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A combinatorial discussion on finite dimensional

Leavitt path algebras

A. Ko¢* , S. Esin' , 1. Giiloglu* and M. Kanuni®

Abstract

Any finite dimensional semisimple algebra A over a field K is isomorphic
to a direct sum of finite dimensional full matrix rings over suitable
division rings. We shall consider the direct sum of finite dimensional
full matrix rings over a field K. All such finite dimensional semisimple
algebras arise as finite dimensional Leavitt path algebras. For this
specific finite dimensional semisimple algebra A over a field K, we define
a uniquely determined specific graph - called a truncated tree associated
with A - whose Leavitt path algebra is isomorphic to A. We define an
algebraic invariant k(A) for A and count the number of isomorphism
classes of Leavitt path algebras with the same fixed value of k(A).
Moreover, we find the maximum and the minimum K-dimensions of the
Leavitt path algebras of possible trees with a given number of vertices
and we also determine the number of distinct Leavitt path algebras of
line graphs with a given number of vertices.
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1. Introduction

By the well-known Wedderburn-Artin Theorem [4], any finite dimensional semisimple
algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix
rings over suitable division rings. We shall consider the direct sum of finite dimensional
full matrix rings over a field K. All such finite dimensional semisimple algebras arise as
finite dimensional Leavitt path algebras as studied in [2]. The Leavitt path algebras are
introduced independently by Abrams-Aranda Pino in [1] and by Ara-Moreno-Pardo in
[3] via different approaches.

In general, the Leavitt path algebra Lx(F1) can be isomorphic to the Leavitt path
algebra Li (FE2) for non-isomorphic graphs F; and F». In this paper, we introduce a
class of specific graphs which we call the class of truncated trees, denoted by T, and
prove that for any finite acyclic graph E there exists a unique element F' in T such that
Lk (F) is isomorphic to Lx (F'). Furthermore, for any two acyclic graphs E1 and E» and
their corresponding truncated trees F; and F» we have

LK(E1) gLK(EQ) if and only if F1 gFQ.

S
For a given finite dimensional Leavitt path algebra A = @ My, (K) with 2 < n; <
i=1
na < ... < ns = N, the number s is the number of minimal ideals of A and N? is the
maximum of the dimensions of the minimal ideals. Therefore, the integer s + N — 1 is
an algebraic invariant of A which we denote by x(A).

Then, we prove that the number of isomorphism classes of finite dimensional Leavitt
path algebras A, with the invariant x(A) > 1, having no ideals isomorphic to K is equal
to the number of distinct truncated trees with k(A) vertices. The number of distinct
truncated trees with m vertices is computed in Proposition 3.4.

We also compute the best upper and lower bounds of the K-dimension of possible
trees on m vertices, as a function of m and the number of sinks.

In the last section, we calculated the number of isomorphism classes of Leavitt path
algebras of line graphs with m vertices as a function of m.

2. Preliminaries

We start by recalling the definitions of a path algebra and a Leavitt path algebra. For
a more detailed discussion see [1]. A directed graph E = (E°, E',r,s) consists of two
countable sets E°, F! and functions r, s : E* — E°. The elements E° and E* are called
vertices and edges, respectively. For each e € E°, s(e) is the source of e and r(e) is the
range of e. If s(e) = v and r(e) = w, then v is said to emit e and w is said to receive e.
A vertex which does not receive any edges is called a source, and a vertex which emits
no edges is called a sink. An isolated vertex is both a sink and a source. A graph is
row-finite if s~*(v) is a finite set for each vertex v. A row-finite graph is finite if E® is a
finite set.

A path in a graph E is a sequence of edges u = e1...e, such that r(e;) = s(eiy1)
for i =1,...,n — 1. The source of p and the range of u are defined as s(u) = s(e1) and
r(u) = r(en) respectively. The number of edges in a path p is called the length of pu,
denoted by I(u). If s(1) = 7(1) and s(e;) # s(e;) for every @ # j, then p is called a cycle.
A graph F is called acyclic if E does not have any cycles.

The total-degree of the vertex v is the number of edges that either have v as its source
or as its range, that is, totdeg(v) = |571(v) U 7"71(11)| . A finite graph F is a line graph if
it is connected, acyclic and totdeg(v) < 2 for every v € E°. A line graph E is called an
m-line graph if E has m vertices.



For n > 2, define E™ to be the set of paths of length n, and E* = (J E™ the set of
n>0
all paths. Given a vertex v in a graph, the number of all paths ending at v is denoted by
n(v).

The path K-algebra over F, KF, is defined as the free K-algebra K[EO U El} with

the relations:
(1) viv; = 6i5v; for every vy, v; € EY,
(2) e; =esr(e;) = s(e;)e; for every e; € E'.

Given a graph E, define the extended graph of E as the new graph E = (E°, E' U
(EYH*, 7', s") where (E*)* = {e} | e; € E'} is a set with the same cardinality as E and
disjoint from E so that the map assigning e* to e is a one-to-one correspondence; and
the functions r’ and s’ are defined as

Plgr =7, &g =s, 1(e)=s(ei) and  s'(ef) = r(e).
The Leavitt path algebra of E, Lx(F), with coefficients in K is defined as the path
algebra over the extended graph E, which satisfies the additional relations:
(CK1) efe; = d;5r(e;j) for every e; € E' and e} € (E')*,
(CK2) v; = Z ejej for every v; € E° which is not a sink, and emits only
{e;€E! | s(ej)=v;}
finitely many edges.
The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations. Note that
the condition of row-finiteness is needed in order to define the equation (CK2).
Finite dimensional Leavitt path algebras are studied in [2] by Abrams, Aranda Pino
and Siles Molina. The authors characterize the structure theorems for finite dimensional
Leavitt path algebras. Their results are summarized in the following proposition:

2.1. Proposition. (1) The Leavitt path algebra Lk (E) is a finite-dimensional K-
algebra if and only if E is a finite and acyclic graph.

(2) If A= P My, (K) , then A= Lk (E) for a graph E having s connected compo-
1=
nents each of which 1is an oriented line graph with n; vertices,
i=1,2,--- 8.
(3) A finite dimensional K-algebra A arises as a Lix (E) for a graph E if and only

if A= _eEMm(K).

(4) If A= @ M,,(K) and A = Lk (E) for a finite, acyclic graph E, then the number
i=1

of sinks of E is equal to s, and each sink v; (i =1,2,---,) has n(v;) = n; with
a suitable indexing of the sinks.

3. Truncated Trees

For a finite dimensional Leavitt path algebra Lk (F) of a graph E, we construct a
distinguished graph F' having the Leavitt path algebra isomorphic to Lx (F) as follows:

3.1. Theorem. Let E be a finite, acyclic graph with no isolated vertices. Let
s = |S(F)| where S(E) is the set of sinks of E and N = max{n(v) | v € S(E)}. Then
there exists a unique (up to isomorphism) tree F with exactly one source and s + N — 1
vertices such that Lk (F) = Lk (F).

Proof. Let the sinks v, v2,...,vs of E be indexed such that
2 <n(v) <nvz) <...<n(vs) = N.



Define a graph F = (F°, F',r, s) as follows:

0
F = {ul,UQ,...,UN,U}17’U)2,..,’LUS,1}
1
F = {61,62,4..76N,17f17f27...,f5,1}
s(ei) = w; and  7(e;) = uig1 i=1,...,N—1
S(fl) = Un(v;)-1 and T'(fz) = w; 1=1,...,5—1.
wy We_1
° °
fi fs-1
€1 En(vy)—1 Cn(ve_1)—1 eN—_1
e — s e .- o — ' e e 6 — " e .- e — s e
U U Un(vy)—1 Un(vy) Un(vy_1)—1 Un(v,_1) UN -1 uN

Clearly, F' is a directed tree with unique source u; and s+ N — 1 vertices. The graph
F has exactly s sinks, namely un,wi,ws,...ws—1 with n(un) = N, n(w;) = n(v;),
t=1,...,s — 1. Therefore, Lx (E) = Li (F') by Proposition 2.1.

For the wuniqueness part, take a tree T with exactly one source and
s+ N —1 vertices such that Lx (F) = Lk (T). Now N = max{n(v) | v € S(F)} is equal to
the square root of the maximum of the K-dimensions of the minimal ideals of Lx (F) and
also of Lx (T"). So there exists a sink v in T" with [{g; € T* | r(us) = v}| = N. Since, any
vertex in 7" is connected to the unique source by a uniquely determined path, the unique
path joining v to the source must contain exactly N vertices, say a1, ...,an—1,v where a1
is the unique source and the length of the path joining ax to a1 being equal to k—1 for any

S

k=1,2,..,N —1. As Lx(E) = @ My,,(K) with s summands, all the remaining s — 1
i=1

vertices, say b1, ..., bs—1, must be sinks by Proposition 2.1(4). For any vertex a different
from the unique source, clearly n(a) > 1. Also, there exists an edge g; with r(g;) = b; for
each i =1,...,s — 1. Since s(g;) is not a sink, it follows that s(g;) € {a1,az2,...,an—1},
more precisely s(gi) = an(p;)—1 for i =1,2,...,5s — 1. Thus T is isomorphic to F. d

We name the graph F' constructed in Theorem 3.1 as the truncated tree associated
with E.

3.2. Proposition. With the above definition of F, there is no tree T with
|T°| < |F°| such that L (T) = L (F).

Proof. Notice that since T is a tree, any vertex contributing to a sink represents a unique
path ending at that sink.
Assume on the contrary there exists a tree 7" with n vertices and Lx(T) &2 A =

@ M,,(K) such that n < s+ N — 1. Since N is the maximum of n;’s there exists a sink
i=1

v with n(v) = N. But in T the number n — s of vertices which are not sinks is less than
N — 1. Hence the maximum contribution to any sink can be at most n — s + 1 which is
strictly less than N. This is the desired contradiction. O

Remark that the above proposition does not state that it is impossible to find a graph
G with smaller number of vertices having L (G) isomorphic to Lk (E). The next example
illustrates this point.

3.3. Example. Consider the graphs G and F'.

Both L (G) = M3(K) = Lk (F) and |G°| = 2 where as |F°| = 3.
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Given any graphs G1 and G2, Lk (G1) = Lk (G2) does not necessarily imply G1 = Ga.
However, for truncated trees F1, F» we have F1 22 F if and only if Li (F1) 2 Lk (F2). So
there is a one-to-one correspondence between the Leavitt path algebras and the truncated
trees.

Consider a finite dimensional Leavitt path algebra A = @ My, (K) with 2 < n; <
i=1

n2 <...<ns = N. Here, the number s is the number of minimal ideals of A and N?is
the maximum of the dimensions of the minimal ideals. Therefore, the integer s + N — 1
is an algebraic invariant of A which is denoted by x(A). Notice that the number of
isomorphism classes of finite dimensional Leavitt path algebras A, with the invariant
k(A) > 1, having no ideals isomorphic to K is equal to the number of distinct truncated
trees with k(A) vertices by the previous paragraph. The next proposition computes this
number.

3.4. Proposition. The number of distinct truncated trees with m vertices is 2™ 2.

Proof. In a truncated tree, n(v1) # n(vz) for any two distinct non-sinks v1 and ve. For
every sink v, there is a unique non-sink w so that there exists an edge e with s(e) = w
and r(e) = v. Namely the non-sink w is with n(w) = n(v) — 1. This w is denoted by b(v).

Now, define d(u) = |[{v: n(v) < n(u)}| for any u € E°. Clearly, d(u) is equal to the
sum of n(u) and the number of sinks v with n(b(v)) < n(u) for any v € E°. Assign
an m-tuple a(F) = (a1, a2, ...,am) € {0,1}™ to a truncated tree F with m vertices by
letting o; = 1 if and only if j = d(v) for some vertex v which is not a sink. Clearly, there
is just one vertex v with n(v) = 1, namely the unique source of F and that vertex is not
a sink, so @1 = 1. Since there cannot be any non-sink v with d(v) = m, it follows that
am = 0.

Conversely, for 8 = (b1, B2, ..., Bm) € {0,1}™ with f1 = 1 and B, = 0 there exists
a unique truncated tree F with m vertices such that «(E) = 8 : If 8; = 1, then
assign a non-sink v to E with n(v) = {k:1<k<iand Br=1}|. If B; =0 and j =
[{k:1 <k < iand Br = 1}| then construct a sink which is joined to the non-sink v with
n(v) = j. Clearly, the graph E is a truncated tree with m vertices and o(E) = S.

Hence the number of distinct truncated trees with m vertices is equal to 2 =2 which is
the number of all elements of {0,1}" with the first component 1 and the last component
0. O

Hence, we have the following corollary.

3.5. Corollary. Given n > 2, the number of isomorphism classes of finite dimensional
Leavitt path algebras A with k(A) = n and which do not have any ideals isomorphic to
K is 2"72.



4. Bounds on the K-Dimension of finite dimensional Leavitt Path
Algebras

For a tree F' with m vertices, the K-dimension of Lk (F) is not uniquely determined by
the number of vertices only. However, we can compute the maximum and the minimum
K-dimensions of Lx (F) where F ranges over all possible trees with m vertices.

4.1. Lemma. The mazimum K-dimension of Lk (F) where E ranges over all possible
trees with m vertices and s sinks is attained at a tree in which n(v) = m — s+ 1 for each
sink v. In this case, the value of the dimension is s(m — s + 1)2.

Proof. Assume E is a tree with m vertices. Then Lk (E) & @ M., (K), by Proposition
i=1

2.1 (3) where s is the number of sinks in £ and n; <m —s+1 foralli=1,...s. Hence
dim L (E) = ni < s(m—s+1)°.
i=1

Notice that there exists a tree E as sketched below

4
\

o ——=0 —> 0 o ———>0

with m vertices and s sinks such that dim Lx (E) = s(m — s + 1)2. O

4.2. Theorem. The mazimum K-dimension of Lk (F) where E ranges over all possible
trees with m wvertices is given by f(m) where

771(2772177—&—3)2 if m=0(mod 3)
f(m) = 2i7(m+2) 2m+1)* if m=1(mod 3)

4 : . —

2—7(m +1)3 if m=2(mod 3)

Proof. Assume FE is a tree with m vertices. Then Lx(FE) = @ M,, where s is the
i=1

i=
number of sinks in E. Now, to find the maximum dimension of Lk (F), determine the
maximum value of the function f(s) = s(m — s+ 1)? for s = 1,2,...,m — 1. Extending
the domain of f(s) to real numbers 1 < s < m — 1 f becomes a continuous function,
hence its maximum value can be computed.

f(s)zs(m—s+1)2:>d%(s(m—s—l—lf):(m—35+1)(m—5+1)



1 d2
Then s = - + is the only critical point in the interval [1, m — 1] and since —f(

m—+1
ds?

3)
- . . L . . m+1
0, it is a local maximum. In particular f is increasing on the interval |1, 5 and

1
decreasing on [%, m — 1} . There are three cases:

m+ 1

Case 1: m = 2 (mod 3). In this case s = is an integer and maximum
1
K-dimension of Lg(FE) is f (mTH) = % (m+1)* and n; = %, for each i =

1,2,...,s.

Case 2: m =0 (mod 3). Then: %:t<t+%:s<t+1and

f(m) :M:m andf(%Jrl) _ 4m?*(m +3)

3 27 - 27 -

2
Note that, a1 > a2. So a1 is maximum K -dimension of Lk (E) and n; = gm + 1, for
eachi=1,2,...,s.

m—1

2
Case 3: m =1 (mod 3). Then :t<t+§:s<t+1and

(M) = g 22 - 1) =
and

f(mTH) :2—17(2m+1)2(m+2):,82.

In this case B2 > (1 and so B2 gives the maximum K-dimension of Lx(FE) and n; =
2m + 1 .
,foreachi=1,2,...,s. O

4.3. Theorem. The minimum K -dimension of Lk (E) where E ranges over all possible
trees with m vertices and s sinks is equal to 7(q + 2)> + (s — r)(q + 1)?, where m — 1 =
gs+r, 0<r<s.

Proof. We call a graph a bunch tree if it is obtained by identifying the unique sources of
the finitely many disjoint oriented finite line graphs as seen in the figure.

/

N\

>e—— @

NV

Let &(m, s) be the set of all bunch trees with m vertices and s sinks. Every element
of &(m,s) can be uniquely represented by an s -tuple (¢1,t2, ..., ts) where each ¢; is the



number of vertices different from the source contributing to the *" sink,
with 1 <t <te<..<tsandt; +to+..+ts=m—1.

Let E € &(m, s) with ts —t; < 1. This FE is represented by the s-tuple
(¢y.--yq,q+1,....,g+1) where m—1=s¢g+7,0<r<s.

Now, claim that the dimension of E is the minimum of the set
{dim Lk (F) : F tree with s sinks and m vertices}.

If we represent U € &(m,s) by the s-tuple (u1,u2,...,us) then E # U implies that
uUs — up > 2.

Consider the s-tuple (t1,t2,...,ts) where (t1,t2,...,ts) is obtained from
(u1 + 1,u2,...,us—1,us — 1) by reordering the components in increasing order.

In this case, the dimension dy of U is

dv = (u1 + 1% + ... + (us + 1)%

Similarly, the dimension dr of the bunch graph T represented by the s-tuple (¢1, t2, ..., ts),
is

2

dr=t+12+.. . +(ts+12 = (w1 4+2)+... 4 (us_1 + 1)% + 2.

Hence

dy — dr ZQ(US—U1)—2>O.
Repeating this process sufficiently many times, the process has to end at the exceptional
bunch tree E showing that its dimension is the smallest among the dimensions of all
elements of &(m, s).

Now let F' be an arbitrary tree with m vertices and s sinks. As above assign to F' the
s-tuple (n1,n2,...,ns) with n; = n(v;) — 1 where the sinks v;, 1 = 1,2,...,s are indexed
in such a way that n; <n;+1, i =1,...,8 — 1. Observe that ny + na+---+ns > m —1.
Let =57 ni—(m—1). Since s <m—1, <37  (ni—1). Either ny —1 > g or
there exists a unique k € {2,...,s} such that >F " '(n; — 1) < 8 < 3¢ (n; — 1). If
ny — 1 > (3, then let

mi:{ nl_ﬁ ’ ’L::l
ng , 1> 1
Otherwise, let

1 , 1<k-1
n; , 1> kE+1
In both cases, the s-tuple (mi,ms2,...,ms) that satisfies 1 < m; < ngy,
mi <mg < -+ < ms and m; +me + -+ +ms = m — 1 is obtained. So, there ex-
ists a bunch tree M namely the one corresponding uniquely to (mq, ma,...,ms) which
has dimension dys < dp. This implies that drp > dg.
Hence the result follows. |

4.4. Lemma. The minimum K-dimension of Lx(E) where E ranges over all possible
trees with m vertices occurs when the number of sinks is m — 1 and is equal to 4(m — 1).

Proof. By the previous theorem observe that
dim Lic (B) > r(q +2)° + (s = )(q + 1)°
where m —1=g¢gs+r, 0<r <s. Then
r(g+2)°+(s—r)(g+ 1) =(m—-1)(g+2) +qr+r+s.



Thus
(m—1)(qg+2)+gr+r+s—4(m—1)=(m—1)(¢g—2)+qr+r+s>0 if q>2.
Ifg=1,then -(m—1)+2r+s=—(m—1)+r+(m—1) =r > 0. Hence dim Lk (F) >
4(m —1).
Notice that there exists a truncated tree FE with m vertices and
dim Lx (E) = 4(m — 1) as sketched below :

5. Line Graphs

In [2], the Proposition 5.7 shows that a semisimple finite dimensional algebra A =
@ M,,(K) over the field K can be described as a Leavitt path algebra Lx (E) defined
i=1

by a line graph E, if and only if A has no ideals of K-dimension 1 and the number of
minimal ideals of A of K-dimension 22 is at most 2. On the other hand, if A 2 L (E)
for some m-line graph E then m —1 =37, (n; — 1), that is, m is an algebraic invariant
of A.

Therefore the following proposition answers a reasonable question.

5.1. Proposition. The number A,, of isomorphism classes of Leavitt path algebras de-
fined by line graphs having exactly m vertices is

Am =P(lm—1)— P(m —4)
where P(t) is the number of partitions of the natural number t.

Proof. Any m-line graph has m — 1 edges. In a line graph, for any edge e there exists
a unique sink v so that there exists a path from s(e) to v. In this case we say that
e is directed towards v. The number of edges directed towards v is clearly equal to
n(v) — 1. Let E and F be two m -line graphs. Then Lg(F) = Lk (F) if and only if
there exists a bijection ¢ : S(E) — S(F) such that for each v in S(E), n(v) = n(¢(v)).
Therefore the number of isomorphism classes of Leavitt path algebras determined by
m-line graphs is the number of partitions of m — 1 edges in which the number of parts
having exactly one edge is at most two. Since the number of partitions of k& objects
having at least three parts each of which containing exactly one element is P(k — 3), the
result A,, = P(m — 1) — P(m — 4) follows. O
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