GU J Sci 36(4): 1693-1698 (2023)	DOI: 10.35378/gujs.1098503
Gazi University	
Journal of Science	
http://dergipark.gov.tr/gujs	And the provide and the property of
	GU J Sci 36(4): 1693-1698 (2023) Gazi University Journal of Science

The Class of Demi-Order Norm Continuous Operators

Gul Sinem KELES¹, Birol ALTIN ^{2,*}

¹ Gazi University, Institute of Science, Mathematics, 06560 Ankara, Turkey
² Gazi University, Department of Mathematics, 06560 Ankara, Turkey

Highlights

• This paper focuses on the class of the demi-order norm continuous operators.

• Some properties of the demi-order norm continuous operators are obtained.

• Examples of demi-order norm continuous operators are given.

Article Info	Abstract
Received: 4 Apr 2022 Accepted: 9 Sept 2022	In this paper, we introduce the class of demi-order norm continuous operator on a normed Riesz space. We study the relationship between order-to-norm continuous operator and demi- order norm continuous operator. We also investigate some properties of the class of demi- order norm continuous operator, and it is given a characterization of a normed Riesz space with order continuous norm by the term of the demi-order norm continuous operator.
Keywords	

Demi-order norm continuous operator, Normed Riesz Space Order continuous norm

1. INTRODUCTION

The demi notation was used firstly in the article named "Construction of fixed points of demicompact mappings in Hilbert space" by Petryshyn in 1966 [1]. Krichen B. and O'Regan D. studied some results of the class of weakly demicompact linear operators in 2019 [2]. After, in [3], Benkhaled H., Hajji M., and Jeribi A. introduced the class of demi Dunford-Pettis operators which are a generalization of Dunford Pettis operators. The class of order weakly demicompact operators was introduced by Benkhaled H., Elleuch A., and Jeribi A. in [4].

In this study, we will introduce the class of demi-order-norm continuous operators which are a generalization order-to-norm continuous operators on a Banach lattice, given by Jalili, Haghnejad Azar, and Moghimi in [5].

A net $\{x_{\alpha}\}$ in a Riesz space *E* is said to be order convergent to $x \in E$ if there is a net $\{y_{\beta}\}$ in E^+ with $y_{\beta} \downarrow 0$ and that for every β , there is $a_0 = a_0(\beta)$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq a_0$. It is denoted by $x_{\alpha} \xrightarrow{\rightarrow} x$. Let *E* and *F* be two Riesz spaces, every linear mapping from *E* into *F* is called operator (linear operator). Briefly the net $\{x_{\alpha}: \alpha \in \Lambda\}$ is denoted by $\{x_{\alpha}\}$ where Λ is a nonempty directed set. Recall from [5] that let *E* be a Banach lattice, a bounded operator *T* on *E* is said to be an order-to-norm continuous operator if $x_{\alpha} \xrightarrow{o} 0$, then $T(x_{\alpha}) \xrightarrow{\|.\|}{\rightarrow} 0$ for all net x_{α} in *E*. The class of all order-to-norm continuous operators will be denoted $L_{on}(E)$. *E* has order continuous norm if and only if $x_{\alpha} \downarrow 0$, then $x_{\alpha} \xrightarrow{\|.\|}{\rightarrow} 0$ [6]. Let *E*, *F* be two Banach lattices and two operators *S*, *T* from *E* into *F*. $S \leq T$ means that $S(x) \leq T(x)$ for all $x \in E^+$ [6]. The class of all continuous operators on *E* is denoted by L(E). A norm $\|.\|$ on a Riesz space is said to be a lattice norm whenever $|x| \le |y|$, then $||x|| \le ||y||$ [6]. A Riesz space equipped with a lattice norm is known as a normed Riesz space, and a subset *A* of a Riesz space is said to be order closed whenever $\{x_{\alpha}\} \subseteq A$ and $x_{\alpha} \xrightarrow{o} x$, imply $x \in A$ [6].

Throughout this study, the identity operator is denoted by I. In this study, for all other undefined terms and notation, we will adhere to the conventions in [6].

2. MAIN RESULTS

Definition 2.1. Let *M* be a normed Riesz space, a bounded operator $H: M \to M$. It is said to be a demi-order norm continuous operator (d-onco) if for every net $\{x_{\alpha}\}$ in M^+ whenever $x_{\alpha} \stackrel{o}{\to} 0$ and $x_{\alpha} - H(x_{\alpha}) \stackrel{\|.\|}{\to} 0$, implies $x_{\alpha} \stackrel{\|.\|}{\to} 0$, and the class of all demi-order norm continuous operators is denoted by $\mathfrak{D}L_{on}(M)$.

Example 2.1. Let *M* be a normed Riesz space. βI is a demi-order norm continuous operator on *M* for all $\beta \neq 1$.

Assume that $x_{\alpha} \xrightarrow{o} 0$ and $||x_{\alpha} - \beta I(x_{\alpha})|| \to 0$. Therefore, we obtain

$$||x_{\alpha} - \beta I(x_{\alpha})|| \to 0 \implies |1 - \beta| ||x_{\alpha}|| \to 0 \implies ||x_{\alpha}|| \to 0.$$

Thus, βI is a demi-order norm continuous operator on M.

Generally, the following example shows that the above example is not true in case $\beta = 1$.

Example 2.2. Let *c* be the set of all convergent sequence of \mathbb{R} . Consider the sequence u_n ; its first n terms are one, and others are zero and, u = (1,1,...). It is clear that $0 \le u_n \uparrow u$ in *c*. Therefore, we get $u - u_n \downarrow 0$. Hence, $u - u_n \stackrel{o}{\to} 0$. On the other hand $(u - u_n)$ does not convergence to zero in norm, since $||u - u_n|| = 1$ so, identity operator does not belong to a demi-order norm continuous operator.

The next example gives us that the set of all demi-order norm continuous operator on E is a proper subset of L(E) in general.

Example 2.3. Let $k \in \mathbb{N}$ and $T_k: c \to c$ be an operator defined by $T_k(x) = \sum_{i=1}^k x_i e_i$ for each $x = (x_i) \in c$. Consider the sequence s_n , its first n terms are one, and others are zero and s = (1, 1, ...). It is obvious that $0 \le s_n \uparrow s$ and $(s - s_n) \downarrow 0$. We obtain that $s - s_n \stackrel{o}{\to} 0$. Hence, $||T_k(s - s_n)|| \to 0$ in c. Define $S_k = I + T_k$ for each $k \in \mathbb{N}$.

 $(s-s_n) \stackrel{o}{\to} 0$ and $||(I-S_k)(s-s_n)|| = ||(I-I-T_k)(s-s_n)|| = ||T_k(s-s_n)|| \to 0$. Since $||s-s_n|| = 1$, $(s-s_n)$ convergence is not zero in norm. Therefore, S_k does not belong to $\mathfrak{D}L_{on}(c)$ for each $k \in \mathbb{N}$.

Theorem 2.1. Every order-to-norm continuous operator is a d-onco.

Proof. Let *M* be a normed Riesz space, $H \in L_{on}(M)$, (x_{α}) in M^+ such that $x_{\alpha} \xrightarrow{0} 0$ and $\|(x_{\alpha} - H(x_{\alpha})\| \to 0$. Since $H \in L_{on}(M)$, satisfies $\|H(x_{\alpha})\| \to 0$. We can write

$$\|x_{\alpha}\| = \|(x_{\alpha} - H(x_{\alpha}) + H(x_{\alpha})\| \\ \le \|(x_{\alpha} - H(x_{\alpha})\| + \|H(x_{\alpha})\|$$

and then we know that $||(x_{\alpha} - H(x_{\alpha})|| \to 0$ and $||H(x_{\alpha})|| \to 0$. Therefore, $||x_{\alpha}|| \to 0$. Hence, *H* is a demiorder norm continuous operator on *M*. In the next example, it is shown that the inverse of the theorem is not generally true.

Example 2.4. Let *H* be an operator on M = C[0,1] and $H = \frac{1}{2}I$. Since the norm on M is not order continuous norm (see [6]), then the operator *H* is not in $L_{on}(M)$, but *H* is a demi-order norm continuous operator on *M* from Example 2.1.

Theorem 2.2. Let *N* be a normed Riesz space, $H: N \to N$ be an order-to-norm continuous operator, $S: N \to N$ be a d-onco, then H + S is a d-onco.

Proof. Let a net (x_{α}) in N^+ such that $x_{\alpha} \xrightarrow{o} 0$ and $||x_{\alpha} - (H+S)(x_{\alpha})|| \to 0$. We can write as

$$\begin{aligned} \|x_{\alpha} - S(x_{\alpha})\| &= \|x_{\alpha} - S(x_{\alpha}) - H(x_{\alpha}) + H(x_{\alpha})\| \\ &\leq \|x_{\alpha} - (H+S)(x_{\alpha})\| + \|H(x_{\alpha})\| \end{aligned}$$

It is obvious that $||H(x_{\alpha})|| \to 0$, since $H \in L_{on}(N)$. Moreover, we know that $||x_{\alpha} - (H + S)(x_{\alpha})|| \to 0$. Thus, $||x_{\alpha} - S(x_{\alpha})|| \to 0$. We obtain that $||x_{\alpha}|| \to 0$, since S belongs to $\mathfrak{D}L_{on}(N)$. Hence, H + S is a d-onco.

The result of Theorem 2.2 is true for S + H as well as for S - H.

However, as the next example shows that the sum of two d-onco is not a d-onco in general.

Example 2.5. Let T_1 , T_2 be two operators on M = C[0,1], defined as $T_1(f) = T_2(f) = \frac{1}{2}f$ for each $f \in M$. T_1 and T_2 are two demi-order norm continuous operators, but $T_1+T_2 = I$ does not belong to $\mathfrak{D}L_{on}(M)$.

The following theorem gives that a characterization of a normed Riesz space having an order continuous norm.

Theorem 2.3. Let *M* be a normed Riesz space. Then the following statements are equivalent

(*i*) *M* has order continuous norm,

(*ii*)
$$L_{on}(M) = \mathfrak{D}L_{on}(M)$$
.

Proof. $(i) \Rightarrow (ii)$ It is clear that $L_{on}(M) \subset \mathfrak{D}L_{on}(M)$ from Theorem 2.1. We have to show that $\mathfrak{D}L_{on}(M) \subset L_{on}(M)$.

It is well-known $x_{\alpha} \xrightarrow{o} 0$ implies $x_{\alpha} \xrightarrow{\|.\|} 0$ if *M* has order continuous norm. Then, $H(x_{\alpha}) \xrightarrow{\|.\|} 0$ if $H \in L(M)$. It show that $L_{on}(M) = L(M)$, so it is clear that $\mathfrak{D}L_{on}(M) \subset L_{on}(M)$. The proof is complete.

 $(ii) \Rightarrow (i)$ Let $L_{on}(M) = \mathfrak{D}L_{on}(M)$ and $x_{\alpha} \downarrow 0$. Since $\frac{1}{2}I$ is a d-onco, then $\frac{1}{2}I$ is in $L_{on}(M)$. Hence, I belongs to $L_{on}(M)$. It is obvious that

$$\begin{array}{c} x_{\alpha} \downarrow 0 \Rightarrow x_{\alpha} \stackrel{o}{\rightarrow} 0 \\ \Rightarrow x_{\alpha} \stackrel{\|.\|}{\rightarrow} 0 \end{array}$$

Since $||x_{\alpha}|| \downarrow$ and $x_{\alpha} \xrightarrow{||.||} 0$, we obtain that $||x_{\alpha}|| \downarrow 0$, so *M* has order continuous norm.

Let *M* and *N* be two normed Riesz spaces and $\widehat{M} = M \bigoplus N = \{ (a,b): a \in M, b \in N \}$ if \widehat{M} is equipped with the coordinatewise order that is $(a_1, b_1) \leq (a_2, b_2) \Leftrightarrow a_1 \leq a_2$ and $b_1 \leq b_2$ for each $(a_1, b_1), (a_2, b_2) \in \widehat{M}$ and the norm $||(a, b)||_{\widehat{M}} = ||a||_M + ||b||_N$.

Theorem 2.4. Let *M* and *N* be two normed Riesz spaces. Then the following operators are d-onco.

(*i*)All operators H on M which $(I - H)^{-1}$ exists and is bounded.

(*ii*) $\widehat{(H_{\alpha})}$ is the class of operator on \widehat{M} . $\widehat{(H_{\alpha})}$ is defined by $\begin{bmatrix} 0 & 0 \\ H & \alpha I \end{bmatrix}$ and $\widehat{M} = M \bigoplus N$ ($\alpha \neq 1$) for every operator H from M into N.

Proof. (i) Assume a net (x_{α}) in M^+ such that $x_{\alpha} \xrightarrow{o} 0$ and $||x_{\alpha} - H(x_{\alpha})|| \xrightarrow{\|.\|}{\to} 0$. It is written as

$$\begin{aligned} \|x_{\alpha}\| &= \|(I-H)^{-1} (I-H) x_{\alpha}\| \\ &\leq \|(I-H)^{-1}\| \|(I-H) x_{\alpha}\|. \end{aligned}$$

Since $(I - H)^{-1}$ exists, is bounded, and there are inequalities, we obtain that $||x_{\alpha}|| \to 0$. Hence, *H* belongs to $\mathfrak{D}L_{on}(M)$.

(*ii*) Let $\{\widehat{x}_{\alpha}\}$ be a net in \widehat{M}^{+} such that $\{\widehat{x}_{\alpha} = (x_{\alpha}, y_{\alpha})\}$, $x_{\alpha} \in M$, $y_{\alpha} \in N$ for $\alpha \neq 1$, $\widehat{x}_{\alpha} \xrightarrow{o} 0$ and $\|\widehat{x}_{\alpha} - \widehat{H}\widehat{x}_{\alpha})\|_{\widehat{M}} \to 0$. It will be shown that $\|\widehat{x}_{\alpha}\|_{\widehat{M}} \to 0$. We know that $\|\widehat{x}_{\alpha}\|_{\widehat{M}} = \|x_{\alpha}\|_{M} + \|y_{\alpha}\|_{N}$. Hence, to show that $\|\widehat{x}_{\alpha}\|_{\widehat{M}} \to 0$, we have to show that $\|x_{\alpha}\|_{M} \to 0$ and $\|y_{\alpha}\|_{N} \to 0$.

$$\begin{aligned} \left| \widehat{x_{\alpha}} - \widehat{H}(\widehat{x_{\alpha}}) \right\|_{\widehat{M}} &= \left\| (x_{\alpha}, y_{\alpha}) - \widehat{H}(x_{\alpha}, y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha}) - (0, Hx_{\alpha} + \alpha y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha} - Hx_{\alpha} - \alpha y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha}(1 - \alpha) - Hx_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}) \right\|_{M} + \left\| y_{\alpha}(1 - \alpha) - Hx_{\alpha} \right\|_{N} \end{aligned}$$

From the assumption that $\|\widehat{x_{\alpha}} - \widehat{H}\widehat{x_{\alpha}}\|_{\widehat{M}} \to 0$. Therefore, it is obtained $\|(x_{\alpha})\|_{\widehat{M}} \to 0$ and $\|y_{\alpha}(1-\alpha) - Hx_{\alpha}\|_{N} \to 0$. $\|(x_{\alpha})\|_{\widehat{M}} \to 0$ implies $\|Hx_{\alpha}\|_{N} \to 0$, since *H* is continuous. Moreover, we can write as

$$|(1-\alpha)|||y_{\alpha}||_{N} = ||y_{\alpha}(1-\alpha) - Hx_{\alpha} + Hx_{\alpha}||_{N}$$

$$\leq ||y_{\alpha}(1-\alpha) - Hx_{\alpha}||_{N} + ||Hx_{\alpha}||_{N}.$$

We get $|(1 - \alpha)| ||y_{\alpha}||_{N} \to 0$ so, $\|\widehat{x_{\alpha}}\|_{\widehat{M}} \to 0$. Thus, $(\widehat{H_{\alpha}})$ belongs to $\mathfrak{D}L_{on}(\widehat{M})$.

The following example gives us that Theorem 2.4 (ii) may not be valid in case $\alpha = 1$

Example 2.6. Let an operator $H: \ell_1 \to \ell_\infty$, $\widehat{M} = \ell_1 \oplus \ell_\infty$ equipped with coordinatewise order and operator \widehat{H} . is defined by $\begin{bmatrix} 0 & 0 \\ H & I \end{bmatrix} \widehat{H}$ does not belong to $\mathfrak{D}L_{on}(\widehat{M})$. An order bounded sequence $\{\widehat{x_n}\}$ in \widehat{M}^+ such that $\widehat{x_n} = (0, e_n)$ and e_n the nth. term equals one and the others are zero. Since (e_n) is order convergent in ℓ_∞ , then $(\widehat{x_n})$ is order convergent and $\|\widehat{x_n} - \widehat{H}\widehat{x_n}\| = 0 \to 0$. Since $\|e_n\|_\infty = 1$, then $\|\widehat{x_n}\|_{\widehat{M}} = 1$, so \widehat{H} does not belong to $\mathfrak{D}L_{on}(\widehat{M})$.

The next example shows that the set of all demi-order norm continuous operators on a normed Riesz space is not closed according to multiplication with scalar.

Note that, if *H* is a d-onco and $\alpha \in \mathbb{R}$, then αH may not be d-onco in general. For example, M = C[0,1], $H = \frac{1}{2}I : M \to M$ is a d-onco, but $2H = I : M \to M$ is not a d-onco.

Theorem 2.5. Let *M* be normed Riesz space. Then the following assertions are equivalent

- (*i*) All operator $H: M \to M$ is a d-onco.
- (*ii*) $I: M \to M$ is a d-onco,
- (iii) M has order continuous norm.

Proof. $(i) \Rightarrow (ii)$ It is obvious.

(*ii*) \Rightarrow (*iii*) Assume that a net (x_{α}) in M^+ such that $I \in \mathfrak{D}L_{on}(M)$ and $x_{\alpha} \downarrow 0$. Since $||x_{\alpha} - I(x_{\alpha})|| = 0 \rightarrow 0$, and I is in $\mathfrak{D}L_{on}(M)$, we get $||x_{\alpha}|| \rightarrow 0$. We know x_{α} is decreasing. Hence, it is clear that $||x_{\alpha}||$ is decreasing. Since $||x_{\alpha}|| \downarrow$ and $||x_{\alpha}|| \rightarrow 0$, then we get $||x_{\alpha}|| \downarrow 0$, so M has order continuous norm.

 $(iii) \Rightarrow (i)$ It is obvious from Teorem 2.3.

The next example shows that if *H* is a d-onco and, $0 \le S \le H$, then *S* is not a d-onco in general.

Example 2.7. Let H, S be two operators on M = C[0,1], S = I and H = 2I. It holds $0 \le S \le H$. *H* belongs to $\mathfrak{D}L_{on}(M)$, but *S* does not belong to $\mathfrak{D}L_{on}(M)$.

The following theorem gives us that the domination property is satisfied under the some special conditions.

Theorem 2.6. Let *S* and *H* be two positive operators on the normed Riesz space *M* and $0 \le S \le H \le I$. If *H* is the d-onco, then *S* is also the d-onco.

Proof. Assume that a net (x_{α}) in M^+ such that $H \in \mathfrak{D}L_{on}(M)$, $x_{\alpha} \xrightarrow{O} 0$ and $||x_{\alpha} - S(x_{\alpha})|| \to 0$.

Since $0 \le (I - H)(x_{\alpha}) \le (I - S)(x_{\alpha})$, we obtain that

$$||(I - H)(x_{\alpha})|| \le ||(I - S)(x_{\alpha})||.$$

Thus, $||x_{\alpha} - H(x_{\alpha})|| \to 0$. Since *H* is in $\mathfrak{D}L_{on}(M)$, then $||x_{\alpha}|| \to 0$. Therefore, we get S is also a d-onco.

Theorem 2.7. Let *M* be a normed Riesz space, *S* and *H* two operators on *M* and $I \le S \le H$. If *S* is in $\mathcal{D}L_{on}(M)$, then *H* is in $\mathcal{D}L_{on}(M)$.

Proof. Assume that a net (x_{α}) in M^+ such that $S \in \mathfrak{D}L_{on}(M)$, $x_{\alpha} \xrightarrow{0} 0$ and $||(H-I)(x_{\alpha})|| \to 0$. We know that $0 \le (S-I)(x_{\alpha}) \le (H-I)(x_{\alpha})$. Hence,

$$\|(H-I)(x_{\alpha})\| \to 0 \Rightarrow \|(S-I)(x_{\alpha})\| \to 0.$$

Since *S* is in $\mathfrak{D}L_{on}(M)$, we obtain that $||x_{\alpha}|| \to 0$, so *H* belongs to $\mathfrak{D}L_{on}(M)$.

Theorem 2.8. Let M be a normed Riesz space, $H, S, N: M \to M$ be three operators and $N \leq S \leq H \leq I + N$. If N is in $L_{on}(M)$ and H is in $\mathfrak{D}L_{on}(M)$, then S is in $\mathfrak{D}L_{on}(M)$.

Proof. We obtain from the hypothesis $0 \le S - N \le H - N \le I$. H - N is a d-onco from Theorem 2.2, and S - N is a d-onco from Theorem 2.6. Since S = S - N + N, S - N is a d-onco, N is in $L_{on}(M)$, and from Theorem 2.2, we obtain that S is a d-onco.

Note that if a continuous operator belongs to $\mathfrak{D}L_{on}(M)$, then its adjoint does not generally belong to $\mathfrak{D}L_{on}(M)$. For example, $I: l_1 \to l_1$ a d-onco, but its adjoint $I^* = I := l_{\infty} \to l_{\infty}$ is not a d-onco.

Similarly, if the adjoint of a continuous operator is d-onco, then it may not be a d-onco in general; for example, choice $M = l_{\infty}$. Since M' is AL-space, then M' has order continuous norm [6]. Hence, $I': M' \to M'$ is a d-onco, but $I: l_{\infty} \to l_{\infty}$ is not a d-onco.

The following example gives us that the set of all demi-order norm continuous operators on M does not form a lattice in general.

Example 2.8. Let $M = L^1([0,1]) \times c_0$, $H: M \to M$ be an operator, and defined as $H(f,x) = (0, (\int_0^1 f(x)sinxdx, \int_0^1 f(x)sin2xdx, \int_0^1 f(x)sinx3dx, \cdots))$, for each $f \in L^1([0,1])$. Since the norm on the *M* is order continuous, then *H* is in $L_{on}(M)$. Therefore, *H* is a d-onco, but it does not have modulus. Since this operator is not order bounded [6], so $\mathfrak{D}L_{on}(M)$ is not a lattice.

Let L(M) be a Riesz space. $\mathfrak{D}L_{on}(M)$ is not order closed in L(M) in general.

Example 2.9. Let $T: l_{\infty} \to l_{\infty}$ be an operator, $x = (x_i)$ and defined as $T_n(x) = \sum_{i=1}^n x_i e_i$. We get $0 \le T_n \uparrow I$. Therefore, it is clear that $T_n \stackrel{o}{\to} I$. $\mathfrak{D}L_{on}(M)$ is not order closed, since I is not a d-onco.

ACKNOWLEDGMENT

We would like to thank the Scientific and Technological Research Council of Türkiye (TÜBİTAK) for the TÜBİTAK BİDEB 2211-A General Domestic Doctorate Scholarship Program that supported the first author.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] Petryshyn, W.V., "Construction of fixed points of demicompact mappings in Hilbert space", Journal of Mathematical Analysis and Applications, 14(2): 276-284, (1966).
- [2] Krichen, B., O'Regan, D., "Weakly demicompact linear operators and axiomatic measures of weak noncompactness", Mathematica Slovaca, 69(6): 1403-1412, (2019).
- [3] Benkhaled, H., Hajji, M., Jeribi, A., "On the class of Demi Dunford- Pettis Operators", Rendiconti del Circolo Matematico di Palermo, Ser.2, 1-11, (2022).
- [4] Benkhaled, H., Elleuch, A., Jeribi, A., "The class of order weakly demicompact operators", Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A Matemáticas., 114(2): 1-8, (2020).
- [5] Jalili, A., Haghnejad, K., Moghimi, M., "Order-to-topology continuous operators", Positivity, 25(2): 1-10, (2021).
- [6] Aliprantis, C.D., Burkinshaw, O., Positive Operators, 119, Berlin, (2006).