23(3):295-297 (2010)

Characterization and Extendability of P_{k} Sets For $k \equiv 3(4)$

Hüseyin Altındiş ${ }^{1 \text { ^ }}$
${ }^{I}$ Department of Mathematics, Erciyes University, 38039, Kayseri, Turkey

Received:06/03/2009 Accepted: 05/10/2009

Abstract

In this paper the characterization of certain families of the P_{k} sets for $k \equiv 3(4)$ are given, and it is shown that some of them can not be extended.

Key Words: Diophantine Equation, Congruence, Legendre Symbol

1. INTRODUCTION

From its firs Let k be a non zero integer and X be a set of distinct positive integers. X is said to be a P_{k} set if any two distinct positive integers x_{i} and x_{j} of X, the integer $x_{i} \cdot x_{j}+k$ is a perfect square. A P_{k} set X can be extended if there exists a positive integer $y \notin X$ such that $X \cup\{y\}$ is still a P_{k} set.

For simplicity, throughout this paper, $x \equiv y(n)$ will denote $x \equiv y(\bmod n)$.

The problem of extending P_{k} sets is an old one dating from the time of Diophantus[1]. The most famous result in this area is due to Baker and Davenport[2], who proved that the P_{1} set $\{1,3,8,120\}$ can not be extended. Recently the problem of extendibility of the P_{k} sets have been examined by Kanagasabapathy and Ponnudurai[3], Heichelheim[4], Thamotherampillai[5], Mohanty and Ramasamy[6],[7], Brown[8],

Altindis[9], Dujella [10], Dujella and Luca[11] and Dujella and Ramasamy [12].
The purpose of this paper is to characterize certain families of the P_{k} sets for $k \equiv 3(4)$ and to show that some of them can not be extended.
2. CHARACTERIZATION OF P_{k} SETS FOR $k \equiv 3(4)$

THEOREM 1. If X is a P_{k} set for $k \equiv 3(4)$, then all of the elements of X either are odd and they are congruent to one another or at most one of them is even and it is congruent to 2 modulo 4 .

PROOF. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a P_{k} set with $k \equiv 3(4)$. Then by the definition of P_{k} set we have
$x_{i} \cdot x_{j}+k=c^{2}$
for some integers x_{i}, x_{j} and c with $i \neq j$. From the fact that perfect squares are congruent to 0 or 1 modulo 4, we have
$x_{i} \cdot x_{j}+k \equiv 0$ or $1(4)$
so that

$$
x_{i} \cdot x_{j} \equiv 1 \text { or } 2(4)
$$

this shows that the product of any two elements x_{i}, x_{j} of a P_{k} set is congruent to 1 or 2 modulo 4. Indeed;
a). Let $x_{1} \equiv x_{2} \equiv x_{3} \equiv 1(4)$. If $x_{4} \equiv 1$ or $2(4)$, then $x_{i} \cdot x_{j} \equiv 1$ or $2(4), 1 \leq i \neq j \leq 4$
b). Let $x_{1} \equiv x_{2} \equiv x_{3} \equiv 3(4)$. If $x_{4} \equiv 3$ or $2(4)$, then $x_{i} \cdot x_{j} \equiv 1$ or $2(4), 1 \leq i \neq j \leq 4$

For the remaining cases we have $x_{i} \cdot x_{j} \equiv 0$ or $3(4)$ which is impossible. This completes the proof.
3. NON EXTENDABILITY OF CERTAIN P_{k} SETS FOR $k \equiv 3(4)$

Let $X=\{a, b, c\}$ be a P_{k} set. By the definition of P_{k} set we have
$a b+k=x^{2}$
$a c+k=y^{2}$
$b c+k=z^{2}$
where x, y, z are integers. Solving equations (1), (2) in terms of b and c, and plugging them into equation (3), we obtain
$\left(x^{2}-k\right)\left(y^{2}-k\right)+a^{2} k=(a z)^{2}$
Since the right hand side of this equation is a perfect square, the left hand side must be a perfect square, too. The left hand side can be written as
$(x y-k)^{2}-k\left[(x-y)^{2}-a^{2}\right]$
If we set $y-x=a$, then the equation becomes a perfect square.
The problem of choosing a is reduced to solving the congruence $x^{2} \equiv k(a)$. If $(k, a)=1$ and $\left(\frac{k}{a}\right)=1$ then this congruence is solvable, where $\left(\frac{k}{a}\right)$ denotes the Legendre Symbol.
for $x=a n+s, y=x+a$ we obtain

$$
\begin{aligned}
b= & n(a n+2 s)+\frac{s^{2}-k}{a} \\
& c=(n+1)[a(n+1)+2 s]+\frac{s^{2}-k}{a}
\end{aligned}
$$

where $n \in N, s^{2} \equiv k(a)$. Hence adding k to the product if any two elements of
$X=\{a, b, c\}=\left\{a, n(a n+2 s)+\frac{s^{2}-k}{a},(n+1)[a(n+1)+2 s]+\frac{s^{2}-k}{a}\right\}$
is always a perfect square.
REMARK 1. If $k=-1, a=1$ and $s=0$ then we obtain the P_{-1} sets $\left\{1, n^{2}+1,(n+1)^{2}+1\right\}$ [6]. If $k=-1, a=2$ and $s=1,(k=-1, a=17, s=4$ and $n=1$) then we get the P_{-1} sets $\left\{2,2 n^{2}+2 n+1,2 n^{2}+6 n+5\right\}, \quad$ (respectively $\{17,26,85\})[8]$. If $k=3, a=1 \quad$ and $s=0,(k=3, a=2, s=1)$ then we get the P_{3} sets $\left\{1, n^{2}-3, n^{2}+2 n-2\right\}$,(respectively $\left.\left\{2,2 n^{2}+2 n-1,2 n^{2}+6 n+3\right\}\right)[9]$.

THEOREM 2. If $n \equiv 1(4)$ then the P_{3} sets $\left\{2,2 n^{2}+2 n-1,2 n^{2}+6 n+3\right\} \quad$ can not be extended.
PROOF. $\left\{2,2 n^{2}+2 n-1,2 n^{2}+6 n+3, d\right\}$ is a P_{3} set. Then there exist x, y and z integers such that

$$
\begin{array}{r}
2 d+3=x^{2} \\
\left(2 n^{2}+2 n-1\right) d+3=y^{2} \\
\left(2 n^{2}+6 n+3\right) d+3=z^{2} \tag{6}
\end{array}
$$

Now the equations, (4), (5), and (6) lead to the equations

$$
\begin{align*}
& 2 y^{2}-\left(2 n^{2}+2 n-1\right) x^{2}=9-6 n^{2}-6 n \tag{7}\\
& 2 z^{2}-\left(2 n^{2}+6 n+3\right) x^{2}=-6 n^{2}-18 n-3 \tag{8}\\
& \left(2 n^{2}+2 n-1\right) z^{2}-\left(2 n^{2}+6 n+3\right) y^{2}=-12 n-12 \tag{9}
\end{align*}
$$

Write $n \equiv 1(4)$ and examining the equations (7) and (8) mod4 shows that
$2 y^{2}+x^{2} \equiv 1(4)$
$2 z^{2}-3 x^{2} \equiv-3(4)$
and consequently x is odd, y is even and z is even.
Putting $y=2 u, z=2 v$ into (9) yields
$\left(2 n^{2}+2 n-1\right) v^{2}-\left(2 n^{2}+6 n 43\right) u^{2}=-3(1+n)$
From the fact that $n \equiv 1(4)$ we have
$3 u^{2}+v^{2} \equiv 2(4)$
which is impossible. Indeed, if v is odd, this leads to the congruence
$3 u^{2} \equiv 1(4)$
which is impossible. if v is even then this leads to the congruence
$u^{2} \equiv 2(4)$
which is impossible. Thus if $n \equiv 1(4)$, then the P_{3} set $\left\{2,2 n^{2}+2 n-1,2 n^{2}+6 n+3\right\}$ can not be extended.

REFERENCES

[1] Dickson, L. E., "History of the theory of numbers", Chelsea New York, 2: Sayfa no (1966).
[2] Baker A. and Davenport H., "The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2} "$, Quart. J. Math. Oxford Ser., 2(3):129-137 (1969)
[3] Kanagasababathy P. and Ponnudura1, T. "The Simultaneous Diophantine equations $y^{2}-3 x^{2}=-2$ and $z^{2}-8 x^{2}=-7 "$, Quart. J. Math.Oxford Ser, 26(3): 275-278 (1975).
[4] Heichelheim, P, "The study of positive integers (a, b) such that $a b+1$ is a square. Fibonacci Quatr., 17: 269-274 (1979).
[5] Thamotherampillai, N., "The set of numbers $\{1,2,7\}$ ", Bulletin Calcutta Math. Soc. 72:195197 (1980).
[6] Mohanty S.P. and Ramasamy, A.M.S. "The simultaneous Diophantine equations $5 y^{2}-20=x^{2}$ and $2 y^{2}+1=z^{2}$ " J.Number Theory, 18: 356-359 (1984).
[7] Mohanty S.P. and Ramasamy A.M.S., The Characteristic number of two simultaneous Pell's equations and it's application. Simon Stevin", A Quarterly J.P. and Applied Math., 59: 203-214 (1985)
[8] Brown, E. "Sets in which $x y+k$ is always a square. Mathematics of Comp.", 613-620 (1985).
[9] Altindis, H., "On $P_{2 j^{2}}$ "Sets, Bulletin of the Calcutta", Mathematical Society, 86(4): 305-306. (1994).
[10] Dujella, A., "On the size of Diophantine m tuples", Math. Proc. Cambridge Philos Soc., 132:23-33 (2002).
[11] Dujella A.and Luca, F., "Diophantine m tuples for primes". Intern. Math. Research Notices 47:2913-2940 (2005).
[12] Dujella A. and. Ramasamy, A. M. S, "Fibonacci numbers and sets with the property $D(4)$ ", Bull.
Belg. Math. Soc., Simon Stevin, 12:401-412 (2005).

