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The Weibull-Lomax distribution: properties and
applications
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Abstract

We introduce a new model called the Weibull-Lomax distribution which
extends the Lomax distribution and has increasing and decreasing
shapes for the hazard rate function. Various structural properties of the
new distribution are derived including explicit expressions for the mo-
ments and incomplete moments, Bonferroni and Lorenz curves, mean
deviations, mean residual life, mean waiting time, probability weighted
moments, generating and quantile function. The Rényi and q entropies
are also obtained. We provide the density function of the order sta-
tistics and their moments. The model parameters are estimated by
the method of maximum likelihood and the observed information ma-
trix is determined. The potentiality of the new model is illustrated by
means of two real life data sets. For these data, the new model outper-
forms the McDonald-Lomax, Kumaraswamy-Lomax, gamma-Lomax,
beta-Lomax, exponentiated Lomax and Lomax models.
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1. Introduction

The Lomax or Pareto II (the shifted Pareto) distribution was pioneered to model
business failure data by Lomax [45]. This distribution has found wide application in a
variety of �elds such as income and wealth inequality, size of cities, actuarial science,
medical and biological sciences, engineering, lifetime and reliability modeling. It has
been applied to model data obtained from income and wealth [37, 16], �rm size [23],
size distribution of computer �les on servers [40], reliability and life testing [38], receiver
operating characteristic (ROC) curve analysis [21] and Hirsch-related statistics [34].

The characterization of the Lomax distribution is described in a number of ways. It is
known as a special form of Pearson type VI distribution and has also considered as a mix-
ture of exponential and gamma distributions. In the lifetime context, the Lomax model
belongs to the family of decreasing failure rate [24] and arises as a limiting distribution
of residual lifetimes at great age [18]. This distribution has been suggested as heavy
tailed alternative to the exponential, Weibull and gamma distributions [19]. Further, it
is related to the Burr family of distributions [55] and as a special case can be obtained
from compound gamma distributions [30]. Some details about the Lomax distribution
and Pareto family are given in Arnold [12] and Johnson et al. [41].

The distributional properties, estimation and inference of the Lomax distribution are
described in the literature as follows. In record value theory, some properties and mo-
ments for the Lomax distribution have been discussed in [7, 17, 43, 11]. The comparison
of Bayesian and non-Bayesian estimation from the Lomax distribution based on record
values have been made in [4, 49]. The moments and inference for the order statistics and
generalized order statistics (gos) are given in [52, 25] and [47], respectively. The estima-
tion of parameters in case of progressive and hybrid censoring have been investigated in
[13, 28, 10, 39] and [14]. The problem of Bayesian prediction bounds for future observa-
tion based on uncensored and type-I censored sample from the Lomax model are dealt in
[3] and [9]. Further, the Bayesian and non-Bayesian estimators of the sample size in case
of type-I censored samples for the Lomax distribution are obtained in [1], and the esti-
mation under step-stress accelerated life testing for the Lomax distribution is considered
in [38]. The parameter estimation through generalized probability weighted moments
(PWMs) is addressed in [2]. More recently, the second-order bias and bias-correction for
the maximum likelihood estimators (MLEs) of the parameters of the Lomax distribution
are determined in [33].

The main aim of this paper is to provide another extension of the Lomax distribution
using theWeibull-G generator de�ned by Bourguignon et al. [20]. So, we propose the new
Weibull-Lomax (�WL� for short) distribution by adding two extra shape parameters to
the Lomax model. The objectives of the research are to study some structural properties
of the proposed distribution.

A random variable Z has the Lomax distribution with two parameters α and β, if it
has cumulative distribution function (cdf) (for x > 0) given by

(1.1) Hα,β(x) = 1−
[
1 +

(x
β

)]−α
,

where α > 0 and β > 0 are the shape and scale parameters, respectively. The probability
density function (pdf) corresponding to (1.1) reduces to

(1.2) hα,β(x) =
α

β

[
1 +

(x
β

)]−(α+1)

.



The survival function S(t) and the hazard rate function (hrf) h(t) at time t for the Lomax
distribution are given by

S(t) =
[
1 +

(x
β

)]−α
and h(t) =

α

β

[
1 +

(x
β

)]−1

,

respectively.

The rth moment of Z, (for r < α) comes from (1.2) as µ
′
rZ = αβr B(r + 1, α − r),

where B(p, q) =
∫ 1

0
wp−1 (1 − w)q−1dw is the complete beta function. The mean of

Z can be expressed as E(Z) = β/(α − 1), for α > 1, and the variance is V ar(Z) =
β2/[(α− 1)2 (α− 2)], for α > 2. As α tends to in�nity, the mean tends to β, the variance
tends to β2, the skewness tends to 36 and the excess kurtosis approaches 21.

The trend of parameter(s) induction to the baseline distribution has received increased
attention in recent years to explore properties and for e�cient estimation of the pa-
rameters. In the literature, some extensions of the Lomax distribution are available
such as the exponentiated Lomax (EL) [6], Marshall-Olkin extended-Lomax (MOEL)
[32, 35], beta-Lomax (BL), Kumaraswamy-Lomax (KwL), McDonald-Lomax (McL) [44]
and gamma-Lomax (GL) [27].

The �rst parameter induction to the Lomax distribution was suggested by [6] using
Lehmann alternative type I proposed by Gupta et al. [36]. The three-parameter EL cdf
(for x > 0) is de�ned by

(1.3) Ga,α,β(x) =
{

1−
[
1 +

(x
β

)]−α}a
,

where a > 0 is a shape power parameter. The pdf corresponding to (1.3) (for x > 0) is
given by

(1.4) ga,α,β(x) =
aα

β

[
1 +

(x
β

)]−(α+1){
1−

[
1 +

(x
β

)]−α}a−1

,

with two shape parameters and one scale parameter.
Let Y be a random variable having the EL distribution (1.4) with parameters a, α

and β. Using the transformation t = 1− [1 + (x/β)]−α and the binomial expansion, the
rth moment of Y (for r < α) is obtained from (1.4) as

(1.5) µ
′
r,Y (x) = a βr

r∑
m=0

(−1)m
(
r

m

)
B
(
a, m−r

α
+ 1
)
.

The rth incomplete moment of Y is given by

(1.6) µ
′
(r,Y )(z) =

∫ z

0

yr ga,α,β(y) dy = a βr
r∑

m=0

(−1)m
(
r

m

)
By
(
a, m−r

α
+ 1
)
,

where By(p, q) =
∫ y
0
wp−1 (1 − w)q−1dw is the incomplete beta function. Some other

mathematical quantities of Y are obtained in [5, 6, 42].
The second parameter extension to the Lomax model, named the MOEL distribution,

was proposed by [32] using a �exible generator pioneered by Marshall and Olkin [46].
The three-parameter MOEL cdf is given by

(1.7) Fα,β,δ(x) = δ
{[

1 +
(x
β

)]α
− δ
}−1

.

The pdf corresponding to (1.7) becomes

(1.8) fα,β,δ(x) = αβδ
[
1 +

(x
β

)]α−1 {[
1 +

(x
β

)]α
− δ
}−2

,

where δ = 1− δ and δ > 0 is a shape (or tilt) parameter.



The properties and the estimation of the reliability for the MOEL distribution are
studied in [32] and [35]. The acceptance sampling plans (double and grouped) based on
non-truncated and truncated samples for the MOEL distribution have been considered
by [15, 53, 54, 50].

Lemonte and Cordeiro [44] discussed three parameter inductions to the Lomax dis-
tributions, namely the BL, KwL and McL by including two, two and three extra shape
parameters using the beta-G, Kumaraswamy-G and McDonald-G generators de�ned by
Eugene et al. [31], Cordeiro and de Castro [26] and Alexander et al. [8], respectively.
The cdfs of the BL, KwL and McL distributions are given by

(1.9) FBL(x; a, b, α, β) = I{
1−
[
1+( x

β
)
]−α}

(x)
(a, b),

(1.10) FKwL(x; a, b, α, β) = 1−
[
1−

{
1−

[
1 +

(x
β

)]−α}a]b
and

(1.11) FMcL(x; a, b, c, α, β) = I{
1−
[
1+( x

β
)
]−α}c

(x)
(a, b),

respectively, where Iw(p, q) = Bx(p, q)/B(p, q) is the incomplete beta function ratio, and
a > 0, b > 0 and c > 0 are extra shape parameters whose role is to govern the skewness
and tail weights.

The density functions corresponding to (1.9), (1.10) and (1.11) are given by

(1.12) fBL(x; a, b, α, β) =
α

β B(a, b)

[
1 +

(x
β

)]−(αb+1){
1−

[
1 +

(x
β

)]−α}a−1

,

(1.13) fKwL(x; a, b, α, β) =
a bα

β

[
1 +

(x
β

)]−(α+1) {
1−

[
1 +

(x
β

)]−α}a−1

×
[
1−

{
1−

[
1 +

(x
β

)]−α}a]b−1

and

(1.14) fMcL(x; a, b, c, α, β) =
c α

β B(a c−1, b)

[
1 +

(x
β

)]−(α+1)

×
{

1−
[
1 +

(x
β

)]−α}a−1 [
1−

{
1−

[
1 +

(x
β

)]−α}c]b−1

,

respectively.
Recently, Cordeiro et al. [27] introduced a three-parameter gamma-Lomax (GL) dis-

tribution based on a versatile and �exible gamma generator proposed by Zagrafos and
Balakrishnan [56] using Stacy's generalized gamma distribution and record value theory.
The GL cdf is given by

(1.15) F (a, α, β)(x) =
Γ
(
a, α log

[
1 +

(
x
β

)])
Γ(a)

, x > 0,

where α > 0 and a > 0 are shape parameters and β > 0 is a scale parameter. The pdf
corresponding to (1.15) is given by

(1.16) f(a, α, β)(x) =
αa

β Γ(a)

[
1 +

(x
β

)]−(α+1){
log
[
1 +

(x
β

)]}a−1

, x > 0.

More recently, Bourguignon et al. [20] proposed the Weibull-G class in�uenced by the
Zografos-Balakrishnan-G class. Let G(x; Θ) and g(x; Θ) denote the cumulative and den-
sity functions of the baseline model with parameter vector Θ and consider the Weibull

cdf FW (x) = 1 − e−a x
b

(for x > 0 and a, b > 0). Bourguignon et al. [20] replaced the



argument x by G(x; Θ)/G(x; Θ), where G(x; Θ) = 1−G(x; Θ), and de�ned their class of
distributions, say Weibull-G(a, b,Θ), by the cdf

(1.17) F (x; a, b,Θ) = a b

∫ [
G(x;Θ)

G(x;Θ)

]
0

xb−1 exp
(
−a xb

)
dx = 1− exp

{
−a

[
G(x; Θ)

G(x; Θ)

]b}
.

The Weibull-G density function is given by

(1.18) f(x; a, b,Θ) = a b g(x; Θ)

[
G(x; Θ)b−1

G(x; Θ)b+1

]
exp

{
−a

[
G(x; Θ)

G(x; Θ)

]b}
, x ∈ <.

In this context, we propose and study the WL distribution based on equations (1.17)
and (1.18). The paper is outlined as follows. In Section 2, we de�ne the WL distribution.
We provide a mixture representation for its density function in Section 3. Structural
properties such as the ordinary and incomplete moments, Bonferroni and Lorenz curves,
mean deviations, mean residual life, mean waiting time, probability weighted moments,
generating function and quantile function are derived in Section 4. In Section 5, we
obtain the Rényi and q entropies. The density of the order statistics is determined in
Section 6. The maximum likelihood estimation of the model parameters is discussed in
Section 7. We explore its usefulness by means of two real data sets in Section 8. Finally,
Section 9 o�ers some concluding remarks.

2. The WL distribution

Inserting (1.1) in equation (1.17) yields the four-parameter WL cdf

(2.1) F (x; a, b, α, β) = 1− exp

{
−a
{[

1 +

(
x

β

)]α
− 1

}b}
.

The pdf corresponding to (2.1) is given by

f(x; a, b, α, β) =
abα

β

[
1 +

(x
β

)]b α−1 {
1−

[
1 +

(x
β

)]−α}b−1

× exp

{
−a
{[

1 +

(
x

β

)]α
− 1

}b}
,(2.2)

where a > 0 and b > 0 are two additional shape parameters.

Plots of the WL pdf for some parameter values are displayed in Figure 1. Hence-
forth, we denote by X ∼WL(a, b, α, β) a random variable having the pdf (2.2). The
survival function (sf) (S(x)), hrf (h(x)), reversed-hazard rate function (rhrf) (r(x)) and
cumulative hazard rate function (chrf) (H(x)) of X are given by

(2.3) S(x; a, b, α, β) = exp

{
−a
{[

1 +

(
x

β

)]α
− 1

}b}
,

h(x) =
a bα

β

[
1 +

(x
β

)]b α−1 {
1−

[
1 +

(x
β

)]−α}b−1

,

r(x) =

ab α
β

[
1 +

(
x
β

)]b α−1 {
1−

[
1 +

(
x
β

)]−α}b−1
exp

{
−a
{[

1 +
(
x
β

)]α
− 1
}b}

1− exp

{
−a
{[

1 +
(
x
β

)]α − 1
}b}

and

H(x) = −a
{[

1 +
(x
β

)]α − 1
}b
,



respectively. Plots of the WL hrf for some parameter values are displayed in Figure 2.
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Figure 1. Plots of the WL pdf for some parameter values
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Figure 2. Plots of the WL hrf for some parameter values

3. Mixture representation

The WL density function can be expressed as

(3.1) f(x; a, b, α, β) = a b g(x)
G(x)b−1

G(x)b+1
exp

{
−a
[
G(x)

G(x)

]b}
.

Inserting (1.1) and (1.2) in equation (3.1), we obtain

f(x; a, b, α, β) =
abα

β

[
1 +

(x
β

)]−(α+1)

{
1−

[
1 +

(
x
β

)]−α}b−1

[
1−

{
1−

[
1 +

(
x
β

)]−α}]b+1

× exp

−a
{

1−
[
1 +

(
x
β

)]−α
1−

{
1−

[
1 +

(
x
β

)]−α}
}b .(3.2)

In order to derive a simple form for the WL pdf, we can expand (3.1) in power series.

Let A = exp

−a
{

1−
[
1+
(
x
β

)]−α
1−
{
1−
[
1+
(
x
β

)]−α}
}b.



By expanding the exponential function in A, we have

A =

∞∑
k=0

(−1)k ak

k!

{
1−

[
1 +

(
x
β

)]−α}kb[
1−

{
1−

[
1 +

(
x
β

)]−α}]kb .
Inserting this expansion in (3.2) and, after some algebra, we obtain

f(x; a, b, αβ) =

∞∑
k=0

(−1)k ak

k!

a bα

β

[
1 +

(x
β

)]−(α+1)

×
{

1−
[
1 +

(x
β

)]−α}b(k+1)−1

×
[
1−

{
1−

[
1 +

(x
β

)]−α}]−[b(k+1)−1]

︸ ︷︷ ︸
Bk

.

After a power series expansion, the quantity Bk in the last equation becomes

Bk =

∞∑
j=0

(−1)j
(
−[(k + 1)b+ 1]

j

) {
1−

[
1 +

(x
β

)]−α}j
.

Combining the last two results, we can write

f(x; a, b, α, β) =

∞∑
k,j=0

(−1)k ak+1

k! j!

b

[(k + 1)b+ j]

Γ([k + 1]b+ j + 1)

Γ([k + 1]b+ 1)︸ ︷︷ ︸
vk,j

× [(k + 1)b+ j]
α

β

[
1 +

(x
β

)]−(α+1)
{

1−
[
1 +

(x
β

)]−α}[(k+1)b+j]−1

︸ ︷︷ ︸
ga,α,(k+1)b+j

.

The last equation can be rewritten as

(3.3) f(x; a, b, α, β) =

∞∑
k,j=0

vk,j ga,α,(k+1)b+j(x).

Equation (3.3) reveals that the WL density function has a double mixture represen-
tation of EL densities. So, several of its structural properties can be derived form those
of the EL distribution. The coe�cients vk,j depend only on the generator parameters.
This equation is the main result of this section.

4. Some Structural Properties

Established algebraic expansions to determine some structural properties of the WL
distribution can be more e�cient than computing those directly by numerical integration
of its density function, which can be prone to rounding o� errors among others.

4.1. Quantile Function. Quantile functions are in widespread use in general statistics
and often �nd representations in terms of lookup tables for key percentiles. The quantile
function (qf) of X is obtained by inverting (2.1) as

(4.1) Q(u) = β

{[{
−a−1 log(1− u)

}1/b
+ 1
]1/α

− 1

}
.

Simulating the WL random variable is straightforward. If U is a uniform variate on the
unit interval (0, 1), then X = Q(U) follows (2.2), i.e. X ∼WL(a, b, α, β).



4.2. Moments. Some of the most important features and characteristics of a distribu-
tion can be studied through moments (e.g. tendency, dispersion, skewness and kurtosis).
The rth moment of X can be obtained from (3.3) as

µ′r = E(Xr) =

∞∑
k,j=0

vk,j

∫ ∞
0

xr ga,α,(k+1)b+j(x) dx.

Using (3.3), we obtain (for r ≤ α)

(4.2) µ′r = βr
r∑

m=0

∞∑
k,j=0

(−1)m [(k + 1)b+ j]

(
r

m

)
vk,j B

(
[k + 1]b+ j, m−r

α
+ 1
)
.

Setting r = 1 in (4.2), we have the mean of X. Further, the central moments (µn)
and cumulants (κn) of X are obtained from (4.2) as

µn =

n∑
k=0

(
n

k

)
(−1)k µ′k1 µ′n−k and κn = µ′n −

n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc. The

skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships.

The nth descending factorial moment of X (for n = 1, 2, . . .) is

µ′(n) = E(X(n)) = E[X(X − 1)× · · · × (X − n+ 1)] =

n∑
j=0

s(n, j)µ′j ,

where s(n, j) = (j!)−1 [djj(n)/dxj ]x=0 is the Stirling number of the �rst kind.

4.3. Incomplete moments. The answers to many important questions in economics
require more than just knowing the mean of the distribution, but its shape as well. This
is obvious not only in the study of econometrics but in other areas as well. The rth
incomplete moment of X (r ≤ α) follows from (3.3) as

(4.3) mr(z) = βr
r∑

m=0

∞∑
k,j=0

(−1)m [(k + 1)b+ j] vk,j

(
r

m

)
Bz
(
[k + 1]b+ j, m−r

α
+ 1
)
.

The main application of the �rst incomplete moment refers to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insu-
rance and medicine. For a given probability π, they are de�ned by B(π) = m1(q)/(π µ′1)
and L(π) = m1(q)/µ′1, respectively, wherem1(q) can be determined from (4.3) with r = 1
and q = Q(π) is calculated from (4.1).

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median de�ned by δ1 =

∫∞
0
|x − µ|f(x)dx and δ2(x) =∫∞

0
|x − M |f(x)dx, respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is

the median. These measures can be determined from δ1 = 2µ′1F (µ′1) − 2m1(µ′1) and
δ2 = µ′1 − 2m1(M), where F (µ′1) comes from (2.1).

A further application of the �rst incomplete moment is related to the mean resid-
ual life and the mean waiting time given by m(t; a, b, α, β) = [1 − m1(t)]/S(t) − t
and µ(t; a, b, α, β) = t − [m1(t)/F (t; a, b, α, β)], respectively, where F (·; ·) and S(·; ·) =
1− F (·; ·) are obtained from (2.1).



4.4. Probability weighted moments. The probability weighted moments (PWMs)
are used to derive estimators of the parameters and quantiles of generalized distributions.
These moments have low variances and no severe biases, and they compare favorably with
estimators obtained by the maximum likelihood method. The (s, r)th PWM of X (for
r ≥ 1, s ≥ 0) is formally de�ned by ρr,s = E[Xr F (X)s] =

∫∞
0
xr F (x)s f(x)dx. We can

write from (2.1)

F (x; a, b, α, β)s =

∞∑
i=0

(−1)i
(
s
i

)
exp

{
−i a

{(
1 +

x

β

)α
− 1

}b}
.

Then, we can express ρs,r after some algebra from (2.1) and (2.2) as

ρr,s =

∞∑
i=0

(−1)i
(
s
i

)
i+ 1

∫ ∞
0

xr f(x; (i+ 1)a, b, α, β)dx.

By using (4.2), we obtain (for r < α)

ρr,s = βr
∞∑

i,j,k=0

(−1)i
(
s
i

)
(i+ 1)

si,k,j

r∑
m=0

B
(

[k + 1]b+ j, (m−r)
α

+ 1
)
,

where

si,k,j =
(−1)k ak (i+ 1)k Γ((k + 1)b+ j + 1)

[(b+ 1)k + 1] Γ((k + 1)b+ 1) j! k!
.

4.5. Generating function. The moment generating function (mgf)MX(t) of a random
variable X provides the basis of an alternative route to analytical results compared with
working directly with the pdf and cdf of X. We obtain the mgf of the WL distribution
from equation (3.3) as

MX(t) =

∞∑
k,j=0

vk,j

∫ ∞
0

[(k + 1)b+ j]
α

β

[
1 +

(x
β

)]−(α+1)

×
{

1−
[
1 +

(x
β

)]−α}[(k+1)b+j]−1

etx dx.

By expanding the binomial terms, we can write

MX(t) =
α

β

∞∑
k,j=0

vk,j

∞∑
m=0

(−1)m
(

[(k + 1)b+ j]− 1

m

) ∫ ∞
0

[(k + 1)b+ j]

×
(

1 +
x

β

)−(m+1)α−1

etx dx.

By expanding the binomial terms again, we obtain (for t < 0)

MX(t) = α

∞∑
k,j,m,n=0

(−1)m [(k + 1)b+ j] vk,j n!

βn+1

(
[(k + 1)b+ j]− 1

m

)

×

(
−(1 +m)α− 1

n

)
(−t)−(n+1),

which is the main result of this section.



5. Rényi and q-Entropies

The entropy of a random variable X is a measure of the uncertain variation. The
Rényi entropy is de�ned by

IR(δ) =
1

1− δ log [I(δ)],

where I(δ) =
∫
< f

δ(x) dx, δ > 0 and δ 6= 1. We have

I(δ) =
(a bα

β

)δ ∫ ∞
0

(
1 +

x

β

)δ(bα−1) {
1−

(
1 +

x

β

)−α}δ(b−1)

× exp

{
−aδ

{(
1 +

x

β

)α
− 1

}b}
dx.

By expanding the exponential term of the above integrand, we can write

I(δ) =
(a bα

β

)δ ∫ ∞
0

(
1 +

x

β

)δ(bα−1) {
1−

(
1 +

x

β

)−α}δ(b−1)

×
∞∑
k=0

(−1)k (δ a)k

k!

{(
1 +

x

β

)α
− 1

}bk
dx.

Using the binomial expansion twice in the last equation and integrating, we obtain

(5.1) I(δ) =
(a bα

β

)δ ∞∑
m=0

tm.

Hence, the Rényi entropy reduces to

(5.2) IR(δ) =
1

1− δ log

[(a bα
β

)δ ( ∞∑
m=0

tm
)]

,

where

tm =

∞∑
k,j=0

(−1)k βm+1 Γ(δ(b+ 1) + bk + j) Γ(m− δ(b− 1) + bk + j)

k! j!m! [mα+ δ(α+ 1)− 1] Γ(δ(b+ 1) + bk) Γ(bk − δ(b+ 1) + j)
.

The q-entropy, say Hq(f), is de�ned by

Hq(f) =
1

q − 1
log [1− Iq(f)] ,

where Iq(f) =
∫
< f

q(x) dx, q > 0 and q 6= 1. From equation (5.2), we can easily obtain

Hq(f) =
1

q − 1
log

[
1−

(a bα
β

)q ( ∞∑
m=0

tm
)]
.

6. Order Statistics

Here, we provide the density of the ith order statistic Xi:n, fi:n(x) say, in a random
sample of size n from the WL distribution. By suppressing the parameters, we have (for
i = 1, . . . , n)

(6.1) fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n−i
j

)
F (x)i+j−1.

Thus, we can write

F (x)i+j−1 =

∞∑
k=0

(−1)k
(
i+j−1
k

)
exp

{
−ak

{(
1 +

x

β

)α
− 1

}b}



and then by inserting (2.2) in equation (6.1), we obtain

(6.2) fi:n(x) =

∞∑
m=0

tm+1 f(x; (m+ 1)a, b, α, β),

where

tm+1 =
1

(m+ 1)B(i, n− i+ 1)

n−i∑
j=0

(−1)j+m
(
n−i
j

) (
i+j−1
m

)
and f(x; (m+ 1)a, b, α, β) denotes the WL density function with parameters (m+ 1)a, b,
α and β. So, the density function of the WL order statistics is a mixture of WL densities.
Based on equation (6.2), we can obtain some structural properties of Xi:n from those WL
properties.

The rth moment of Xi:n (for r < α) follows from (4.2) and (6.2) as

(6.3) E(Xr
i:n) = βr

r∑
m=0

(−1)m
(
r

m

)
tm+1

∞∑
k,j=0

[(k+1)b+j] vk,j B
(

[k+1]b+j, m−r
α

+1
)
,

where vk,j is given in Section 3.
The L-moments are analogous to the ordinary moments but can be estimated by linear

combinations of order statistics. They exist whenever the mean of the distribution exists,
even though some higher moments may not exist, and are relatively robust to the e�ects
of outliers. Based upon the moments (6.3), we can derive explicit expressions for the
L-moments of X as in�nite weighted linear combinations of the means of suitable WL
distributions. They are linear functions of expected order statistics de�ned by (for s ≥ 1)

λs = s−1∑s−1
p=0(−1)p

(
s−1
p

)
E(Xs−p:p).

The �rst four L-moments are: λ1 = E(X1:1), λ2 = 1
2
E(X2:2 −X1:2), λ3 = 1

3
E(X3:3 −

2X2:3 +X1:3) and λ4 = 1
4
E(X4:4 − 3X3:4 + 3X2:4 −X1:4). We can easily obtain the λ's

for X from (6.3) with r = 1.

7. Estimation

Here, we consider the estimation of the unknown parameters of the WL distribution
by the maximum likelihood method. Let x1, . . . , xn be a sample of size n from the WL
distribution given by (2.2). The log-likelihood function for the vector of parameters
Θ = (a, b, α, β)ᵀ can be expressed as

(7.1) ` = `(Θ) = n log (abα)− n log β − (α− 1)

n∑
i=1

log
[
1 +

xi
β

]
+ (b− 1)

n∑
i=1

log
{[

1 +
xi
β

]α − 1
}
− a

n∑
i=1

{[
1 +

xi
β

]α − 1
}b
.

Let zi =
(
1 + xi

β

)α − 1. Then, we can write ` as

(7.2) ` = n log (abα)− n log β −
(
1− 1

α

) n∑
i=1

log
(
zi + 1

)
+ (b− 1)

n∑
i=1

log(zi)− a
n∑
i=1

zbi .

The log-likelihood function can be maximized either directly by using the R-package (Ad-
equecyModel), SAS (PROC NLMIXED) or the Ox program (sub-routine MaxBFGS)
(see Doornik, [29]) or by solving the nonlinear likelihood equations obtained by dif-
ferentiating (7.1) or (7.2). In the AdequecyModel package, there exist many maximiza-
tion algorithms like NR (Newton-Raphson), BFGS (Broyden-Fletcher-Goldfarb-Shanno),
BHHH (Berndt-Hall-Hall-Hausman), NM (Nelder-Mead), SANN (Simulated-Annealing)



and Limited-Memory quasi-Newton code for Bound-Constrained Optimization (L-BFGS-
B). However, the MLEs here are computed using L-BFGS-B method.

The components of the score vector U(Θ) are given by

Ua = n
a
−
∑n
i=1 z

b
i ,

Ub = n
b
−
∑n
i=1 log zi − a

∑n
i=1 z

b
i log zi,

Uα = n
α

+ 1
α2

∑n
i=1 log (zi + 1) +

(
1− 1

α

) ∑n
i=1 log (zi + 1)

1
α

+(b− 1)
∑n
i=1

[(
1 + z−1

i

)
log (zi + 1)

1
α

]
−ab

∑n
i=1

(
zbi + zb−1

i

)
log (zi + 1)

1
α ,

Uβ = −n
β
− α

β2

(
1− 1

α

)∑n
i=1 (zi + 1)−

1
α

−α(b−1)

β2

∑n
i=1 z

−1
i (zi + 1)1−

1
α + abα

β2

∑n
i=1 z

b−1
i (zi + 1)1−

1
α .

Setting these above equations to zero and solving them simultaneously also yield the
MLEs of the four parameters.

For interval estimation of the model parameters, we require the 4× 4 observed infor-
mation matrix J(Θ) = {Jrs} (for r, s = a, b, α, β) given in Appendix A. Under standard

regularity conditions, the multivariate normal N4(0, J(Θ̂)−1) distribution can be used

to construct approximate con�dence intervals for the model parameters. Here, J(Θ̂) is

the total observed information matrix evaluated at Θ̂. Then, the 100(1 − γ)% con�-

dence intervals for a, b, α and β are given by â ± zγ/2 ×
√
var(â), b̂ ± zγ/2 ×

√
var(b̂),

α̂ ± zγ/2 ×
√
var(α̂) and β̂ ± zγ/2 ×

√
var(β̂), respectively, where the var(·)'s denote

the diagonal elements of J(Θ̂)−1 corresponding to the model parameters, and zγ/2 is
the quantile (1 − γ/2) of the standard normal distribution. Two problems that can be
addressed in a future research are: (i) how large are the correlations between the param-
eter estimates? and (ii) how about the sample size required in order for the asymptotic
standard errors to be reasonable approximations? The answer to problem (i) could be
investigated through simulation studies. The answer to (ii) is related to the adequacy of

the normal approximation to the MLE Θ̂. Clearly, some asymptotic techniques could be

adopted to improve the normal approximation for Θ̂.
The likelihood ratio (LR) statistic can be used to check if the �tted new distribution is

strictly �superior� to the �tted Lomax distribution for a given data set. Then, the test of
H0 : a = b = 1 versus H1 : H0 is not true is equivalent to compare the WL and Lomax

distributions and the LR statistic becomes w = 2{`(â, b̂, α̂, β̂)− `(1, 1, α̃, β̃)}, where â, b̂,
α̂ and β̂ are the MLEs under H1 and α̃ and β̃ are the estimates under H0.

8. Applications

In this section, we illustrate the usefulness of the WL model. We �t the WL distri-
bution to two data sets and compare the results with those of the �tted McL, KwL, GL,
BL, EL and Lomax models.



8.1. Aircraft Windshield data sets. The windshield on a large aircraft is a complex
piece of equipment, comprised basically of several layers of material, including a very
strong outer skin with a heated layer just beneath it, all laminated under high temper-
ature and pressure. Failures of these items are not structural failures. Instead, they
typically involve damage or delamination of the nonstructural outer ply or failure of the
heating system. These failures do not result in damage to the aircraft but do result in
replacement of the windshield.

We consider the data on failure and service times for a particular model windshield
given in Table 16.11 of Murthy et al. [48]. These data were recently studied by Ramos
et al. [51]. The data consist of 153 observations, of which 88 are classi�ed as failed
windshields, and the remaining 65 are service times of windshields that had not failed at
the time of observation. The unit for measurement is 1000 h.

First data set: Failure times of 84 Aircraft Windshield

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557,

1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890,
4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

Second data set: Service times of 63 Aircraft Windshield

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280,

1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978,
3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500,
1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183,
2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

We estimate the unknown parameters of each model by maximum likelihood using
L-BFGS-B method and the goodness-of-�t statistics Akaike information criterion (AIC),
Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC),
Hannan-Quinn information criterion (HQIC), Anderson-Darling (A∗) and Cramér�von
Mises (W ∗) are used to compare the �ve models. The statistics A∗and W ∗ are described
in details in [22]. In general, the smaller the values of these statistics, the better the �t to
the data. The required computations are carried out using the R-script AdequacyModel
developed by Pedro Rafael Diniz Marinho, Cícero Rafael Barros Dias and Marcelo Bour-
guignon. It is freely available from
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

Tables 1 and 3 give the MLEs and their corresponding standard errors (in parentheses)
of the model parameters. The model selection is carried out using the AIC , BIC, CAIC
and HQIC statistics de�ned by:

AIC = −2`(·) + 2p, BIC = −2`(·) + p log(n),

CAIC = −2`(·) +
2pn

n− p− 1
, and HQIC = 2 log

[
log(n)

(
k − 2 `(·)

) ]
,

where `(·) denotes the log-likelihood function evaluated at the MLEs, p is the number
of parameters, and n is the sample size. The �gures in Tables 1 and 3 indicate that
the �tted Lomax models have huge parameter estimates, although they are accurate
compared with their standard errors. Sometimes, the log-likelihood can become quite
�at by �tting special models of the WL distribution leading to numerical maximization
problems. For these cases, we can obtain di�erent MLEs for the model parameters using



alternative algorithms of maximization since they correspond to local maximums of the
log-likelihood function. Thus, it is important to investigate the global maximum.

The values of the AIC, CAIC, BIC, HQIC, A∗ and W ∗ are listed in Tables 2 and
4. Tables 2 and 4 compare the WL model with the McL, KwL, GL, BL, EL and

Table 1. MLEs and their standard errors (in parentheses) for
failure times of 84 Aircraft Windshield data

Distribution a b c α β

WL 0.0128 0.5969 - 6.7753 1.5324

(0.0114) (0.3590) - (3.9049) (1.3863)

McL 2.1875 119.1751 12.4171 19.9243 75.6606

(0.5211) (140.2970) (20.8446) (38.9601) (147.2422)

KwL 2.6150 100.2756 - 5.2771 78.6774

(0.3822) (120.4856) - (9.8116) (186.0052)

GL 3.5876 - - 52001.4994 37029.6583

(0.5133) - - (7955.0003) ( 81.1644)

BL 3.6036 33.6387 - 4.8307 118.8374

(0.6187) (63.7145) - (9.2382) (428.9269)

EL 3.6261 - - 20074.5097 26257.6808

(0.6236) - - (2041.8263) (99.7417)

Lomax - - - 51425.3500 131789.7800

- - - (5933.4892) (296.1198)

Table 2. The statistics `(·), AIC, BIC , CAIC , HQIC, A∗ and
W ∗ for failure times of 84 Aircraft Windshield data

Distribution `(·) AIC CAIC BIC HQIC A∗ W∗

WL -127.8652 263.7303 264.2303 273.5009 267.6603 0.6185 0.0932

McL -129.8023 269.6045 270.3640 281.8178 274.5170 0.6672 0.0858

KwL -132.4048 272.8096 273.3096 282.5802 276.7396 0.6645 0.0658

GL -138.4042 282.8083 283.1046 290.1363 285.7559 1.3666 0.1618

BL -138.7177 285.4354 285.9354 295.2060 289.3654 1.4084 0.1680

EL -141.3997 288.7994 289.0957 296.1273 291.7469 1.7435 0.2194

Lomax -164.9884 333.9767 334.1230 338.8620 335.9417 1.3976 0.1665

Lomax models. We note that the WL model gives the lowest values for the AIC, BIC
and CAIC, HQIC and A∗ statistics (except W ∗ for the �rst data set) among all �tted
models. So, the WL model could be chosen as the best model. The histogram of the
data and the estimated pdfs and cdfs for the �tted models are displayed in Figure 3. It
is clear from Tables 2 and 4 and Figure 3 that the WL distribution provides a better �t
to the histogram and therefore could be chosen as the best model for both data sets.



Table 3. MLEs and their standard errors (in parentheses) for
service times of 63 Aircraft Windshield data

Distribution a b c α β

WL 0.1276 0.9204 - 3.9136 3.0067

(0.2964) (0.4277) - (3.8489) (8.2769)

McL 1.3230 53.7712 5.7144 7.4371 42.8972

(0.2517) (199.2803) (5.3853) (34.7310) (150.8150)

KwL 1.6691 60.5673 - 2.5649 65.0640

(0.2570) (86.0131) - (4.7589) (177.5919)

GL 1.9073 - - 35842.4330 39197.5715

(0.3213) - - (6945.0743) (151.6530)

BL 1.9218 31.2594 - 4.9684 169.5719

(0.3184) (316.8413) - (50.5279) (339.2067)

EL 1.9145 - - 22971.1536 32881.9966

(0.3482) - - (3209.5329) (162.2299)

Lomax - - - 99269.78 00 207019.3700

- - - (11863.5222) (301.2366)

Table 4. The statistics `(·), AIC, BIC, CAIC, HQIC, A∗ and
W ∗ for service times of 63 Aircraft Windshield data

Distribution `(.) AIC CAIC BIC HQIC A∗ W∗

WL -98.11712 204.2342 204.9239 212.8068 207.6059 0.2417 0.0356

McL -98.5883 207.1766 208.2292 217.8923 211.3911 0.3560 0.0573

KwL -100.8676 209.7353 210.4249 218.3078 213.1069 0.7391 0.1219

GL -102.8332 211.6663 212.0731 218.0958 214.1951 1.112 0.1836

BL -102.9611 213.9223 214.6119 222.4948 217.2939 1.1336 0.1872

EL -103.5498 213.0995 213.5063 219.5289 215.6282 1.2331 0.2037

Lomax -109.2988 222.5976 222.7976 226.8839 224.2834 1.1265 0.1861

9. Concluding remarks

In this paper, we propose a four-parameter Weibull-Lomax (WL) distribution. We
study some structural properties of the WL distribution including an expansion for the
density function and explicit expressions for the ordinary and incomplete moments, mean
residual life, mean waiting time, probability weighted moments, generating function and
quantile function. Further, the explicit expressions for the Rényi entropy, q entropy
and order statistics are also derived. The maximum likelihood method is employed for
estimating the model parameters. We also obtain the observed information matrix. We �t
theWLmodel to two real life data sets to show the usefulness of the proposed distribution.
The new model provides consistently a better �t than the other models, namely: the
McDonald-Lomax, Kumaraswamy-Lomax, gamma-Lomax, beta-Lomax, exponentiated-
Lomax and Lomax distributions. We hope that the proposed model will attract wider
application in areas such as engineering, survival and lifetime data, hydrology, economics
(income inequality) and others.



(a) Estimated pdfs for the �rst data set (b) Estimated cdfs for the �rst data set.
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(c) Estimated pdfs for the second data set (d) Estimated cdfs for the second data set
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Figure 3. Plots of the estimated pdfs and cdfs for the WL, McL,
KwL, GL, BL, EL and Lomax models to the �rst and second data
sets.
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Appendix A

The elements of the 4 × 4 observed information matrix J(Θ) = {Jrs} (for r, s =
a, b, α, β) are given by

Jaa = − n
a2 ,

Jab = −
∑n
i=1 z

b
i log zi,

Jaα = −b
∑n
i=1 z

b−1
i (zi + 1) log (zi + 1)

1
α ,



Jaβ = αb
β2

∑n
i=1 z

b−1
i (zi + 1)1−

1
α ,

Jbb = − n
b2
− a

∑n
i=1 z

b
i [log(zi)]

2 ,

Jbα =
∑n
i=1

(
1 + z−1

i

)
log (zi + 1)

1
α

−a(b+ 1)
∑n
i=1

[
zb−1
i (zi + 1) log (zi + 1)

1
α

]
,

Jbβ = − α
β2

∑n
i=1 z

−1
i (zi + 1)1−

1
α − aα

β2

∑n
i=1 z

b−1
i (zi + 1)1−

1
α [1 + b log zi] ,

Jαα = − n
α2 +

∑n
i=1 (zi + 1)

[
α+ (b− 1)

{
α
(
1 + z−1

i

)
− z−2

i

}
−ab

{
α
(
zbi + zb−1

i

)
+ b zbi + (b− 1) zb−2

i

} ]
,

Jαβ = − 1
β2

∑n
i=1 (zi + 1)−

1
α

−
∑n
i=1 (zi + 1)1−

1
α

[
− (b−1)
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β
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β
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1
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β

(
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α
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.
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