evaluation of point estimates such as mean, mode or interval
summaries given by probability intervals. This extraction or summary can be performed
analytically, that is, an exact appraisal of the situation can be made. In most cases,
however, the complexity of the model prevents the analytical solution. There are many
examples that fall into the category of large dimensional models, such as dynamic models,
hierarchical models and random effects models [6].

Dynamic linear models provide a flexible and fairly simple tool for modelling time
series data. Estimators are computed using the Kalman filter, which gives the optimal
solution under some assumptions. When the models are complicated, it is no longer
possible to perform exact Bayesian inference. Therefore, it is necessary to use alternative
approaches for analysing time series data withinthe Bayesian framework in real life ap-
plications. A stochastic simulation method, Gibbs Sampling, is considered in this study
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as an alternative to an analytical solution. The steady model is taken as an example in
which to implement Gibbs sampling for dynamic models. The BUGS (Bayesian Infer-
ence Using Gibbs Sampling) program is used to implement the model. Spielgelhalter,
Thomas and Best [21] argued that Gibbs sampling gives generally good results, but that
it can produce wrong answers. Therefore, it is also aimed to compare the results from the
stochastic simulation with results from the updating equations to see possible similarity
of the estimates.

There are strong practical reasons why it is necessary to carry out a variance modu-
lation for the dynamic linear models [18]. The study is mainly interested in the class of
power variance laws. It has been suggested by West and Harrison [22] that the variance
modulated model is intractable, so the prior mean, E(µt/y

t−1) should be used as a substi-
tute for µt. However, in this study, variance modulation is simply accommodated within
the steady model and Gibbs sampling is applied to the variance modulated process.

The steady model is defined in Section 2. Gibbs sampling is described in Section 3.
The outputs of the model from updating equation and Gibbs sampling are presented in
Section 4. A conclusion is given in Section 5.

2. The Steady Model

Dynamic linear models were first introduced by Harrison and Stevens [15]. The formal
definition of the model for time t is as follows [22].

Observation Equation : yt = µt + vt, vt ∼ N(0, Vt)(2.1)

State (System) Equation : µt = µt−1 + wt, wt ∼ N(0,Wt)(2.2)

Initial Information : µ0 ∼ N(m0, C0),

where yt is the process observation at time t, µt the process parameter at time t (also
referred to as the level), vt and wt are error terms and the third component here is the
probabilistic representation of the forecaster’s beliefs and information about the level at
time t = 0. Also, m0 is an estimate of the level µ0 and C0 a measure of uncertainty
about m0. The values of m0 and C0 are known, and the error sequences Vt and Vt are
independent of µ0.

Many important underlying concepts and analytical features of dynamic linear models
are apparent in the simplest and most widely used case of the steady model, which is also
called the first order polynomial model. This model has been used effectively in numerous
applications, particularly in short term forecasting for production planning and stock
control.

2.1. Updating Equations. Let us assume that the information about µt−1 at time
t− 1 conditional on yt−1, can be described by

(2.3) µt−1/y
t−1 ∼ N(mt−1, Ct−1),

where yt−1 = y1, y2, . . . , yt−1 and “/” is used to indicate conditioning here. The states
can be updated using Bayes’ Theorem. The posterior distribution of µt is obtained as
follows:

(2.4) f(µt/y
t) ∝ f(µt/y

t−1)f(yt/µt)

where, from equation (2.2), the prior distribution of µ at time t is

(2.5) µt/y
t−1 ∼ N(mt−1, Ct−1 +Wt).

From a standard result on the multivariate normal, the steady model satisfies

(2.6) µt/y
t ∼ N(mt, Ct),
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where,

mt = Atyt + (1−At)mt−1

= mt − 1 +Atet

and

et = yt −mt−1,

C−1
t = (Ct−1 +Wt)

−1 + V −1
t ,

At = Ct/Vt (the adaptive coefficient).

The observation yt and the state parameter are normally distributed, from which it
follows that

f(µt/y
t−1) ∝ (f(µt−1/yt− 1)

kt−1 ,

where kt−1 =
Ct−1

Ct−1+Wt
.

The one-step forecast distribution can be calculated from the following equation:

f(yt/y
t−1) =

∫

f(yt/µt)f(µt/y
t−1) dµt.

Thus,

(2.7) yt/y
t−1 ∼ N(ft, Qt),

where ft = mt−1 and Qt = kt−1Ct−1 + Vt.

Equations (2.5), (2.6) and (2.7) are known as the Kalman filter results.

2.2. Smoothing. The joint distribution of yn = (y1, y2, . . . , yn)
′ and µ = (µ1, µ2, . . . , µn)

′

has the density

f(yn, µ) =
n

∏

t=1

f(yt/µt)
n

∏

t=2

f(µt/µt−1)f(µ1).

Therefore, the full conditional density of µt is

(2.8) f(µt/y
n) ∝ f(yt/µt)f(µt+1/µt)f(µt/µt−1)

Using the equations (2.1) and (2.2), it is easy to obtain the distributions on the right
hand side of equation (2.8):

(yt/µt) ∼ N(µt, Vt),

(µt+1/µt) ∼ N(µt,Wt+1),

(µt/µt−1) ∼ N(µt−1,Wt).

Thus, the full conditional density of µt is summarized by

(2.9) (µt/y
n) ∼ N(bt, Bt),

where bt = Bt(Vtyt + W−1
t+1µt+1 + W−1

t µt−1) and Bt = (Vt + W−1
t+1 + W−1

t )−1, for
t = 2, 3, . . . , n− 1.

The endpoint parameters µ1 and µn also have full conditional distributions N(b1, B1)
and N(bn, Bn), where b1 = B1(V1y1 +W

−1
2 µ2 +W

−1
1 µ0), B1 = (V1 +W

−1
2 +W−1

1 )−1;
bn = Bn(Vnyn +W

−1
n µn−1) and Bn = (Vn +W

−1
n )−1 [9].

The distribution of the model parameters at time t can be revised after data at times
subsequent to t becomes available. A set of distributions of f(µt/y

t+k), for k an integer,
can be considered. When k > 0, they are called smoothed or filtered distributions of the
parameters. When k = 0, we have the updated distribution, and when k < 0, a prior
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distribution. In dynamic models, the smoothed distribution f(µ/yn) is most commonly
used. It has density

(2.10)

f(µ/yn) = f(µn/y
n)

n−1
∏

t=1

f(µt/µt+1, . . . , µn, y
n)

= f(µn/y
n)

n−1
∏

t=1

f(µt/µt+1, y
t),

where the last equality follows from the fact that µt+1, µt are given as independent
of all quantities indexed by times larger than t. Integrating (2.10) with respect to
µ1, µ2, . . . , µt−1 gives

f(µt, . . . , µn/y
n) = f(µn/y

n)

n−1
∏

k=t

f(µk/µk + 1, y
t) for t = 1, 2, . . . , n− 1 and

f(µt, µt+1/y
n) = f(µt+1/y

n)f(µt/µt+1, y
t) for t = 1, 2, . . . , n− 1.(2.11)

Equation (2.11) provides a simple and recursive form to obtain the marginal posterior
distributions of µt/y

n. After sequentially obtaining the updated distributions of µt/y
t

for t = 1, 2, . . . , n, time orientation is reversed from the distribution of µn/y
n so as to

successively obtain the distributions of µt/y
n for t = n− 1, n− 2, . . . , 1.

3. Gibbs Sampling

The 1990’s have witnessed a burst of activity in applying Bayesian methods. Most of
these application have used Markov chain Monte Carlo (MCMC) methods to simulate
posterior distributions. There is a large literature on Bayesian analysis with MCMC
methods (for example, Brooks [1], Chib and Greenberg [4], Clayton [5], Congdon [6],
Cowles and Carlin [7], Fearnhead [8] and Gamerman [9] provide an excellent introduc-
tion to MCMC). It is not common to directly obtain samples from the joint posterior
distribution with complicated models. Multivariate normal or t–approximations about
the modes or importance resampling techniques can improve the approximation. Unfortu-
nately, the simulation from these approximations may not be adequate for the inferential
task [12]. The idea of Markov chain simulation is to simulate a random walk in the
space of θ which converges to a stationary distribution that is the joint posterior (target)
distribution, f(θ/y).

The practical virtue of simulation methods in general, including MCMC, is that given
a set of random draws θ(1), θ(2), θ(3), . . . , θ(n) from the posterior distribution, one can
estimate virtually all summaries of interest from the posterior distribution directly from
the simulation. MCMC methods have been successful because they allow one to draw
simulations from a wide range of distributions [16]. There are two basic methods of
MCMC, Gibbs sampling and The Metropolis-Hastings algorithm. Gibbs sampling is
the one which is used in this study. The reason for preferring this method is that
the simulation program used in the application of the steady model is based on Gibbs
sampling. Gibbs sampling originated in the context of image processing. Gelfand and
Smith [11] were the first authors to successfully introduce the sampling scheme devised
by Geman and Geman [13] to the statistical community. It has been applied in a wide
array of problems. It is a MCMC scheme where the transition kernel is formed by the
full conditional distributions. Assume that the distribution of interest is f(θ), where
θ = (θ1, θ2, . . . , θn)

′. Each one of the components θi can be a scalar or a vector. Suppose
that the full conditional distributions, fi(θi) = f(θi/θi−1), i = 1, 2, . . . , n, are available,
which means that they are known and can be sampled from.
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The problem to be solved is to make a draw from f( . ), in the case where direct
generation schemes are costly, complicated or unavailable, while generations from the
fi( . ) are possible. Gibbs sampling provides an alternative generation scheme based on
successive generations from the full conditional distributions. Three steps are required
for the basic algorithm. It can be described in the following way [9]:

(1) Initialize the iteration counter of the chain to j = 1, and set the initial values of

θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ0n)

′;

(2) Obtain a new value θ(j) = (θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
n )

′ from θ(j−1) through successive
generation of values

θj
1 ∼ f(θ1/θ

(j−1)
2 , . . . , θ(j−1)

n ),

θj
2 ∼ f(θ2/θ

(j)
1 , θ

(j−1)
3 , . . . , θ(j−1)

n ),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

θj
n ∼ f(θn/θ

(j)
1 , . . . , θ

(j−1)
n−1 );

(3) Change the counter j to j+1 and return to step 2 until convergence is reached.

When convergence is reached, the resulting value θ(j) is a draw from f( . ). When the
number of iteration increases the chain approaches its limiting condition.

4. Application of Gibbs Sampling to a Steady Model

The steady model considered here is given by (1) and (2), and observational and system
variances are taken as constant and assumed to be unknown for the application of the
model. The specification of the model can be taken as a basis for blocking parameters.
So, the natural choice is to form blocks µ1, µ2, , . . . , µn, V and W . The full conditional
distributions of the µt are given by equation (9) in subsection 2.2. Assume that φ = V −1

and ψ =W−1. It is not possible to obtain analytic expressions for the posterior densities
of µ, φ and ψ. But it is easy to obtain the full densities of φ and ψ. The prior distributions
of φ = V −1 ∼ Gamma(α, β) and ψ = W−1 ∼ Gamma(γ, ϑ) are independent and the
full conditional distributions of φ and ψ are given as follows

f(φ/µ, ψ) ∝
n

∏

t=1

f(yt/µt, φ)f(φ/µ, ψ)

⇒ φ/µ, ψ ∼ Γ(α+ n, β +
∑

t

(yt − µt)
2),

f(ψ, µ, φ) ∝

n
∏

t=2

f(µt/µt−1, ψ)f(ψ/µ, φ)

⇒ ψ/µ, φ ∼ Γ(γ + n− 1, ϑ+
n

∑

t=2

(µt − µt−1)
2).

It is seen that the parameters are conditionally conjugate. These full conditional distri-
butions complete a cycle of the Gibbs sampler. It is clear that the µt should be included
in the Gibbs sampler, but this may be done either through the distributions

(4.12) (µt/y
t, φ, ψ, µk(k 6= t), (φ/yt, µt, ψ), (ψ/y

t, µt, φ)

or through the distributions

(4.13) (µ1, µ2, ..., µn/y
t, φ, ψ), (ψ/yt, µt, ψ), (ψ/y

t, µt, φ)
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The two samplers differ in the way they simulate the µt’s. In (4.12) the levels are
simulated from their individual full conditional distribution, while in (4.13) they are
sampled from their joint full conditional distribution. Because the µt are correlated, the
blocking in (4.13) will lead to faster convergence to target distribution as is indicated by
Chib and Greenberg [3]. Blocking is possible by using (2.10). Incorporating explicitly
the conditional on V and W , each term in (2.10) is given by Bayes’s theorem as

f(µt/µt+1, y
t, V,W ) ∝ f(µt+1/µt, y

t, V,W )f(µt/y
t, V,W ),

where (µt+1/µt, y
t, V,W ) ∼ N(µt,W ) from (2.11) and (µt/y

t, V,W ) ∼ N(mt, Ct) from
(2.4). Thus it is easy to obtain that

(4.14) (µt/µt+1, y
t, V,W ) ∼ N[W−1 + C−1

t )−1(W−1µt+1 + C
−1
t mt), (W

−1 + C−1
t )−1]

for t = 1, . . . , n− 1.

The Gibbs sampling algorithm for drawing samples from the full conditional of the
block µ for the steady model is given by the following steps:

(1) Sample µn from its posterior distribution using (2.6) and set t = n− 1.
(2) Sample µt from the distribution using (4.14).
(3) Decrease t to t− 1 and return to step 2 until t = 1

In most cases, the proposed Gibbs algorithms for the models are difficult to implement.
The WinBUGS1.4 program is suitable for carrying out Gibbs sampling for the steady
model. BUGS has been written by Spiegelhalter, Thomas and Best [20, 21] in the C-
Language. The user of the program has to code his model into BUGS. The code developed
for the steady model is given in Appendix A.

It can be seen that the language provides a fairly direct translation of the original
description of the steady model. A couple of data set was examined in this study. But
the results are given for only one data set, which is stated in the BUGS code. The data
sets were simulated from the equations (2.1) and (2.2) with V=0.1 andW=0.01 precisions
to have series with steady-space structures. The BUGS program was first run for 10000
iterations after 1000 burn-in for the model. The posterior means (mu[ . ]) and standard
errors of the posterior distribution of the µt’s; one-step ahead forecasts (y.new[ . ]), the
standard errors of the yt’s from Gibbs sampling and the simulation error (MC error) are
shown in Table 1.

The MC errors for the estimations are seen to be very small, which indicate the success
of these approximations. The values of the mean and median for each node in Table 1
are also very close to one another.

The Kalman filter equations were also applied to this sample data that was simulated
from equations (2.1) and (2.2), in order to analyze the difference between the above
mentioned stochastic simulation results and the Kalman filter estimations that depend
on analytic methods. The Kalman filter estimations were obtained by the formulae in
Section 2.1 for V = 0.1 and W = 0.01, and are presented in Table 2, where, yt is the
process observation, mt is the posterior mean of µt, Ct is the variance of mt, ft is the
mean of the one-step ahead forecast distribution of yt, and Qt is the variance of the
one-step ahead distribution. It can be seen from Tables 1 and 2 that the results are very
similar. The posterior means obtained from Gibbs sampling are quite close to the values
of the mt’s, and the same is true for the values of the one-step ahead forecast’s means.
This shows that Gibbs sampling can be used as an alternative to time series modelling,
and indicates that one can trust the estimates obtained from the stochastic simulation if
the model is analytically intractable.
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Table 1. Estimates from the Gibbs Sampling

S. MC 97.5%

NODE yt MEAN ERROR ERROR MEDIAN INTERVAL

mu[1] 10.70 10.74 0.6438 0.007119 10.74 9.47 – 11.99

mu[2] 10.71 10.91 0.6021 0.007536 10.91 9.68 – 12.07

mu[2] 8.56 9.41 0.6021 0.007536 9.41 9.68 – 12.07

mu[4] 9.87 9.722 0.5707 0.005537 9.731 8.59 – 10.81

mu[5] 10.50 10.091 0.5929 0.008299 9.729 8.57 – 10.88

mu[6] 7.37 8.341 0.5946 0.007174 8.121 6.96 – 9.31

mu[7] 8.47 8.108 0.5772 0.005697 8.109 6.99 – 9.23

mu[8] 6.79 7.287 0.5857 0.007277 7.279 6.15 – 8.47

mu[9] 7.80 7.514 0.569 0.006726 7.516 6.40 – 8.64

mu[10] 6.76 7.098 0.5811 0.007108 7.089 5.96 – 8.28

mu[11] 7.42 7.392 0.5767 0.007525 7.393 6.26 – 8.51

mu[12] 8.33 7.653 0.6043 0.008135 7.651 6.45 – 8.82

mu[13] 6.68 7.092 0.5831 0.006832 6.556 5.41 – 7.70

mu[14] 5.33 5.831 0.5802 0.006905 5.276 4.14 – 6.4

mu[15] 3.05 3.873 0.6292 0.009699 3.864 2.65 – 5.13

mu[16] 4.29 4.164 0.6618 0.00699 4.169 2.85 – 5.48

S. MC 97.5%

NODE yt MEAN ERROR ERROR MEDIAN INTERVAL

y.new[1] 10.70 10.00 2.503 0.01705 10.00 7.15 – 12.60

y.new[2] 10.71 10.73 1.503 0.01605 10.72 7.75 – 13.66

y.new[3] 8.56 10.9 1.462 0.01208 10.88 8.05 – 13.79

y.new[4] 9.87 9.412 1.484 0.01454 9.426 6.49 – 12.31

y.new[5] 10.50 9.723 1.477 0.01473 9.73 6.80 – 12.73

y.new[6] 7.37 10.031 1.458 0.01504 9.697 6.91 – 12.61

y.new[7] 8.47 8.132 1.472 0.01469 8.14 5.22 – 11.02

y.new[8] 6.79 8.117 1.487 0.01368 8.111 5.16 – 11.01

y.new[9] 7.80 7.286 1.454 0.0157 7.282 4.41 – 10.16

y.new[10] 6.76 7.521 1.468 0.01462 7.511 4.67 – 10.47

y.new[11] 7.42 7.087 1.467 0.01543 7.098 4.18 – 9.92

y.new[12] 8.33 7.396 1.483 0.01349 7.416 4.44 – 10.32

y.new[13] 6.68 7.639 1.487 0.01589 7.609 4.75 – 10.63

y.new[14] 5.33 6.576 1.474 0.01313 6.562 3.66 – 9.47

y.new[15] 3.05 6.021 1.461 0.01368 5.28 2.42 – 8.17

y.new[16] 4.29 3.87 1.508 0.0173 3.868 0.93 – 6.85
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Table 2. Kalman Filter Estimates

t yt mt Ct Ft Qt

1 10.70 10.48 0.67 10.00 3.00

2 10.71 11.25 0.58 10.48 2.67

3 8.56 9.59 0.57 11.25 2.64

4 9.87 9.77 0.59 9.59 2.63

5 10.50 10.25 0.61 9.77 2.63

6 7.37 8.47 0.59 10.25 2.63

7 8.47 8.47 0.60 8.47 2.63

8 6.79 7.43 0.63 8.47 2.63

9 7.80 7.66 0.62 7.43 2.63

10 6.76 7.10 0.61 7.66 2.63

11 7.42 7.30 0.61 7.10 2.63

12 7.42 7.30 0.61 7.10 2.63

13 6.68 7.16 0.61 7.93 2.63

14 5.33 6.03 0.62 7.16 2.63

15 3.05 4.19 0.63 6.03 2.63

16 4.29 4.25 0.62 4.19 2.63

4.1. Variance Modulation. In the previous application, the variance of observation
equation in the state-space model has been assumed to be constant, and not to be
dependent on the level, µt. But it usually happens for positive data that the variation
may increase with level. Thus the variation needs to be formulated in terms of the
observational variance. Although a theory of the law of variance is not properly completed
and gets messy, it is necessary to use variance modulation in practice. In this study,
variance modulation is considered for the steady model. There are several forms of the
variance law, which are used in practice. The power law is used in this paper. The power
law is given below:

Var(Vt/µt) = aµb
t .

The observation equation and the state equation in (1) and (2) are rewritten as follows,

yt/µt ∼ N(µt, aµ
b
t),

µt/µt−1 ∼ N(µt−1, Wt).

The BUGS code used for obtaining estimations by Gibbs sampling with a variance mod-
ulated steady model is presented in Appendix B. The data set for the previous model has
also been used in the application involving a steady model with a power variance law.
For a situation in which the quantity“a”, used in variance modulation, is not known,
the distribution of uniform and gamma nominees have been examined. The value of b
is considered to be fixed and the model estimations for b = 1, 2, and 3 have been found.
Using the gamma and uniform distributions for an unknown quantity “a” did not lead
to a significant difference. The estimations for “a” that were obtained from two differ-
ent distributions were found to be similar. Table 3 has been presented for b = 2 and
a ∼ Uniform [0–2].
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Table 3. Gibbs Sampling on a Variance Modulated Steady Model

S. MC 97.5%

NODE yt MEAN ERROR ERROR MEDIAN INTERVAL

mu[1] 10.70 10.39 0.6479 0.002349 10.54 8.90 – 11.99

mu[2] 10.71 10.83 0.9880 0.005504 11.05 8.70 – 12.18

mu[2] 8.56 9.205 0.8391 0.004020 9.068 7.804 – 10.94

mu[4] 9.87 9.67 0.7323 0.000233 9.776 7.988 – 11.12

mu[5] 10.50 9.788 0.9114 0.004399 10.01 7.709 – 11.13

mu[6] 7.37 8.149 0.9307 0.004922 8.010 6.605 – 10.01

mu[7] 8.47 8.384 0.8203 0.002441 8.432 6.513 – 9.902

mu[8] 6.79 7.601 0.005568 7.458 5.92 – 9.688

mu[9] 7.80 8.182 0.8376 0.03390 8.072 6.536 – 9.936

mu[10] 6.76 10.42 2.068 0.14360 10.26 6.619 – 12.99

mu[11] 7.42 8.01 0.5767 0.007525 7.393 6.26 – 8.51

mu[12] 8.33 8.166 0.8068 0.002506 8.26 6.359 – 9.738

mu[13] 6.68 7.359 0.9604 0.009456 7.214 5.718 – 9.333

mu[14] 5.33 7.674 0.8407 0.03269 7.552 6.089 – 9.423

mu[15] 3.05 4.873 0.8816 0.03109 5.245 3.234 – 9.941

S. MC 97.5%

NODE yt MEAN ERROR ERROR MEDIAN INTERVAL

y.new[1] 10.70 10.00 2.503 0.01705 10.00 7.15 – 12.60

y.new[2] 10.71 10.38 2.234 0.0287 10.38 5.90 – 14.82

y.new[3] 8.56 10.82 2.41 0.0553 10.77 6.106 – 15.77

y.new[4] 9.87 9.211 2.367 0.0466 9.28 4.365 – 13.78

y.new[5] 10.50 9.697 2.331 0.02964 9.71 5.05 – 14.36

y.new[6] 7.37 9.781 2.483 0.050 9.76 4.90 – 14.80

y.new[7] 8.47 8.131 2.512 0.055 8.199 3.001 – 12.88

y.new[8] 6.79 8.340 2.477 0.0306 8.371 3.228 – 13.12

y.new[9] 7.80 7.567 2.543 0.00596 7.62 2.403 – 12.42

y.new[10] 6.76 8.178 2.431 0.00366 8.234 3.221 – 12.89

y.new[11] 7.42 10.42 2.543 0.01546 10.30 4.563 – 16.62

y.new[12] 8.33 8.017 2.413 0.04366 8.04 3.026 – 12.84

y.new[13] 6.68 8.176 3.096 0.00312 8.198 3.171 – 13.17

y.new[14] 5.33 7.354 2.472 0.00529 7.383 2.233 – 12.24

y.new[15] 3.05 7.654 2.542 0.0370 7.718 2.576 – 12.46

y.new[16] 4.29 7.117 2.518 0.00392 7.654 3.356 – 11.41

As a conclusion, for b≤ 2 the results from Gibbs sampling and the standard Kalman
filter have been found to be quite similar. These comparisons with the Kalman filter
results are presented in Table 4. When b=3, bimodality of kernel densities and deviations
in the estimations might occur. In Table 4, mean absolute values (MAD), posterior means
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of the quantity “a” and related standard deviations with simulation errors for different
values of b are presented for 10000 iterations after a 1000 step burn-in.

Model results for different value of b (a ∼ Uniform [0–2])

Mean value of a S. Error MC Error MAD S. Error MC Error69

b=1 0.4059 0.1862 0.0084 1.514 0.4166 0.002961

b=2 0.1937 0.1277 0.01141 1.895 0.4442 0.0027

b=3 0.1702 0.364 0.01683 2.954 0.5938 0.01832

5. Conclusion

In this study, the Gibbs sampling algorithm was applied in a straightforward way to
the steady model. A comparison of Gibbs sampling and the Kalman filter was performed,
and the estimates from the stochastic simulation and Kalman filter found to be very sim-
ilar. Therefore, the Gibbs sampling algorithm can be recommended as an alternative
to the analytic solutions in dynamic models. Stochastic simulation techniques can be
applied to any kind of high dimensional model with a short computational time due to
the excellent development of computers and software. There are several studies consider-
ing different aspects and sampling schema on dynamic models. Carter and Kohn [2] use
Gibbs sampling on a linear model with errors that are a mixture of normals, and Kun-
sch [17] uses hidden Markov models. They compare their proposed algorithm to Gibbs
sampling. Other alternative sampling schema for dynamic models is given by Gamer-
man [10]. He mainly focuses on the Metropolis-Hasting algorithm. MCMC sampling
may be too slow in problems involving a large number of posterior (target) distributions
in dynamic modelling. A simulation technique for tracking moving target distribution,
known as particle filters, which combine importance sampling, importance resampling
and MCMC sampling, suggested for nonlinear state-space models, is studied by Radford
[19]. He uses embedded hidden Markov models for parameter estimations. It is pointed
out by Spielgelhalter, Thomas and Best [21] thatWinBUGS simulates each node in turn:
this may cause slow convergence for the models with strongly related parameters, such as
hidden-Markov and other time series structures. But the simplicity of the steady model
prevents such problems.

In this study, a variance law has also been considered for the steady model. As is
stated by West and Harrion [22], letting the variance depend on an unknown parameter
µt definitely makes the posterior distributions and forecast distribution of dynamic linear
models analytically intractable. Therefore, to eliminate this problem, Gibbs sampling has
been proposed in this study and the posterior means and one-step ahead forecasts have
been obtained for this situation. The results show that the more robust models are those
with small values of a and b.

Appendix A

model { # STEADY MODEL WITH FIXED OBSERVATIONAL AND
STATE VARIANCES

W ∼ dgamma (0.1,1)

V ∼ dgamma (1,1)

# observation model

for (t in 1:N){y[t] ∼ dnorm(teta[t],V);
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teta[t] <- mu[t];}
# state model

for (t in 2:N) mu[t] ∼ dnorm(mu[t-1],W);}
# one-step ahead forecasts

for ( t in 1:N) mu.new[t] ∼ dnorm(mu[t],W);}
for (t in 2:N) teta.new[t] <- mu.new[t-1];

y.new[t] ∼ dnorm(teta.new[t],V)}
# settings for year 1

mu[1] ∼ dnorm(10,0.01) }
Data

y[]

10.7 11.7 8.56 9.87 10.5 7.37 8.47 6.79

7.8 6.76 7.42 8.33 6.68 5.33 3.05 4.29 . . .
Inits

list(mu=c(10,10,10,10,10,...,10,10,10))

Appendix B

model { #STEADY MODEL WITH A POWER VARIANCE MODULATION

W ∼ dgamma (1,2)

a ∼ dunif (0,2)

b <- 1

# observation model

for (t in 1:N) y[t] ∼ dnorm(µ[t],V[t]);
µ[t] <- β[t]
V[t] <- a*pow(β[t],b)}
# state model

for (t in 2:N) β[t] ∼ dnorm(β[t-1],W)}
# one-step ahead forecasts

for ( t in 1:N) β.new[t] ∼ dnorm(β[t],W)}
for (t in 2:N) µ.new[t] <- β.new[t-1];
y.new[t] ∼ dnorm(µ.new[t],V[t]);
residual[t] <- y.new[t] - y[t];

absdev[t] <- abs(residual[t])}
MAD <- sum(absdev[2:N])/(N)

# settings for year 1

β[1] ∼ dnorm(10,10) }
Data

list(y=c(10.7,11.7,8.56,9.87,10.5,

7.37,8.47,6.79,7.8,6.76,7.42,8.33,6.68,5.33,3.05,4.29,...))

Inits

list(beta=c(10,10,10,...,10,10))
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