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Abstract
In this article, Cartan-Eilenberg Ding projective complexes are introduced and investi-
gated. It is shown that a complex C is Cartan-Eilenberg Ding projective if and only if Cn

and Cn/Bn(C) are Ding projective in R-Mod for each n ∈ Z when R is a Ding-Chen ring.
Some applications are also given.
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1. Introduction and Preliminaries
In classical homological algebra, the projective and injective modules play important

and fundamental roles. In Chapter XVII of Homological Algebra, Cartan and Eilenberg
[1] gave the definitions of projective and injective resolutions of a complex of modules.
Subsequently, Verdier considered these resolutions and called them Cartan-Eilenberg pro-
jective and injective resolutions of a complex. Also, the definitions of Cartan-Eilenberg
injective, projective and flat complexes were introduced [11].

Recently, Enochs studied Cartan-Eilenberg projective and injective complexes, Cartan-
Eilenberg Gorenstein injective complexes are also introduced and studied [5]. We also
considered Cartan-Eilenberg FP-injective complexes in [9]. In this paper, our main purpose
is to introduce and investigate the concept of Cartan-Eilenberg Ding projective complexes.

It is an important question to establish relationships between a complex X and the
modules Xn, Zn(X), Bn(X) and Hn(X), n ∈ Z. As we know, a complex C is Gorenstein
projective if and only if Cn is Gorenstein projective in R-Mod for n ∈ Z (see [12]) and
a complex C is Ding projective if and only if Cn is Ding projective in R-Mod for n ∈ Z
and HomR(C, F ) is exact for all flat complexes F (see [13]). In [5], it was shown that a
complex C is Cartan-Eilenberg Gorenstein injective if and only if Bn(X) and Hn(X) are
Gorenstein injective in R-Mod for n ∈ Z.

Recall from [10] that a left R-module E is called FP-injective if Ext1
R(F, E) = 0 for

all finitely presented left R-modules F . More generally, the FP-injective dimension of
a left R-module N is defined to be the least integer n ≥ 0 such that Extn+1

R (F, N) = 0
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for all finitely presented left R-modules F . The FP-injective dimension of N is denoted
FP-id(N) and equals ∞ if no such n above exists.

A ring R is called an n-FC ring if it is both left and right coherent and FP-id(RR)
and FP-id(RR) are both less than or equal to n, see [2, 3]. A ring R is called Ding-Chen
(which is renamed by Gillespie [7]) if it is an n-FC ring for some non-negative integer n.

In the following, R will be a Ding-Chen ring. Our main result in this note can be stated
as follows (cf. Theorem 2.13 and Proposition 2.15).

Theorem 1.1. Let C be a complex.
(1) Then C is Cartan-Eilenberg Ding projective if and only if Cn and Cn/Bn(C) are Ding
projective in R-Mod for each n ∈ Z.
(2) If Zi(C) and Bi(C) have finite flat dimension in R-Mod for each i ∈ Z, then C is
Cartan-Eilenberg Ding projective if and only if C is DG-Ding projective with Hi(C) Ding
projective in R-Mod for each i ∈ Z.

As an application of Theorem 1.1, we get the following observation which establishes
a relationship between Cartan-Eilenberg Ding projective complexes and Ding projective
complexes (cf. Corollary 3.3).

Corollary 1.2. Let G be a complex. Then the following statements are equivalent:
(1) G is Cartan-Eilenberg Ding projective.
(2) G is Ding projective and Gi/Bi(G) is Ding projective in R-Mod for each i ∈ Z.

A complex C is Ding projective if and only if Zn(C) is Ding projective in R-Mod
for n ∈ Z whenever C is an exact complex such that this complex remains exact when
HomR(−, F ) is applied to it for any flat R-module F , see [13]. As a direct consequence of
Theorem 1.1, we have the following result (cf. Corollary 3.7).

Corollary 1.3. Let G be an exact complex with Zi(G) finite flat dimension in R-Mod for
each i ∈ Z. Then the following statements are equivalent:
(1) G is Ding projective.
(2) Zn(G) is Ding projective in R-Mod for each n ∈ Z.

For the rest of the paper we will use the abbreviation C-E for Cartan-Eilenberg.
Throughout this paper, R denotes a ring with unity. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of R-modules will be denoted by (C, δ) or C.
We will use superscripts to distinguish complexes. So if {Ci}i∈I is a family of complexes,

Ci will be
· · · δ2−→ Ci

1
δ1−→ Ci

0
δ0−→ Ci

−1
δ−1−→ · · · .

Given a left R-module M , we use the notation Dm(M) to denote the complex
· · · −→ 0 −→ M

id−→ M −→ 0 −→ · · ·
with M in the mth and (m − 1)th positions. We also use the notation Sm(M) to denote
the complex with M in the mth place and 0 in the other places.

Given a complex C and an integer l, the lth homology module of C is the module
Hl(C) = Zl(C)/Bl(C) where Zl(C) = Ker(δC

l ) and Bl(C) = Im(δC
l+1).

Let C and D be complexes of left R-modules. We will denote by HomR(C, D) the
complex of abelian groups with HomR(C, D)n =

∏
t∈Z

Hom(Ct, Dn+t) and such that if f ∈

HomR(C, D)n then (δn(f))m = δD
m+nfm −(−1)nfm+1δD

m. f is called a chain map of degree
n if δn(f) = 0. A chain map of degree 0 is called a morphism. We will use Hom(C, D)
to denote the abelian group of morphisms from C to D and Exti for i ≥ 0 will denote the
groups we get from the right derived functor of Hom.

General background materials can be found in [8].
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For a ring R, R-Mod denotes the category of left R-modules, C(R) denotes the abelian
category of complexes of left R-modules.

Definition 1.4 ([5, Definition 3.1]). A complex P is said to be C-E projective if P, Z(P ), B(P )
and H(P ) are complexes consisting of projective modules.

A complex I is said to be C-E injective if I, Z(I), B(I) and H(I) are complexes consisting
of injective modules.

A complex F is said to be C-E flat if F, Z(F ), B(F ) and H(F ) are complexes consisting
of flat modules.

Definition 1.5 ([5, Definition 5.3]). A sequence of complexes

· · · → C−1 → C0 → C1 → · · ·

is said to be C-E exact if
(1) · · · → C−1 → C0 → C1 → · · · ,
(2) · · · → Z(C−1) → Z(C0) → Z(C1) → · · · ,
(3) · · · → B(C−1) → B(C0) → B(C1) → · · · ,
(4) · · · → C−1/Z(C−1) → C0/Z(C0) → C1/Z(C1) → · · · ,
(5) · · · → C−1/B(C−1) → C0/B(C0) → C1/B(C1) → · · · ,
(6) · · · → H(C−1) → H(C0) → H(C1) → · · ·
are all exact.

By [5, Proposition 6.3], we can compute derived functors of Hom(−, −) using C-E
projective resolutions or C-E injective resolutions. For given C and D we will denote
these derived functors applied to (C, D) as Extn(C, D). It is obvious that Extn(C, D) ⊆
Extn(C, D).

Definition 1.6 ([4, Definition 2.1]). A left R-module M is called Ding projective (or
strongly Gorenstein flat), if there exists an exact sequence of projective left R-modules

P : · · · → P−1 → P0 → P1 → P2 → · · ·
with M ∼= Im(P0 → P1) and such that the functor HomR(−, F ) leaves P exact whenever
F is flat. In this case, we say that P is a strongly complete projective resolution of M .

2. Cartan-Eilenberg Ding projective complexes
We start with the following definition.

Definition 2.1. A complex G is said to be C-E Ding projective if there is a C-E exact
sequence of C-E projective complexes

P : · · · → P −1 → P 0 → P 1 → · · ·

with G ∼= Ker(P 0 → P 1) and such that the functor Hom(−, F ) leaves P exact whenever
F is C-E flat.

Proposition 2.2. If G is a C-E Ding projective complex, then Gn/Zn(G) and Hn(G) are
Ding projective in R-Mod for all n ∈ Z.

Proof. It is similar to the proof of [5, Theorem 8.5]. �

Remark 2.3. (1) According to Proposition 2.2 and [14, Theorem 2.6], if G is a C-E Ding
projective complex, then Gn, Zn(G), Bn(G), Hn(G), Gn/Zn(G) and Gn/Bn(G) are Ding
projective in R-Mod for all n ∈ Z.
(2) If P =: · · · → P −1 → P 0 → P 1 → P 2 → · · · is a Hom(−, F ) exact C-E exact sequence
of C-E projective complexes for any C-E flat complex F , then by symmetry, all the images,
the kernels and the cokernels of P are C-E Ding projective.
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Let C be a complex. Then a C-E flat resolution of C we mean a complex of complexes
· · · → F 2 → F 1 → F 0 → C → 0,

where each F n is a C-E flat complex, and F 0 → C, F 1 → Ker(F 0 → C) and F n →
Ker(F n−1 → F n−2) for n ≥ 2 are C-E flat precovers.

A complex of left R-modules C is said to have C-E flat dimension at most n (denoted
CEfdC ≤ n) if there is a C-E flat resolution of the form

0 → F n → F n−1 → · · · → F 1 → F 0 → C → 0
of C. If n is the least, then we set CEfdC = n and if there is no such n, we set CEfdC = ∞.

Lemma 2.4 ([5, Proposition 10.1 and its dual version]). (1) For a complex C the equality
Ext1(C, −) = Ext1(C, −) holds if and only if C is exact;
(2)For a complex C the equality Ext1(−, C) = Ext1(−, C) holds if and only if C is exact.

A routine proof gives the following lemma using Lemma 2.4.

Lemma 2.5. If F is a complex of finite C-E flat dimension and G is C-E Ding projective,
then Extn(G, F ) = 0 for each n ≥ 1. Moreover, Ext1(G, F ) = 0 whenever G is exact.

Lemma 2.6. Let G be a complex with Gi a Ding projective module for each i ∈ Z. Then
HomR(G, F ) is exact for any C-E flat complex F if and only if Ext1(G, F ) = 0 for any
C-E flat complex F.

Proof. It follows from [6, Lemma 2.1]. �
Definition 2.7 ([6, Definition 3.3 ]). Let (A,B) be a cotorsion pair in R-Mod and X a
complex.
(1) X is called an A complex if it is exact and Zn(X) ∈ A for n ∈ Z.
(2) X is called a B complex if it is exact and Zn(X) ∈ B for n ∈ Z.
(3) X is called a DG-A complex if Xn ∈ A for n ∈ Z, and HomR(X, B) is exact whenever
B is a B complex.
(4) X is called a DG-B complex if Xn ∈ B for n ∈ Z, and HomR(A, X) is exact whenever
A is a A complex.

We denote the class of A complexes by Ã and the class of DG-A complexes by DGÃ.
Similarly, the class of B complexes is denoted by B̃ and the class of DG-B complexes is
denoted by DGB̃.

Lemma 2.8 ([6, Proposition 3.6]). Let (A,B) be a cotorsion pair in R-Mod. Then
(Ã, DGB̃) and (DGÃ, B̃) are cotorsion pairs in C(R).

(DP,W) is a complete hereditary cotorsion pair in R-Mod over Ding-Chen rings, where
DP and W denote the class of Ding projective left R-modules and the class of left R-
modules of finite flat dimension, respectively [7]. Taking A = DP in Definition 2.7, we get
DG-Ding projective complexes.

We define the flat dimension of a complex C to be the least integer n ≥ 0 such that
0 → Fn → Fn−1 → · · · → F0 → C → 0 is exact. The flat dimension of C is denoted fd(C)
and equals ∞ if no such n above exists. Then we get fd(C) ≤ n if and only if C is exact
and fdR(Zi(C)) ≤ n, where fdR(Zi(C)) denotes the flat dimension of R-modules Zi(C).

In the following R will be a Ding-Chen ring.

Lemma 2.9. Let X be a complex. Then Xn and Xn/Bn(X) are Ding projective in R-
Mod if and only if Ext1(X, Y ) = 0 for every complex Y with Yn and Yn/Bn(Y ) finite flat
dimension.

Proof. It follows by [5, Theorem 9.4]. �
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As a direct consequence of Lemma 2.8, we get the following result.

Lemma 2.10. A complex X is DG-Ding projective if and only if Ext1(X, Y ) = 0 every
complex Y with finite flat dimension.

Lemma 2.11. Let X be a complex. If Xn and Xn/Bn(X) are Ding projective in R-Mod,
then X is DG-Ding projective.

Proof. Since Ext1(X, Y ) = 0 for every complex Y with Yn and Yn/Bn(Y ) finite flat
dimension by Lemma 2.9, Ext1(X, Y ) = 0 for every exact complex Y with Zn(Y ) finite
flat dimension. And so Ext1(X, Y ) = 0 for every exact complex Y with Zn(Y ) finite flat
dimension by Lemma 2.4. Thus X is DG-Ding projective. �
Lemma 2.12. Let F be a C-E flat complex. Then F = K ⊕ L, where K is a flat complex
and L is a graded module with Li flat for each i ∈ Z.

Proof. By [5, Proposition 3.4 and Theorem 7.2], F = lim
→

(P ⊕ Q)i = lim
→

P i ⊕ lim
→

Qi,
where P i is a projective complex for each i ∈ Z, Qi is a graded module with Qi

t projective
for each i, t ∈ Z. Take K = lim

→
P i and L = lim

→
Qi. Then K is a flat complex, L is a

graded module with Li flat for each i ∈ Z. �
Theorem 2.13. Let C be a complex. Then the following conditions are equivalent:
(1) C is C-E Ding projective.
(2) C is DG-Ding projective and Cn/Bn(C) is Ding projective in R-Mod for each n ∈ Z.
(3) Cn and Cn/Bn(C) are Ding projective in R-Mod for each n ∈ Z.

Proof. (2) ⇔ (3) is obvious by Lemma 2.11.
(1) ⇒ (3) follows by Remark 2.3.
(3) ⇒ (1). Note that Cn/Zn(C) and Hn(C) are Ding projective for all n ∈ Z by [14,

Theorem 2.6]. Then Cn/Zn(C) and Hn(C) have strongly complete projective resolutions.
Thus Cn has a strongly complete projective resolution since 0 → Hn(C) → Cn/Bn(C) →
Cn/Zn(C) → 0 and 0 → Bn(C) → Cn → Cn/Bn(C) → 0 are exact.

Suppose P Cn/Zn(C) and P Hn(C) are strongly complete projective resolutions of Cn/Zn(C)
and Hn(C), respectively. By the Horseshoe Lemma, we can construct a strongly complete
projective resolution of Cn/Bn(C): P Cn/Bn(C) = P Cn/Zn(C) ⊕ P Hn(C). Similarly, consider
the exact sequence of modules

0 → Bn(C) → Cn → Cn/Bn(C) → 0,

and we can construct a strongly complete projective resolution of Cn: P Cn = P Bn(C) ⊕
P Cn/Bn(C) = P Bn(C) ⊕ P Cn/Zn(C) ⊕ P Hn(C). We notice that Cn/Zn(C) ∼= Bn−1(C). Then
P Cn = P Bn(C) ⊕ P Bn−1(C) ⊕ P Hn(C). Set P i

n = P
Bn(C)
i ⊕ P

Bn−1(C)
i ⊕ P

Hn(C)
i and dP i

n :
P i

n → P i
n−1 which maps (x, y, z) to (y, 0, 0) for all i, n ∈ Z.

By construction, it is easily seen that P i is a C-E projective complex for all i ∈ Z and
C = Ker (P −1 → P 0). For any n ∈ Z,

· · · → P −1
n /Bn(P −1) → P 0

n/Bn(P 0) → P 1
n/Bn(P 1) → · · ·

is a strongly complete projective resolution of Cn/Bn(C) with
Cn/Bn(C) = Ker(P 0

n/Bn(P 0) → P 1
n/Bn(P 1)),

and
· · · → P −1

n → P 0
n → P 1

n → · · ·
is a strongly complete projective resolution of Cn with Cn = Ker(P 0

n → P 1
n), so they both

are exact. Hence, we can get that
P = · · · −→ P −1 −→ P 0 −→ P 1 −→ · · · (1)
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is C-E exact. Using Lemma 2.9, Hom(−, F ) leaves the C-E exact sequence (1) exact when
F is C-E flat. Therefore, C is a C-E Ding projective complex. �

Example 2.14. (1) If P is a C-E projective complex, then P is C-E Ding projective by
Definition 2.1.

(2) Consider the quasi-Frobenius local ring R = k[X]/(X2) where k is a field. Then

P =: · · · → R
x→ R

x→ R → · · ·

is a strongly complete projective resolution in R-Mod and Zi(P ) is not projective in R-
Mod. So P is a C-E Ding projective complex by Theorem 2.13 and P is not a C-E
projective complex.

Proposition 2.15. Let C be a complex with Zi(C) and Bi(C) finite flat dimension in R-
Mod for each i ∈ Z. Then C is C-E Ding projective if and only if C is DG-Ding projective
with Hi(C) Ding projective in R-Mod for each i ∈ Z.

Proof. (⇒) It follows by Remark 2.3 and Theorem 2.13.
(⇐) Let C be a DG-Ding projective complex with Hi(C) Ding projective in R-Mod for

each i ∈ Z. Then we get exact sequences

0 → Kn → Pn → Bn(C) → 0

and

0 → 0 → Hn(C) → Hn(C) → 0

with Pn → Bn(C) Ding projective precovers of Bn(C), Kn finite flat dimension in R-Mod
for each n ∈ Z.

Notice that Bi(C) has finite flat dimension in R-Mod for each i ∈ Z and 0 → Bn(C) →
Zn(C) → Hn(C) → 0 is an exact sequence for each n ∈ Z. Then 0 → HomR(A, Bn(C)) →
HomR(A, Zn(C)) → HomR(A, Hn(C)) → 0 is exact for any Ding projective left R-module
A and each n ∈ Z. Using the horseshoe lemma and snake lemma, we have the following
commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // Kn

��

// Kn

��

// 0

��

// 0

0 // Pn

��

// Pn ⊕ Hn(C)

��

// Hn(C)

��

// 0

0 // Bn(C)

��

// Zn(C)

��

// Hn(C)

��

// 0.

0 0 0
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We also get the following commutative diagram with exact rows and columns by an
argument analogous to the above.

0

��

0

��

0

��
0 // Kn

��

// Ln

��

// Kn−1

��

// 0

0 // Pn ⊕ Hn(C)

��

// Pn ⊕ Hn(C) ⊕ Pn−1

��

// Pn−1

��

// 0

0 // Zn(C)

��

// Cn

��

// Bn−1(C)

��

// 0.

0 0 0
Set Dn = Pn ⊕ Hn(C) ⊕ Pn−1 for each n. Then the map dn : Dn → Dn−1 is the

composition Dn → Pn−1 → Pn−1 ⊕ Hn−1(C) → Dn−1. So we get the C-E exact sequence
0 → L → D → C → 0, where D = (Dn)n∈Z with d given as above and the kernel of
D → C is the complex L with L = (Ln)n∈Z.

Note that 0 → Kn → Ln → Kn−1 → 0 is exact and Kn has finite flat dimension in
R-Mod for each n ∈ Z. Then the complex L is a complex of finite flat dimension. This
yields the exact sequence

Hom(C, D) → Hom(C, C) → 0,

which means 0 → L → D → C → 0 is split. Then C is a C-E Ding projective complex
since D is C-E Ding projective. �

3. Applications
In this section, R is a Ding-Chen ring. We will give some interesting results using

Theorem 2.13 and Proposition 2.15.
Notice that (DP,W) is a hereditary cotorsion pair in R-Mod. As an immediate con-

sequence of Lemma 2.10, Theorem 2.13 and [6, Corollary 3.13], we have the following
result.
Corollary 3.1. Let G be a complex. Then the following statements are equivalent:
(1) G is C-E Ding projective.
(2) Ext1(G, F ) = 0 for every complex F of finite flat dimension and Gi/Bi(G) is Ding
projective in R-Mod for each i ∈ Z.
(3) Extn(G, F ) = 0 for every complex F of finite flat dimension and n ≥ 0, and Gi/Bi(G)
is Ding projective in R-Mod for each i ∈ Z.
Lemma 3.2. A complex G is Ding projective if and only if Extn(G, F ) = 0 for every
complex F of finite flat dimension and n ≥ 1.
Proof. It is clear by the definition of Ding projective complexes. �

A characterization of C-E Ding projective complexes is given, as a direct consequence
of Corollary 3.1, Lemma 3.2 and [13, Theorem 3.7].
Corollary 3.3. Let G be a complex. Then the following statements are equivalent:
(1) G is C-E Ding projective.
(2) G is Ding projective and Gi/Bi(G) is Ding projective in R-Mod for each i ∈ Z.
(3) Gi, Gi/Bi(G) are Ding projective in R-Mod for each i ∈ Z and HomR(G, F ) is exact
for any flat complex F.
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As a direct corollary to Theorem 2.13, the following result also can be obtained.

Corollary 3.4. Let G be an exact complex. Then G is C-E Ding projective if and only if
Zi(G) is Ding projective in R-Mod for all i ∈ Z.

Similarly, we get the following result using Proposition 2.15.

Corollary 3.5. Let G be a complex with Zi(G) and Bi(G) finite flat dimension in R-Mod
for each i ∈ Z. Then the following statements are equivalent:
(1) G is C-E Ding projective.
(2) Ext1(G, F ) = 0 for every complex F of finite flat dimension and Hi(G) is Ding pro-
jective in R-Mod for each i ∈ Z.
(3) Extn(G, F ) = 0 for every complex F of finite flat dimension and n ≥ 0, and Hi(G) is
Ding projective in R-Mod for each i ∈ Z.

Corollary 3.6. Let G be a complex with Zi(G) and Bi(G) finite flat dimension in R-Mod
for each i ∈ Z. Then the following statements are equivalent:
(1) G is C-E Ding projective.
(2) G is Ding projective and Hi(G) is Ding projective in R-Mod for each i ∈ Z.

Using Corollaries 3.4 and 3.6, the following corollary is obtained.

Corollary 3.7. Let G be an exact complex with Zi(G) finite flat dimension in R-Mod for
each i ∈ Z. Then the following statements are equivalent:
(1) G is Ding projective.
(2) Zi(G) is Ding projective in R-Mod for each i ∈ Z.
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