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Abstract 

In this paper, we introduce the class of demi-order norm continuous operator on a normed 

Riesz space. We study the relationship between order-to-norm continuous operator and demi-

order norm continuous operator. We also investigate some properties of the class of demi-

order norm continuous operator, and it is given a characterization of a normed Riesz space 

with order continuous norm by the term of the demi-order norm continuous operator. 
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1. INTRODUCTION 

 

The demi notation was used firstly in the article named “Construction of fixed points of demicompact 

mappings in Hilbert space” by Petryshyn in 1966 [1]. Krichen B. and O’Regan D. studied some results of 

the class of weakly demicompact linear operators in 2019 [2]. After, in [3], Benkhaled H., Hajji M., and 

Jeribi A. introduced the class of demi Dunford-Pettis operators which are a generalization of Dunford Pettis 

operators. The class of order weakly demicompact operators was introduced by Benkhaled H., Elleuch A., 

and Jeribi A. in [4]. 

 

In this study, we will introduce the class of demi-order-norm continuous operators which are a 

generalization order-to-norm continuous operators on a Banach lattice, given by Jalili, Haghnejad Azar, 

and Moghimi in [5]. 

 

A net {𝑥𝛼} in a Riesz space 𝐸 is said to be order convergent to 𝑥 ∈ 𝐸 if there is a net {𝑦𝛽} in 𝐸+ with 𝑦𝛽 ↓ 0 

and that for every 𝛽, there is 𝑎0 = 𝑎0(𝛽) such that |𝑥𝛼 − 𝑥| ≤ 𝑦𝛽  for all   𝛼 ≥ 𝑎0.  It is denoted by 𝑥𝛼
𝑜
→  𝑥. 

Let 𝐸 and 𝐹 be two Riesz spaces, every linear mapping from 𝐸 into 𝐹 is called operator (linear operator). 

Briefly the net {𝑥𝛼: 𝛼 ∈ Λ } is denoted by {𝑥𝛼} where  Λ is a nonempty directed set.  Recall from [5] that 

let 𝐸 be a Banach lattice, a bounded operator 𝑇  on 𝐸 is said to be an order-to-norm continuous operator if  

𝑥𝛼
𝑜
→  0, then 𝑇(𝑥𝛼)

‖.‖
→ 0 for all net 𝑥𝛼 in 𝐸. The class of all order-to-norm continuous operators will be 

denoted 𝐿𝑜𝑛(𝐸). 𝐸 has order continuous norm if and only if  𝑥𝛼 ↓ 0, then 𝑥𝛼
‖.‖
→ 0 [6]. Let 𝐸, 𝐹 be two 

Banach lattices and two operators 𝑆, 𝑇 from 𝐸 into 𝐹.  𝑆 ≤ 𝑇 means that     𝑆(𝑥) ≤ 𝑇(𝑥) for all 𝑥 ∈ 𝐸+ [6]. 

The class of all continuous operators on 𝐸 is denoted by 𝐿(𝐸). A norm ‖. ‖ on a Riesz space is said to be a 
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lattice norm whenever |𝑥| ≤ |𝑦|, then ‖𝑥‖ ≤ ‖𝑦‖ [6]. A Riesz space equipped with a lattice norm is known 

as a normed Riesz space, and a subset 𝐴 of a Riesz space is said to be order closed whenever {𝑥𝛼} ⊆ 𝐴 and 

𝑥𝛼
𝑜
→ 𝑥, imply 𝑥 ∈ 𝐴 [6]. 

 

Throughout this study, the identity operator is denoted by 𝐼. In this study, for all other undefined terms and 

notation, we will adhere to the conventions in [6]. 

 

2. MAIN RESULTS  

 

Definition 2.1. Let 𝑀 be a normed Riesz space, a bounded operator 𝐻:𝑀 → 𝑀. It is said to be a demi-order 

norm continuous operator (d-onco) if for every net {𝑥𝛼} in 𝑀+ whenever 𝑥𝛼
𝑜
→  0 and 𝑥𝛼 −𝐻(𝑥𝛼)

‖.‖
→ 0, 

implies 𝑥𝛼
‖.‖
→  0,  and the class of all demi-order norm continuous operators is denoted by 𝔇𝐿𝑜𝑛(𝑀). 

 

Example 2.1. Let 𝑀 be a normed Riesz space.  𝛽𝐼 is a demi-order norm continuous operator on 𝑀 for all  

𝛽 ≠ 1.  
 

Assume that 𝑥𝛼
𝑜
→  0 and ‖𝑥𝛼 − 𝛽𝐼(𝑥𝛼)‖ → 0. Therefore, we obtain 

 
‖𝑥𝛼 − 𝛽𝐼(𝑥𝛼)‖ → 0  ⇒ |1 − 𝛽|‖𝑥𝛼‖ → 0  ⇒ ‖𝑥𝛼‖ → 0. 

 

Thus, 𝛽𝐼 is a demi-order norm continuous operator on 𝑀. 
 

Generally, the following example shows that the above example is not true in case 𝛽 = 1. 

 

Example 2.2. Let 𝑐 be the set of all convergent sequence of ℝ. Consider the sequence 𝑢𝑛; its  first n terms  

are one, and others are zero and,  𝑢 = (1,1, … ).  It is clear that 0 ≤ 𝑢𝑛 ↑ 𝑢 in 𝑐.  Therefore, we get   𝑢 − 𝑢𝑛 

↓  0 . Hence, 𝑢 − 𝑢𝑛 
𝑜
→  0.  On the other hand (𝑢 − 𝑢𝑛 ) does not convergence to zero in norm, since 

‖𝑢 − 𝑢𝑛 ‖ = 1 so, identity operator does not belong to a demi-order norm continuous operator. 

 

The next example gives us that the set of all demi-order norm continuous operator on 𝐸 is a proper subset 

of 𝐿(𝐸) in general.  

 

Example 2.3. Let 𝑘 ∈ ℕ and 𝑇𝑘: 𝑐 → 𝑐 be an operator defined by 𝑇𝑘(𝑥) = ∑ 𝑥𝑖𝑒𝑖
𝑘
𝑖=1  for each                           

𝑥 = (𝑥𝑖) ∈ 𝑐.  Consider  the sequence 𝑠𝑛, its   first n terms  are one, and others are zero and  𝑠 = (1,1, … ). 

It is obvious that 0 ≤ 𝑠𝑛 ↑ 𝑠 and (𝑠 − 𝑠𝑛) ↓ 0. We obtain that 𝑠 − 𝑠𝑛 
𝑜
→  0. Hence, ‖𝑇𝑘(𝑠 − 𝑠𝑛)‖ → 0 in 𝑐.  

Define 𝑆𝑘 = 𝐼 + 𝑇𝑘 for each 𝑘 ∈ ℕ.  

 

(𝑠 − 𝑠𝑛)
𝑜
→  0 and ‖(𝐼 − 𝑆𝑘)(𝑠 − 𝑠𝑛)‖ =  ‖(𝐼 − 𝐼 − 𝑇𝑘)(𝑠 − 𝑠𝑛)‖ = ‖𝑇𝑘(𝑠 − 𝑠𝑛)‖ → 0. Since                    

‖𝑠 − 𝑠𝑛‖ = 1, (𝑠 − 𝑠𝑛)  convergence is not zero in norm. Therefore, 𝑆𝑘 does not belong to 

𝔇𝐿𝑜𝑛(𝑐) for each 𝑘 ∈ ℕ. 
  

Theorem 2.1. Every order-to-norm continuous operator is a d-onco. 

 

Proof. Let 𝑀 be a normed Riesz space, 𝐻 ∈ 𝐿𝑜𝑛(𝑀), (𝑥𝛼) in 𝑀+ such that 𝑥𝛼
𝑜
→  0 and                               

‖(𝑥𝛼 −𝐻(𝑥𝛼)‖ → 0. Since 𝐻 ∈ 𝐿𝑜𝑛(𝑀), satisfies ‖𝐻(𝑥𝛼)‖ → 0. We can write 

 
‖𝑥𝛼‖ = ‖(𝑥𝛼 −𝐻(𝑥𝛼) + 𝐻(𝑥𝛼)‖ 

              ≤ ‖(𝑥𝛼 −𝐻(𝑥𝛼)‖ + ‖𝐻(𝑥𝛼)‖ 
 

and then we know that ‖(𝑥𝛼 −𝐻(𝑥𝛼)‖ → 0 and ‖𝐻(𝑥𝛼)‖ → 0. Therefore, ‖𝑥𝛼‖ → 0. Hence, 𝐻 is a demi-

order norm continuous operator on 𝑀. 
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In the next example, it is shown that the inverse of the theorem is not generally true. 

 

Example 2.4. Let 𝐻 be an operator on 𝑀 = 𝐶[0,1] and 𝐻 =
1

2
 𝐼. Since the norm on M is not order 

continuous norm (see [6]), then the operator 𝐻 is not in 𝐿𝑜𝑛(𝑀), but 𝐻 is a demi-order norm continuous 

operator on 𝑀 from Example 2.1.  

 

Theorem 2.2. Let 𝑁 be a normed Riesz space,  𝐻:𝑁 → 𝑁  be an order-to-norm continuous operator,     

𝑆: 𝑁 → 𝑁 be a d-onco, then 𝐻 + 𝑆 is a d-onco. 

 

Proof. Let a net (𝑥𝛼) in 𝑁+ such that 𝑥𝛼
𝑜
→  0 and ‖𝑥𝛼 − (𝐻 + 𝑆)(𝑥𝛼)‖ → 0. We can write as 

 

‖𝑥𝛼 − 𝑆(𝑥𝛼)‖=‖𝑥𝛼 − 𝑆(𝑥𝛼) − 𝐻(𝑥𝛼) + 𝐻(𝑥𝛼)‖ 

                            ≤ ‖𝑥𝛼 − (𝐻 + 𝑆)(𝑥𝛼)‖ + ‖𝐻(𝑥𝛼)‖. 
 

It is obvious that ‖𝐻(𝑥𝛼)‖ → 0, since 𝐻 ∈ 𝐿𝑜𝑛(𝑁). Moreover, we know that ‖𝑥𝛼 − (𝐻 + 𝑆)(𝑥𝛼)‖ → 0.  

Thus,  ‖𝑥𝛼 − 𝑆(𝑥𝛼)‖ →  0. We obtain that ‖𝑥𝛼‖ →  0, since 𝑆 belongs to 𝔇𝐿𝑜𝑛(𝑁). Hence, 𝐻 + 𝑆 is a       

d-onco. 

 

The result of Theorem 2.2 is true for 𝑆 + 𝐻 as well as for 𝑆 − 𝐻. 

 

However, as the next example shows that the sum of two d-onco is not a d-onco in general. 

 

Example 2.5. Let 𝑇1 , 𝑇2 be two operators on 𝑀 = 𝐶[0,1],  defined as 𝑇1(𝑓) = 𝑇2(𝑓) =
1

2
𝑓 for each   

𝑓 ∈ 𝑀.   𝑇1 and 𝑇2 are two demi-order norm continuous operators, but 𝑇1+𝑇2 = 𝐼 does not belong to 

𝔇𝐿𝑜𝑛(𝑀).  

 

The following theorem gives that a characterization of a normed Riesz space having an order continuous 

norm. 

 

Theorem 2.3. Let 𝑀 be a normed Riesz space. Then the following statements are equivalent 

 

(𝑖) 𝑀 has order continuous norm, 

 

(𝑖𝑖) 𝐿𝑜𝑛(𝑀) = 𝔇𝐿𝑜𝑛(𝑀). 
 

Proof. (𝑖) ⇒ (𝑖𝑖) It is clear that 𝐿𝑜𝑛(𝑀) ⊂ 𝔇𝐿𝑜𝑛(𝑀) from Theorem 2.1. We have to show that       

𝔇𝐿𝑜𝑛(𝑀) ⊂ 𝐿𝑜𝑛(𝑀). 
 

It is well-known xα
o
→  0 implies 𝑥𝛼

‖.‖
→  0 if 𝑀 has order continuous norm.  Then,  𝐻(𝑥𝛼)

‖.‖
→  0 if  𝐻 ∈ 𝐿(𝑀). 

It show that 𝐿𝑜𝑛(𝑀) = 𝐿(𝑀), so it is clear that 𝔇𝐿𝑜𝑛(𝑀) ⊂ 𝐿𝑜𝑛(𝑀). The proof is complete.  

 

(𝑖𝑖) ⇒ (𝑖)  Let 𝐿𝑜𝑛(𝑀) = 𝔇𝐿𝑜𝑛(𝑀) and 𝑥𝛼 ↓ 0.  Since 
1

2
𝐼  is a d-onco, then 

1

2
𝐼 is in 𝐿𝑜𝑛(𝑀). Hence,  𝐼  

belongs to 𝐿𝑜𝑛(𝑀). It is obvious that  

 

𝑥𝛼 ↓ 0 ⇒ 𝑥𝛼
𝑜
→  0 

                ⇒   𝑥𝛼
‖.‖
→  0. 

 

Since ‖𝑥𝛼‖ ↓ and 𝑥𝛼
‖.‖
→  0, we obtain that ‖𝑥𝛼‖ ↓0, so 𝑀 has order continuous norm.  
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Let 𝑀 and 𝑁 be two normed Riesz spaces and  �̂�= 𝑀 ⊕𝑁={ (a,b): 𝑎 ∈ 𝑀, 𝑏 ∈ 𝑁} if �̂� is equipped with 

the coordinatewise order that is (𝑎1, 𝑏1) ≤ (𝑎2, 𝑏2) ⇔ 𝑎1 ≤ 𝑎2 and  𝑏1 ≤ 𝑏2 for each (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 

�̂� and the norm ‖(𝑎, 𝑏)‖�̂� = ‖𝑎‖𝑀 + ‖𝑏‖𝑁. 

 

Theorem 2.4. Let 𝑀 and 𝑁 be two normed Riesz spaces. Then the following operators are d-onco. 

 

(𝑖)All operators H on M which (𝐼 − 𝐻)−1 exists and is bounded. 

  

(𝑖𝑖) (𝐻𝛼 )̂  is the class of operator on �̂�.  ( 𝐻𝛼)̂ is defined by [
0 0
𝐻 𝛼𝐼

] and �̂� = 𝑀⊕𝑁 (𝛼 ≠ 1)  for every 

operator H from  𝑀 into 𝑁. 

 

Proof. (𝑖) Assume a net (𝑥𝛼) in 𝑀+such that 𝑥𝛼
𝑜
→  0 and ‖𝑥𝛼 −𝐻(𝑥𝛼)‖

‖.‖
→  0. It is written as  

 

‖𝑥𝛼‖=‖(𝐼 − 𝐻)−1 (𝐼 − 𝐻)𝑥𝛼‖ 
              ≤ ‖(𝐼 − 𝐻)−1‖‖(𝐼 − 𝐻)𝑥𝛼‖. 

 
Since (𝐼 − 𝐻)−1 exists, is bounded, and there are inequalities, we obtain that ‖𝑥𝛼‖→  0. Hence, 𝐻 belongs 

to 𝔇𝐿𝑜𝑛(𝑀). 
 

(𝑖𝑖) Let {𝑥�̂�} be a net in �̂�+ such that {𝑥�̂� = (𝑥𝛼 , 𝑦𝛼)},  𝑥𝛼 ∈ 𝑀, 𝑦𝛼 ∈ 𝑁 for 𝛼 ≠ 1, 𝑥�̂�
𝑜
→  0 and          

‖𝑥�̂� − �̂�𝑥�̂�)‖�̂� → 0 . It will be shown that ‖𝑥�̂�‖�̂� → 0. We know that ‖𝑥�̂�‖�̂� = ‖𝑥𝛼‖𝑀 + ‖𝑦𝛼‖𝑁. Hence, 

to show that ‖𝑥�̂�‖�̂� → 0 , we have to show that ‖𝑥𝛼‖𝑀 → 0  and ‖𝑦𝛼‖𝑁 → 0 . 

 

‖𝑥�̂� − �̂�(𝑥�̂�)‖�̂� = ‖
(𝑥𝛼 , 𝑦𝛼) − �̂�(𝑥𝛼 , 𝑦𝛼)‖�̂� 

                                    =‖(𝑥𝛼 , 𝑦𝛼) − (0,𝐻𝑥𝛼 + 𝛼𝑦𝛼)‖�̂� 
                            = ‖(𝑥𝛼 , 𝑦𝛼 −𝐻𝑥𝛼 − 𝛼𝑦𝛼‖�̂� 
                              = ‖(𝑥𝛼 , 𝑦𝛼(1 − 𝛼) − 𝐻𝑥𝛼‖�̂� 

                                            = ‖(𝑥𝛼)‖𝑀 + ‖𝑦𝛼(1 − 𝛼) − 𝐻𝑥𝛼‖𝑁. 
 

From the assumption that ‖𝑥�̂� − �̂�𝑥�̂�)‖�̂� → 0. Therefore, it is obtained ‖(𝑥𝛼)‖𝑀 → 0  and                    

‖𝑦𝛼(1 − 𝛼) − 𝐻𝑥𝛼‖𝑁 → 0 . ‖(𝑥𝛼)‖𝑀 →  0 implies ‖𝐻𝑥𝛼‖𝑁 →  0, since 𝐻 is continuous. Moreover, we 

can write as  

 
|(1 − 𝛼)|‖𝑦𝛼‖𝑁 = ‖𝑦𝛼(1 − 𝛼) − 𝐻𝑥𝛼 +𝐻𝑥𝛼‖𝑁 

≤ ‖𝑦𝛼(1 − 𝛼) − 𝐻𝑥𝛼‖𝑁 + ‖𝐻𝑥𝛼‖𝑁. 
 

We get |(1 − 𝛼)|‖𝑦𝛼‖𝑁 → 0  so, ‖𝑥�̂�‖�̂� → 0 . Thus, (𝐻𝛼)̂ belongs to 𝔇𝐿𝑜𝑛(�̂�). 
 

The following example gives us that Theorem 2.4 (ii) may not be valid in case α =1 

 
Example 2.6. Let an operator 𝐻: ℓ1 → ℓ∞, �̂� = ℓ1⊕ℓ∞  equipped with coordinatewise order and 

operator �̂�. is defined by  [
0 0
𝐻 𝐼

] �̂� does not belong to 𝔇𝐿𝑜𝑛(�̂�). An order bounded sequence {𝑥�̂�} in  

�̂�+such that 𝑥�̂� = (0, 𝑒𝑛) and 𝑒𝑛  the nth. term equals one and the others are zero. Since (𝑒𝑛) is order 

convergent in ℓ∞, then ( 𝑥�̂�) is order convergent and ‖ 𝑥�̂� − �̂� 𝑥�̂�‖ = 0 → 0. Since ‖𝑒𝑛‖∞ = 1, then 

‖ 𝑥�̂�‖�̂� = 1, so �̂� does not belong to  𝔇𝐿𝑜𝑛( �̂�).  
 

The next example shows that the set of all demi-order norm continuous operators on a normed Riesz space 

is not closed according to multiplication with scalar. 

Note that, if 𝐻 is a d-onco and 𝛼 ∈ ℝ, then 𝛼𝐻  may not be d-onco in general. For example, 𝑀 = 𝐶[0,1],  

𝐻 =
1

2
𝐼 ∶ M → 𝑀 is a d-onco, but  2𝐻 = 𝐼:𝑀 → 𝑀 is not a d-onco. 



1697  Gul Sinem KELES, Birol ALTIN/ GU J Sci, 36(4): 1693-1698 (2023) 

 

 
 

 

Theorem 2.5. Let 𝑀 be normed Riesz space. Then the following assertions are equivalent   

 

(𝑖) All operator 𝐻:𝑀 → 𝑀 is a d-onco. 

 

(𝑖𝑖) 𝐼:𝑀 → 𝑀 is a d-onco, 

 

(𝑖𝑖𝑖) 𝑀 has order continuous norm.  

 

Proof. (𝑖) ⇒ (𝑖𝑖) It is obvious.  

 

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) Assume that a net  (𝑥𝛼) in 𝑀+such that 𝐼 ∈ 𝔇𝐿𝑜𝑛(𝑀) and 𝑥𝛼 ↓ 0.  Since                                   
‖𝑥𝛼 − 𝐼(𝑥𝛼)‖ = 0 → 0, and  𝐼 is in 𝔇𝐿𝑜𝑛(𝑀), we get ‖𝑥𝛼‖ → 0 . We know  𝑥𝛼 is decreasing. Hence, it is 

clear that  ‖𝑥𝛼‖ is decreasing. Since ‖𝑥𝛼‖ ↓ and ‖𝑥𝛼‖ → 0 , then we get ‖𝑥𝛼‖ ↓ 0, so 𝑀 has order 

continuous norm. 

 

(𝑖𝑖𝑖) ⇒ (𝑖) It is obvious from Teorem 2.3.    

 

The next example shows that if 𝐻 is a d-onco and, 0 ≤ 𝑆 ≤ 𝐻, then 𝑆 is not a d-onco in general. 

 

Example 2.7. Let 𝐻, 𝑆 be two operators on 𝑀 = 𝐶[0,1], 𝑆 = 𝐼 and 𝐻 = 2𝐼. It holds                                                     

0 ≤ 𝑆 ≤ 𝐻.  𝐻  belongs to  𝔇𝐿𝑜𝑛(𝑀), but  𝑆 does not belong to  𝔇𝐿𝑜𝑛(𝑀). 
 

The following theorem gives us that the domination property is satisfied under the some special conditions. 

 

Theorem 2.6. Let 𝑆 and 𝐻 be two positive operators on the normed Riesz space 𝑀 and  0 ≤ 𝑆 ≤ 𝐻 ≤ 𝐼. If 
𝐻 is the d-onco, then 𝑆 is also the d-onco. 

 

Proof. Assume that a net (𝑥𝛼) in 𝑀+ such that 𝐻 ∈ 𝔇𝐿𝑜𝑛(𝑀),  𝑥𝛼
𝑂
→ 0 and ‖𝑥𝛼 − 𝑆(𝑥𝛼)‖ → 0 . 

 

Since 0 ≤ (𝐼 − 𝐻)(𝑥𝛼) ≤ (𝐼 − 𝑆)(𝑥𝛼), we obtain that  

 
‖(𝐼 − 𝐻)(𝑥𝛼)‖ ≤ ‖(𝐼 − 𝑆)(𝑥𝛼)‖. 

 
Thus,  ‖𝑥𝛼 −𝐻(𝑥𝛼)‖ → 0 . Since 𝐻 is in 𝔇𝐿𝑜𝑛(𝑀), then ‖𝑥𝛼‖ → 0 . Therefore, we get S is also a d-onco. 

 

Theorem 2.7. Let  𝑀  be a normed Riesz space, 𝑆 and 𝐻  two operators on 𝑀 and 𝐼 ≤ 𝑆 ≤ 𝐻. If 𝑆 is in 

𝒟𝐿𝑜𝑛(𝑀), then 𝐻 is in 𝒟𝐿𝑜𝑛(𝑀).  
 

Proof. Assume that a net (𝑥𝛼) in 𝑀+such that 𝑆 ∈ 𝔇𝐿𝑜𝑛(𝑀),  𝑥𝛼
𝑂
→ 0 and ‖(𝐻 − 𝐼)(𝑥𝛼)‖ → 0 . We know 

that 0 ≤ (𝑆 − 𝐼)(𝑥𝛼) ≤ (𝐻 − 𝐼)(𝑥𝛼). Hence, 

 
‖(𝐻 − 𝐼)(𝑥𝛼)‖ → 0  ⇒ ‖(𝑆 − 𝐼)(𝑥𝛼)‖ → 0 .  

 
Since 𝑆 is  in 𝔇𝐿𝑜𝑛(𝑀), we obtain that ‖𝑥𝛼‖ → 0 , so 𝐻 belongs to 𝔇𝐿𝑜𝑛(𝑀).  
 

Theorem 2.8. Let  𝑀 be a normed Riesz space, 𝐻, 𝑆, 𝑁:𝑀 → 𝑀 be three operators and                                        

𝑁 ≤ 𝑆 ≤ 𝐻 ≤ 𝐼 + 𝑁.  If 𝑁 is in 𝐿𝑜𝑛(𝑀) and 𝐻 is in 𝔇𝐿𝑜𝑛(𝑀), then 𝑆 is in 𝔇𝐿𝑜𝑛(𝑀). 
 

Proof. We obtain from the hypothesis 0 ≤ 𝑆 − 𝑁 ≤ 𝐻 −𝑁 ≤ 𝐼.  𝐻 −𝑁  is a d-onco from Theorem 2.2, 

and 𝑆 − 𝑁  is a d-onco from Theorem 2.6. Since 𝑆 = 𝑆 − 𝑁 + 𝑁, 𝑆 − 𝑁 is a d-onco, 𝑁 is in 𝐿𝑜𝑛(𝑀), and 

from Theorem 2.2, we obtain that  𝑆 is a d-onco. 
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Note that if a continuous operator belongs to 𝔇𝐿𝑜𝑛(𝑀), then its adjoint does not generally belong to 

𝔇𝐿𝑜𝑛(𝑀). For example, 𝐼: 𝑙1 → 𝑙1 a d-onco, but its adjoint 𝐼∗ = 𝐼 ≔ 𝑙∞ → 𝑙∞ is not a d-onco.  

 

Similarly, if the adjoint of a continuous operator is d-onco, then it may not be a d-onco in general; for 

example, choice 𝑀 = 𝑙∞. Since 𝑀′ is AL-space, then 𝑀′ has order continuous norm [6]. Hence,               

𝐼′:𝑀′ → 𝑀′  is a d-onco, but 𝐼: 𝑙∞ → 𝑙∞ is not a d-onco. 

 

The following example gives us that the set of all demi-order norm continuous operators on 𝑀 does not 

form a lattice in general. 

 

Example 2.8. Let 𝑀 = 𝐿1([0,1]) × 𝑐0, 𝐻:𝑀 → 𝑀 be an operator, and defined as                                      

𝐻(𝑓, 𝑥) = (0, (∫ 𝑓(𝑥)𝑠𝑖𝑛𝑥𝑑𝑥
1

0
, ∫ 𝑓(𝑥)𝑠𝑖𝑛2𝑥𝑑𝑥
1

0
, ∫ 𝑓(𝑥)𝑠𝑖𝑛𝑥3𝑑𝑥,⋯ ))
1

0
, for each 𝑓 ∈ 𝐿1([0,1]). Since the 

norm on the 𝑀 is order continuous, then 𝐻  is in  𝐿𝑜𝑛(𝑀). Therefore, 𝐻 is a d-onco, but it does not have 

modulus. Since this operator is not order bounded [6], so 𝔇𝐿𝑜𝑛(𝑀) is not a lattice. 

 

Let 𝐿(𝑀) be a Riesz space. 𝔇𝐿𝑜𝑛(𝑀) is not order closed in 𝐿(𝑀) in general.  

 

Example 2.9. Let 𝑇: 𝑙∞ → 𝑙∞ be an operator,  𝑥 = (𝑥𝑖)  and defined as 𝑇𝑛(𝑥) = ∑ 𝑥𝑖𝑒𝑖
𝑛
𝑖=1 . We get                 

0 ≤ 𝑇𝑛 ↑ 𝐼. Therefore, it is clear that 𝑇𝑛
𝑜
→  𝐼.  𝔇𝐿𝑜𝑛(𝑀) is not order closed, since 𝐼 is not a d-onco. 
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