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Abstract 

A widely used statistical test of hypothesis for location parameter in ℝ𝑝 is the Hotelling’s 

𝑇2 test. This test is efficient if data is normally distributed, ratio of sample size to dimension 
diverges and there are no outliers in the data. However, it is practically impossible to 

implement when dimension is greater than sample size. As a remedial measure, 

diagonalized and regularized Hotelling’s 𝑇2 tests were proposed. In this paper, powers of 

regularized and diagonalized Hotelling’s 𝑇2 tests are compared with the usual Hotelling’s 

𝑇2 test in low dimension and the usual Hotelling’s 𝑇2 perform much better. It is observed 

that diagonalized Hotelling’s 𝑇2 test may have low power for mixture distributions. Due to 

a comparative performance of regularized and diagonalized Hotelling’s 𝑇2 tests, robust 

versions of diagonalized and regularized Hotelling’s 𝑇2 tests are proposed in high 
dimension in the presence of outliers. The powers of these tests were compared using 
simulated as well as real datasets. 
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1. INTRODUCTION 
 

Let 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑝)
𝑇

and 𝒀 = (𝑌1, 𝑌2, . . . , 𝑌𝑝)
𝑇
 be two p-dimensional random vectors from 

distributions 𝐹 and 𝐺 with mean vectors 𝝁𝑋 and 𝝁𝑌 and sample covariance matrices 𝑺𝑋 and  𝑺𝑌 respectively. 

Suppose 𝐹 and 𝐺 have multivariate normal distributions. Under the assumption that 𝑺𝑋 = 𝑺𝑌, we are 

interested in testing hypotheses 
 

𝐻0:  𝝁𝑋 = 𝝁𝑌  against 𝐻1:  𝝁𝑋  ≠  𝝁𝑌 . 
 

The traditional Hotelling’s 𝑇2 test, with test statistic defined as  

𝑇2 = (�̅� − �̅�)𝑇 [𝑺 (
1

𝑛1
+
1

𝑛2
)]
−1

(�̅� − �̅�), 

where 𝑛1 and 𝑛2 are the sample sizes of observations from 𝐹 and 𝐺 respectively, the pooled sample 

covariance matrix 𝑺 and the sample mean vectors �̅� and �̅� are defined, respectively by 

 

𝑺 =
(𝑛1 − 1)𝑺𝑥  +  (𝑛2 − 1) 𝑺𝑦

(𝑛1 + 𝑛2 − 2)
, �̅� =

1

𝑛1
 ∑𝑿𝑖

𝑛1

𝑖=1

, �̅� =
1

𝑛2
 ∑𝒀𝑖

𝑛2

𝑖=1

, 
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can be used. It has been established that Hotelling’s 𝑇2 test is uniformly the most powerful test in a class 

of affine invariant test [1].  Capilla [2] considered the use of Hotelling’s 𝑇2 test statistic in constructing 

a statistical control chart for wastewater treatment process. When the dimension is higher than the sample 

size, the Hotelling’s 𝑇2 test cannot be practically implemented [3]. 

 

Hu and Bai [1] considered the defect of Hotelling’s 𝑇2 test when the dimension (𝑝) is greater than the 

sample size (𝑛) or degree of freedom. Dempster [4,5] developed non-exact test (NET) for testing whether 

mean vectors of two populations are equal when 𝑝 > 𝑛. Bai and Saranadasa [3] argued that Dempster’s 

non-exact test serve as a replacement for Hotelling 𝑇2 test. Bai and Saranadasa [3] suggested asymptotic 

normal test (ANT) to test whether �̅� and �̅� are the same and discussed asymptotic power of Hotelling’s 𝑇2 

test, NET and ANT using three different norms. In comparing the power of the Hotelling 𝑇2 test and ANT, 

the authors found out that ANT has higher power than that of Hotelling 𝑇2 test. Chen and Qin [6] also 

argued that ANT  is not robust  against outlier and thus suggested a robust version of ANT based on  the 

square of norms difference of the means. However, Srivastava and Du [7] observed that both NET and 
ANT are not invariant under scale transformation of the data. Srivastava and Du [7] modified ANT statistic 

by replacing covariance matrix by either the diagonal of the covariance matrix or correlation matrix. 

 

Chattinnawat and Bilen [8] analysed the effect of multivariate normal inspection errors on the performance 

of the Hotelling’s  𝑇2 test for individual observation and derive explicitly how the multivariate inspection 

errors are related to the Hotelling 𝑇2 test statistic. Chen et al. [9] suggested a regularized Hotelling’s  𝑇2 

test for cases where 𝑝 < 𝑛 and 𝑝 > 𝑛. Regularization is employed to stabilize the inverse of the sample 

covariance matrix 𝑺𝑛 in  𝑇2 = 𝑛(�̅�𝑛 − 𝝁𝑜)
𝑇𝑺𝑛
−1(�̅�𝑛 − 𝝁𝑜) in one sample case. The regularized Hotelling’s  

𝑇2 test statistic is 𝑛(�̅�𝑛 − 𝝁𝑜)
𝑇(𝑺𝑛 + 𝜆𝑰)

−1(�̅�𝑛 − 𝝁𝑜), where 𝜆 is a regularization parameter. It is 

expected that regularized Hotelling’s 𝑇2 test enjoy superior power compared to Hotelling’s 𝑇2 when 

dimension is close to sample size. However, this requires further investigation. Chen et al. [9] also derived 

an asymptotic null distribution of the regularized Hotelling’s 𝑇2 test statistic as both sample size and 
dimension increase to infinity at a comparable rate. The authors derived mathematical expression for power 

of regularized Hotelling’s 𝑇2 test and provide sufficient conditions for consistency of the regularized 

Hotelling’s 𝑇2 test. 

 
A related study to test of location is a test of dispersion matrix. Chen et al. [10] considered tests for 

covariance matrix of multivariate distribution when dimension is much larger than the sample size. The 

authors considered critically two structures of covariance: 𝐻𝑜: Σ = 𝜎
2𝐼𝑝 versus 𝐻1: Σ ≠ 𝜎

2𝐼𝑝 and 𝐻𝑜: Σ =

𝐼𝑝 versus 𝐻1: Σ ≠ 𝐼𝑝 where 𝐼𝑝 is the p-dimensional identity matrix and 𝜎2 is an unknown but finite positive 

constant. For inference on high-dimensional covariance matrices, there has been an array of works on the 

convergence of the sample covariance matrices based on the spectral analysis of large-dimensional random 

matrices. Chen et al. [10] also proposed a new tests for the hypotheses without the normality assumptions 
and without specifying explicit relationship between dimension and sample size as long as both dimension 

and sample size tend to infinity. In another development, Lu et al. [11] presented a modified version of 

Hotelling’s 𝑇2 test using a multiple forward search algorithm.  
 

In this paper, robust versions of diagonalized and regularized Hotelling’s 𝑇2 test are proposed for testing 

equality of location vectors of two samples with very high dimension and small sample sizes. The 

performance of the robust versions of diagonalized and regularized Hotelling’s 𝑇2 test will be compared 

with the usual diagonalized and regularized Hotelling’s 𝑇2 test in terms of their powers using simulated as 

well as real data examples.  

 

2. METHOD 

 

Considering a two-sample location problem. Let 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑝)
𝑇

and 𝒀 = (𝑌1, 𝑌2, . . . , 𝑌𝑝)
𝑇

 be any 

random vectors from two independent populations, having multivariate normal distributions 𝐹 and 𝐺 

respectively. Suppose 𝝁𝑋  and 𝝁𝑌 denote the mean vectors and 𝚺𝑋  and 𝚺𝑌 denote the covariance matrices 

of the distributions 𝐹 and 𝐺 respectively. Assuming that 𝚺𝑋 = 𝚺𝑌, the Hotelling’s 𝑇2 test can be employed 
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to investigate equality of the mean vectors 𝝁𝑋 and 𝝁𝑌 under the hypotheses: 𝐻0:  𝝁𝑋 = 𝝁𝑌 against 𝐻1:  𝝁𝑋 ≠
𝝁𝑌. The distribution of Hotelling’s 𝑇2 test statistic is 𝐹 distribution with 𝑝 and 𝑛1 + 𝑛2–  𝑝 − 1 degrees of 

freedom while the critical value is given as 
 

𝑛1 + 𝑛2–  𝑝 − 1

𝑝(𝑛1 + 𝑛2–2)
𝐹𝑝, 𝑛1+𝑛2– 𝑝−1 (𝛼). 

 
The decision to reject null hypothesis is based on the comparison of the value of test statistic and critical 

value. That is, reject the null hypothesis at 𝛼 level of significance if the value of test statistic is greater than 

critical value or probability that the value of test statistic greater than critical value is less than 𝛼. 
 

 Mathematically, 𝐻0 is rejected if  

 

𝑇2 >
𝑛1 + 𝑛2 − 𝑝 − 1

𝑝(𝑛1 + 𝑛2 − 2)
𝐹𝑝,𝑛1+𝑛2−𝑝−1 (𝛼). 

 

Jureckova and Kalina [12] argued that the Hotelling’s 𝑇2 test is invariant with respect to affine 

transformation and is optimal unbiased against two-sample normal alternatives with 𝝁𝑋 ≠ 𝝁𝑌 whenever 

𝚺𝑋 = 𝚺𝑌. The asymptotical null distribution does not depend on normality whenever 𝑛1, 𝑛2 → ∞ and 
𝑛1

𝑛2
→

1. 

  

2.1. Diagonalized Hotelling’s 𝑻𝟐 test 

Let 𝒙1, 𝒙2, …, 𝒙𝑛1 be a random sample in ℝ𝑝 having distribution 𝐹 with mean vector 𝝁𝑋 and covariance 

matrix 𝚺𝑋. Also, let 𝒚1, 𝒚2, …, 𝒚𝑛2 be a random sample in ℝ𝑝 having distribution 𝐺 with mean vector 𝝁𝑌  

and covariance matrix 𝚺𝑌.  Hotelling’s 𝑇2 test can not be implemented when the dimension is greater than 

or equal to the sample size (𝑝 ≥ 𝑛1 + 𝑛2). For 𝚺𝑋 = 𝚺𝑌 = 𝚺, Srivastava and Du [7] proposed a diagonalized 

Hotelling’s 𝑇2 test. This involves replacing the pooled covariance matrix in the usual Hotelling’s 𝑇2 

statistic with a diagonal matrix of the pooled covariance matrix. Mathematically, defining the diagonal 

matrix of sample covariance matrix as 

𝑫𝑠  =  𝑑𝑖𝑎𝑔(𝑠11,… , 𝑠𝑝𝑝 ), 

where 𝑠11,… , 𝑠𝑝𝑝 are the diagonal elements of S, the pooled covariance matrix. The diagonalized 

Hotelling’s 𝑇2 test statistic is given by: 

𝑇𝐷
2 =

𝑛1𝑛2

𝑛1+𝑛2
(�̅�1 − �̅�2)

𝑇𝑫𝑠
−1(�̅�1 − �̅�2). 

 
[7] has shown that: 

𝑛1𝑛2
𝑛1 + 𝑛2

(�̅�1 − �̅�2)
𝑇𝑫𝑠

−1(�̅�1 − �̅�2)  − 
𝑛𝑝
𝑛 − 2

[2 (𝑡𝑟(𝑹2) −
𝑃2

𝑛1 + 𝑛2
) 𝑐𝑝,𝑛1+𝑛2]

1
2

→ 𝑁(0,1) 

in distribution, where 𝑐𝑝,𝑛1+𝑛2 = 1 +
𝑡𝑟𝑅2

𝑝
3
2⁄
 is the adjustment coefficient, which converges to 1 in probability 

as 𝑛1 + 𝑛2 𝑎𝑛𝑑 𝑝 tend to infinity, R is sample correlation matrix defined as 𝑹 =  𝑫𝑆
−
1

2𝑺𝑫𝑆
−
1

2 = (𝑟𝑖𝑖), 𝑛 =

𝑛1 + 𝑛2, 𝑫𝑆 is the diagonal of pooled covariance matrix 𝑺 and 𝑡𝑟(𝑹2) is the trace of 𝑹2. Srivastava and 

Du [7] also gave an expression for the asymptotic power function of the diagonalized Hotelling’s 𝑇2 test 

as: 

Φ(−𝑧1−𝛼 +
𝑛1𝑛2
𝑛2

 
(𝝁2 − 𝝁1)

𝑇𝑫𝑆
−1(𝝁2 − 𝝁1)

√2𝑡𝑟(𝑹2)
), 
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where Φ is the standard normal distribution function. When 𝚺𝑋 = 𝚺𝑌, the computation of 𝑇𝐷
2 is 

straightforward using the fact that  𝑫𝑆 =
1

𝑛1
𝑫𝑆1 +

1

𝑛2
𝑫𝑆2, where 𝑫𝑆1 and 𝑫𝑆2 are diagonal matrices of 

sample covariance matrix from distributions 𝐹 and 𝐺 respectively. 

 

2.2. Regularized Hotelling’s 𝑻𝟐 test 

 

Let 𝒙1, 𝒙2, …, 𝒙𝑛1 be a random sample in ℝ𝑝 having distribution 𝐹 with mean vector 𝝁𝑋 and covariance 

matrix 𝚺. Also, let 𝒚1, 𝒚2, …, 𝒚𝑛 be a random sample in ℝ𝑝 having distribution 𝐺 with mean vector 𝝁𝑌  

and covariance matrix 𝚺. Chen et al. [9]  proposed a regularized Hotelling’s  𝑇2 test in one sample problem. 

The regularized Hotelling’s  𝑇2 test statistic is 𝑛(�̅�𝑛 − 𝝁𝑜)
𝑇(𝑺𝑛 + 𝜆𝐼)

−1(�̅�𝑛 − 𝝁𝑜), where 𝜆 is a 

regularization parameter. In regularized Hotelling’s 𝑇2 statistic, product of regularization parameter and 

identity matrix is added to covariance matrix in the usual Hotelling’s 𝑇2 statistic to stabilize the inverse of 

the sample covariance matrix. The idea was first applied in ridge regression and regularized discriminant 

analysis to regularize 𝑺𝑛 or stabilize the inverse of 𝑺𝑛. Hu and Bai [1]  derived the asymptotic distribution 

for the regularized Hotelling’s 𝑇2 statistic. That is, suppose 𝑿 is independent and identically distributed as 

𝑁(𝝁, 𝜮), then 

√𝑝(𝑛𝑇𝑅
2 −

1− 𝜆𝑚(𝜆)

1 −
𝑝(1 − 𝜆𝑚(𝜆))

𝑛

)

1 − 𝜆𝑚(𝜆)

(1 −
𝑝
𝑛
+
𝑝𝜆𝑚(𝜆)
𝑛

)
3 − 𝜆

𝑚(𝜆) − 𝜆𝑚1(𝜆)

(1 −
𝑝
𝑛
+
𝑝𝜆𝑚(𝜆)
𝑛

)
4

𝐷
→𝑁(0,1), 

where 𝑚(𝜆) =
1

𝑝
𝑡𝑟(𝑺 +  𝜆𝑰)−1 and 𝑚1(𝜆) =

1

𝑝
𝑡𝑟(𝑺 +  𝜆𝑰)−2. 

 

For two sample problem, the regularized Hotelling’s 𝑇2 test statistic is given by 

𝑇𝑅
2 =

𝑛1𝑛2
𝑛1 + 𝑛2

(�̅�1 − �̅�2)
𝑇(𝑺𝑛 + 𝜆𝑰)

−1(�̅�1 − �̅�2), 

where  𝑛 = 𝑛1 + 𝑛2, 𝜆 ∈ 𝑅+ is the regularization parameter.  

 

2.3. Proposed robust versions of regularized and diagonalized Hotelling’s 𝑻𝟐 test 

An α-trimmed mean is an average of the 𝑛 – [𝑛𝜔] deepest observations from the sample, where [𝑛𝜔] is 

the integer part of 𝑛𝜔. Let 𝒙(1), … , 𝒙(𝑛) be the center-observed ordered sample, based on Λ, where 𝒙(1) is 

the deepest (or most central) observation and 𝒙(𝑛) is the most outlying observation and Λ is any depth 

function [13]. Due to presence of extreme values and outliers in the data, a robust diagonalized and robust 

regularized Hotelling 𝑇2 test is proposed. 

 

To compute the trimmed mean, observations are ranked based on their depth values. Data depth is a measure 
of how central an observation is with respect to a data cloud or probability distribution [14]. Depth function 

provides ordering of observations in 𝑅𝑝 with respect to some probability measure 𝐹 defined on 𝑅𝑝. The 

depth notion creates possible basis of non-parametric multivariate analysis. Some depth functions 

commonly used in statistical inference include half-space depth, projection depth, spatial depth, among 
others. For details on data depth for multivariate data, we refer readers to Zuo and Serfling [15], Makinde 

and Adewumi [16]. 

 

The spatial depth of an observation 𝒙 in 𝑅𝑝 with 𝐹 is defined as: 

𝐷(𝒙,𝐹) = 1 − ‖𝐸𝐹 [
(𝒙 − 𝑿)

∥ (𝒙 − 𝑿) ∥
]‖ .    

Using spatial depth, all observations are ranked and 𝑛1 − [𝑛1𝜔] most central observations are obtained and 

their mean vector and covariance matrix are obtained for the population 1, where [𝑛1𝜔] is the integer part 
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of 𝑛1𝜔. Similarly, 𝑛2 − [𝑛2𝜔] most central observations are obtained and their mean vector and covariance 

matrix are obtained for the population 2, where [𝑛2𝜔] is the integer part of 𝑛2𝜔. 

 

Mathematically, the 𝜔-trimmed mean vectors for populations 1 and 2 are defined as 

𝒎1
𝜔 =  

∑ 𝒙(𝑖)
𝑛1−[𝑛1𝜔]
𝑖=1

𝑛1 − [𝑛1𝜔]
  𝑎𝑛𝑑  𝒎2

𝜔 = 
∑ 𝒙(𝑖)
𝑛2−[𝑛2𝜔]
𝑖=1

𝑛2 − [𝑛2𝜔]
, 

respectively. The 𝜔-trimmed sample covariance matrices 𝑺1
𝜔 and 𝑺2

𝜔 are defined as 

𝑺1
𝜔 = 

1

𝑛1 − [𝑛1𝜔] − 1
∑ (𝒙1𝑖 −𝒎1

𝜔)(𝒙1𝑖 −𝒎1
𝜔)𝑇

𝑛1−[𝑛1𝜔]

𝑖=1

 

and 

𝑺2
𝜔 = 

1

𝑛2 − [𝑛2𝜔] − 1
∑ (𝒙2𝑖 −𝒎2

𝜔)(𝒙2𝑖 −𝒎2
𝜔)𝑇

𝑛2−[𝑛2𝜔]

𝑖=1

 

respectively. The 𝜔-trimmed pooled sample covariance matrix is defined as: 

𝑺𝜔 =
(𝑛1 − [𝑛1𝜔] − 1)𝑺1

𝜔 + (𝑛2 − [𝑛2𝜔] − 1)𝑺2
𝜔

𝑛1 + 𝑛2 − [𝑛1𝜔] − [𝑛2𝜔] − 2
. 

The 𝜔-trimmed diagonal matrix of pooled sample covariance matrix is defined as: 

𝑫𝜔 = 𝑑𝑖𝑎𝑔(𝑺𝜔). 
Therefore, robust diagonalized Hotelling 𝑇2 statistic is given as 

𝑇2𝐷,𝜔 = (𝐦1
𝜔 −𝒎2

𝜔)𝑇 [𝑫𝜔 (
1

𝑛1 − [𝑛1𝜔]
+

1

𝑛2 − [𝑛2𝜔]
)]
−1

(𝐦1
𝜔 −𝒎2

𝜔). 

The robust regularized Hotelling 𝑇2is given as: 

𝑇2𝑅,𝜔 = (𝐦1
𝜔 −𝒎2

𝜔)𝑇[𝑺𝜔 + 𝜆𝑰]−1(𝐦1
𝜔 −𝒎2

𝜔). 

The test statistics 𝑇2𝐷,𝜔 and 𝑇2𝑅,𝜔 follow normal distributions [1,7,9]. The choice of value for 𝜆 in this 

study is based on the value that maximizes the power of the test. 

 

3. NUMERICAL RESULTS 

3.1. Simulation study 

We present two simulation studies in low dimension to illustrate the performance of Hotelling’s 𝑇2 test, 

diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test. This is because Hotelling’s 𝑇2 test is 

a most powerful test in low dimension and comparison of its power with diagonalized Hotelling’s 𝑇2 test 

and regularized Hotelling’s 𝑇2 test will guide us whether to use the diagonalized Hotelling’s 𝑇2 test and 

regularized Hotelling’s 𝑇2 test in high dimension. Based on the power of diagonalized Hotelling’s 𝑇2 test 

and regularized Hotelling’s 𝑇2 test, we want to carry out simulation studies on diagonalized Hotelling’s 𝑇2 

test and regularized Hotelling’s 𝑇2 test in high dimension. Simulation studies will also be carried out on 

the proposed robust versions of the diagonalized and regularized Hotelling’s 𝑇2 tests. Each of the 

experiment consists of 100,000 replications. In each replication, p-value is estimated and power is 

determined as the average proportion of p-values less than level of significance. We do not compare type 1 

error rates of these tests because it has been established that Hotelling’s 𝑇2 test generates higher type 1 

error rates compared to regularized Hotelling’s 𝑇2 test irrespective of sample sizes. 

 

Simulation 1 (Elliptical case). Suppose there are two populations 𝜋𝑘, 𝑘 = 1, 2 from 𝑁(𝝁𝑘 , 𝚺) such that 

𝝁𝑘 = (𝜇𝑘1, 𝜇𝑘2, … , 𝜇𝑘𝑝)
′ with 𝜇1𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑝, 𝜇2𝑗 = 0.6 for 1 ≤ 𝑗 ≤ 100 and 𝜇2𝑗 = 0 if 

otherwise. The covariance structure 𝚺 consists of 3 × 3 blocks, each block of dimension 3 × 3 with (𝑗, 𝑗′) 

element 0.6|𝑗−𝑗
′|. The value of p is taken to be 9. This is a modified version of simulation example in Guo 

et al. [17] and Makinde [18]. Sample of sizes 𝑛1 and 𝑛2 are generated from each of populations 𝜋𝑘. The 

Hotelling’s 𝑇2 test, diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test are performed on 
the samples to determine if the difference in mean vectors of the samples is statistically significant. Power 

of the three test are compared with varying sample sizes. 
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Simulation 2 (Spherical case). Suppose there are two populations 𝜋𝑘, 𝑘 = 1, 2 from 𝑁(𝝁𝑘 , 𝚺) such that 

mean vectors 𝝁1 = (0, 0, 0, 0, 0, 0)
′ and 𝝁2 = (0.7, 0.7, 0.7, 0, 0, 0)

′ and covariance matrix  
 

𝚺 =

(

  
 

2 0 0
0 1 0
0 0 3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2 0 0
0 2 0
0 0 5)

  
 
. 

 

Sample of sizes 𝑛1 and 𝑛2 are generated from each of the populations 𝜋𝑘. The Hotelling’s 𝑇2 test, 

diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test are performed on the samples to 

determine if the difference in mean vectors of the samples is statistically significant. Power of the three test 

are compared with varying sample sizes. The regularization parameter (𝜆) is chosen to be 0.1 for 
simulations 1 and 2. 

 

The Table 1 gives the powers of Hotelling 𝑇2 test, diagonalized Hotelling’s 𝑇2 test and regularized 

Hotelling’s 𝑇2 test at low dimension. The Hotelling’s 𝑇2 test has the highest power for small sample sizes 

in simulation 1 at all levels of significance. At α = 0.05, for large sample, regularized Hotelling 𝑇2 test 

performs optimal while diagonalized Hotelling’s 𝑇2 test performs better than regularized Hotelling 𝑇2 test 

for large sample sizes when α = 0.01. The Hotelling 𝑇2 test has the highest power at low level of 

significance for various sample sizes. The regularized Hotelling’s 𝑇2 test performs best for large sample 

sizes at 𝛼 =  0.05. The usual Hotelling 𝑇2 test has the highest power for varying sample sizes at α = 0.025 

and α = 0.1 respectively. 

 

In general, the usual Hotelling’s 𝑇2 test is more efficient when the sample size is small while the regularized 

Hotelling’s 𝑇2 test performs best at large sample size for 𝛼 =  0.05. Also, at the other level of significance, 

the regularized Hotelling’s 𝑇2 test has low power compared to the Hotelling’s 𝑇2 test and diagonalized 

Hotelling’s 𝑇2 test. 

 

Table 1. Comparison of powers of Hotelling 𝑇2 test, diagonalized Hotelling’s 𝑇2 and regularized 

Hotelling’s 𝑇2 test based on Simulation 4.1 for various levels of significance 

Sample sizes 

α = 0.01 α = 0.025 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 

Hotelling 𝑇2 

test 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 
Hotelling 

𝑇2 test 

𝑛1 =  𝑛 2 = 20 0.9381 0.8276 0.8802 0.9626 0.8794 0.7187 

𝑛1 =  𝑛 2  = 30 0.9632 0.8946 0.9069 0.9772 0.9261 0.7131 

𝑛1 =  𝑛 2 = 50 0.9743 0.9303 0.9075 0.9834 0.9517 0.6333 

𝑛1 =  𝑛 2 = 100 0.9845 0.9583 0.8821 0.9901 0.9714 0.4696 

𝑛1 =  𝑛 2 = 200 0.9916 0.9786 0.8384 0.9947 0.9851 0.3215 

𝑛1 =  𝑛 2 = 500 0.9985 0.9962 0.8200 0.999 0.9973 0.1822 

𝑛1= 20 𝑛 2 = 50 0.9652 0.9046 0.9182 0.9778 0.9327 0.7465 

𝑛1= 100 𝑛2= 50 0.9803 0.9472 0.9059 0.9877 0.9629 0.5794 

Sample sizes 

α = 0.05 α = 0.1 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 
test 

Regularized 

Hotelling 𝑇2 
test 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 
test 

Regularized 

Hotelling 

𝑇2 test 

𝑛1 =  𝑛 2 = 20 0.9760 0.9125 0.9419 0.9855 0.9414 0.8555 

𝑛1 =  𝑛 2  = 30 0.9851 0.9676 0.9691 0.9909 0.9640 0.8416 

𝑛1 =  𝑛 2 = 50 0.9887 0.9652 0.9872 0.9931 0.9763 0.7740 
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𝑛1 =  𝑛 2 = 100 0.9931 0.9796 0.9984 0.9958 0.9865 0.6207 

𝑛1 =  𝑛 2 = 200 0.9965 0.9892 0.9997 0.9979 0.9928 0.4595 

𝑛1 =  𝑛 2 = 500 0.9993 0.9982 1.0000 0.9996 0.9988 0.3089 

𝑛1= 20 𝑛 2 = 50 0.9854 0.951 0.9711 0.9909 0.9671 0.8626 

𝑛1= 100 𝑛2= 50 0.9917 0.9733 0.9944 0.9948 0.9820 0.7243 

 

The Table 2 gives the powers of Hotelling 𝑇2 test, diagonalized Hotelling’s 𝑇2 test and regularized 

Hotelling’s 𝑇2 test at different levels of significance. The Hotelling’s 𝑇2 test has the highest power for low 

sample sizes in simulation 2 at the four levels of significance. At α = 0.05, for large sample, regularized 

Hotelling 𝑇2 test performs best while Hotelling’s 𝑇2 test performs better than regularized Hotelling 𝑇2 test 

for large sample sizes when α = 0.01. The regularized Hotelling’s 𝑇2 test performs best for sample sizes at 

α = 0.05 while at  α = 0.01 the Hotelling’s 𝑇2 test performs better than the diagonalized Hotelling’s 𝑇2 test 

and regularized Hotelling’s 𝑇2 test. The Hotelling’s 𝑇2 test has the highest power for low sample sizes in 
simulation 2 at α = 0.025 and α = 0.1 respectively. At α = 0.025 and α = 0.1 for large sample, the power of 

regularized Hotelling 𝑇2 test is small compared to both Hotelling’s 𝑇2 test and diagonalized Hotelling’s 

𝑇2 test. In general, Hotelling’s 𝑇2 test is more efficient when the sample size is small compare to 

regularized Hotelling’s 𝑇2 test and diagonalized Hotelling’s 𝑇2 test. The regularized Hotelling’s 𝑇2 test 
performs best for large sample sizes at 5% level of significance. Also, at the other levels of significance the 

power of regularized Hotelling’s 𝑇2 test is less compared to the Hotelling’s 𝑇2 test and diagonalized 

Hotelling’s 𝑇2 test. 

 

Table 2. Comparison of powers of Hotelling 𝑇2 test, diagonalized Hotelling’s 𝑇2 test and regularized 

Hotelling’s 𝑇2 test based on Simulation 2 for various levels of significance 

Sample sizes 

α = 0.05 α = 0.1 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 

Hotelling 

𝑇2 test 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 

Hotelling 𝑇2 

test 

𝑛1 =  𝑛 2 = 20 0.933 0.811 0.8012 0.9591 0.8666 0.8177 

𝑛1 =  𝑛 2  = 30 0.9572 0.877 0.8769 0.973 0.913 0.7850 

𝑛1 =  𝑛 2 = 50 0.9657 0.9107 0.9075 0.9781 0.9365 0.7183 

𝑛1 =  𝑛 2 = 100 0.9741 0.9298 0.9117 0.9828 0.9496 0.6669 

𝑛1 =  𝑛 2 = 200 0.9749 0.9354 0.8814 0.9836 0.9538 0.4285 

𝑛1 =  𝑛 2 = 500 0.9769 0.9684 0.8320 0.9845 0.9575 0.2921 

𝑛1= 20 𝑛 2 = 50 0.9594 0.8897 0.9102 0.974 0.9211 0.8015 

𝑛1= 100 𝑛2= 50 0.9709 0.9241 0.9134 0.9816 0.9461 0.6994 

Sample sizes 

α = 0.05 α = 0.1 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 

Hotelling 

𝑇2 test 

Hotelling 

𝑇2 test 

Diagonalized 

Hotelling 𝑇2 

test 

Regularized 

Hotelling 𝑇2 

test 

𝑛1 =  𝑛 2 = 20 0.9736 0.903 0.9314 0.9841 0.9344 0.8555 

𝑛1 =  𝑛 2  = 30 0.982 0.9371 0.9541 0.9892 0.9573 0.8416 

𝑛1 =  𝑛 2 = 50 0.9851 0.9534 0.9652 0.9906 0.9683 0.7740 

𝑛1 =  𝑛 2 = 100 0.9882 0.9632 0.9894 0.9923 0.9754 0.6207 

𝑛1 =  𝑛 2 = 200 0.9889 0.9661 0.9976 0.9929 0.9770 0.4595 

𝑛1 =  𝑛 2 = 500 0.9893 0.9684 0.9990 0.9931 0.9575 0.3089 

𝑛1= 20 𝑛 2 = 50 0.9825 0.9426 0.9681 0.9889 0.9618 0.8626 

𝑛1= 100 𝑛2= 50 0.9874 0.9602 0.9914 0.9919 0.9723 0.7243 
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The Table 3 gives the results obtain on regularized Hotelling’s 𝑇2 test at different α level of significance. 

The power of regularized Hotelling’s 𝑇2 test was found at varying regularization parameter (λ). At 

regularization parameter of 0.05, it was observed that the values of the power of the regularized Hotelling’s 

𝑇2 test keep increasing as the sample size increases. It was also revealed that at varying sample sizes, the 

power keeps increasing. When the regularization parameter is 0.10, it shows that the power of regularized 

Hotelling’s 𝑇2 test keeps increasing as the sample size increases. At other values of regularization 

parameter, the power of the regularized Hotelling’s 𝑇2 test also increases at various sample sizes. The 
results show that at equal number of sample size of 20 across the regularization parameter, the performance 

was found to be highest at low level of regularization parameter 0.05. Also, across sample size 30 and 

above, the regularized Hotelling’s 𝑇2 test was found to be effective at regularization parameter 0.05. At 

varying sample size, it reveals that regularized Hotelling’s 𝑇2 test was found efficient and effective at 

regularization parameter of 0.05. Conclusively, the regularized Hotelling’s 𝑇2 test perform better at low 

level of regularization parameter. Hence, as the regularization parameter increases the power of the 

regularized Hotelling’s 𝑇2 test decreases. 
 

Table 3. Effect of regularization parameter on power of the regularized Hotelling 𝑇2 test based on 

Simulation 1 at 5% level of significance 

Sample sizes 
 

Various values of regularization parameter (λ) 

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 

𝑛1 =  𝑛 2 = 20 

𝑛1 =  𝑛 2  = 30 

𝑛1 =  𝑛 2 = 50 

𝑛1 =  𝑛 2 = 100 

𝑛1 =  𝑛 2 = 200 

𝑛1 =  𝑛 2 = 500 

𝑛1= 20 𝑛 2 = 50 

𝑛1 = 50 𝑛2= 20 

𝑛1= 50 𝑛2= 100 

𝑛1= 100 𝑛2= 50 

0.9419 

0.9691 

0.9872 
0.9984 

0.9997 

1.0000 
0.9711 

0.9722 

0.9940 

0.9944 

0.8554 

0.9054 

0.9485 
0.9879 

0.9992 

1.0000 
0.9129 

0.9147 

0.9698 

0.9705 

0.7570 

0.8242 

0.8898 
0.9586 

0.9940 

0.9999 
0.8390 

0.8399 

0.9258 

0.9248 

0.6621 

0.7408 

0.8170 
0.9081 

0.9737 

0.9989 
0.7619 

0.7620 

0.8619 

0.8608 

0.5753 

0.6592 

0.7366 
0.8354 

0.9280 

0.9905 
0.6826 

0.6835 

0.7856 

0.7834 

0.4976 

0.5792 

0.6520 
0.7458 

0.8469 

0.9538 
0.6057 

0.6077 

0.6996 

0.7002 

0.3709 

0.4393 

0.4884 
0.5464 

0.6045 

0.6933 
0.4697 

0.4700 

0.5262 

0.5249 

0.2730 

0.3242 

0.3487 
0.3603 

0.3468 

0.2980 
0.3578 

0.3563 

0.3703 

0.3713 

 

 

Simulation 3. Suppose 𝑖th observation is in 𝑘th class, 𝑿𝑘𝑖~𝑁(𝝁𝑘 , 𝚺), where 𝝁𝑘 = (𝜇𝑘1 , 𝜇𝑘2 , … , 𝜇𝑘𝑝)
′  

with 𝜇1𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑝, 𝜇2𝑗 = 0.7 for 1 ≤ 𝑗 ≤ 100 and 𝜇2𝑗 = 0 otherwise and 𝑘 = 1, 2. The 

covariance structure 𝚺 consists of 5 × 5 blocks, each block of dimension 100 × 100 with (𝑗, 𝑗′) element 

0.6|𝑗−𝑗
′|. This simulation example is considered in Guo et al. [17] and Makinde [18].  

 

Simulation 4. Suppose F and G are normal mixture distributions defined as  

 

𝐹 = {
𝑁(𝝁1

1, Σ)    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝       

𝑁(𝝁1
2, Σ)   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

   𝑎𝑛𝑑   𝐺 = {
𝑁(𝝁2

1 , Σ)    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝       

𝑁(𝝁2
2, Σ)   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

 

 

where 𝑝 𝜖 (0,1) is the mixing proportion, 𝜇1,𝑗
1 = 0 for 1 ≤ 𝑗 ≤ 500, 𝜇1,𝑗

2 = 0.5 if 1 ≤ 𝑗 ≤ 100, 𝜇1,𝑗
2 = 0 if 

101 ≤ 𝑗 ≤ 500, 𝜇2,𝑗
1 = 0.5 if 1 ≤ 𝑗 ≤ 100, 𝜇2,𝑗

1 = 0 if 101 ≤ 𝑗 ≤ 500, 𝜇2,𝑗
2 = 0.7 if 1 ≤ 𝑗 ≤ 100, 𝜇2,𝑗

2 =

0 if 101 ≤ 𝑗 ≤ 500 and 𝚺 is as defined in Simulation 4.3.  

 
Simulation 5. Suppose each experiment consists of measurements on independent features such that 

𝑋1𝑗~𝑐𝑎𝑢𝑐ℎ𝑦(0,1) if 1 ≤ 𝑗 ≤ 160 and 𝑋1𝑗~𝑐𝑎𝑢𝑐ℎ𝑦(1,1)  if 161 ≤ 𝑗 ≤ 200. Similarly,   

𝑋2𝑗~𝑐𝑎𝑢𝑐ℎ𝑦(0,1) if 1 ≤ 𝑗 ≤ 200. 

 

Table 4 presents three simulation studies on four modified versions of Hotelling’s 𝑇2 test for high 
dimensional data using sample sizes (20, 30, 50 and 100). In simulation 3, both the diagonalized Hotelling’s 

𝑇2 test and regularized Hotelling’s 𝑇2 test perform equally with high power of 1.000 for various sample 
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sizes. The robust versions of the diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test 

perform equivalently. 

 

In simulation 4, the power of the diagonalized Hotelling’s 𝑇2 test and that of the regularized Hotelling’s 

𝑇2 test is the same as that of the robust versions of the diagonalized Hotelling’s 𝑇2 test and regularized 

Hotelling’s 𝑇2 test for sample size of 20. When the sample size is 30, the regularized Hotelling’s 𝑇2 test 

performs better than the diagonalized Hotelling’s 𝑇2 test while the robust version of the diagonalized 

Hotelling’s 𝑇2 test performs better than the usual diagonalized Hotelling’s 𝑇2 test. When the sample size 

increases to 50, the power of the diagonalized Hotelling’s 𝑇2 test dropped compared to that of the 

regularized Hotelling’s 𝑇2 test and the robust version for the diagonalized Hotelling’s 𝑇2 test perform much 

better than the usual diagonalized Hotelling’s 𝑇2 test. When the sample size increases to 100, the 

diagonalized Hotelling’s 𝑇2 test has a very low power. However, the robust versions of the diagonalized 

Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test perform equivalently as the usual regualarized 

Hotelling’s 𝑇2 test in terms of their powers.  

 

Table 4. Comparison of powers of diagonalized, regularized Hotelling’s 𝑇2 test and their robust versions 

in high dimension at 5% level of significance 

Simulation Dimension Sample sizes 

 
 

Diagonalized 

Hotelling 𝑇2  
Test 

Regularized 

Hotelling 𝑇2 
Test 

Robust 

Diagonalized 
Hotelling’s 

𝑇2 
test 

Robust 

Regularized 
Hotelling’s 

𝑇2 test 

3 500 𝑛 = 𝑚 = 20 

𝑛 = 𝑚 = 30 

𝑛 = 𝑚 = 50 

𝑛 = 𝑚 = 100 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

4 500 𝑛 = 𝑚 = 20 

𝑛 = 𝑚 = 30 

𝑛 = 𝑚 = 50 

𝑛 = 𝑚 = 100 

1.000 
0.988 

0.124 

0.000 

1.000 
1.000 

1.000 

1.000 

1.000 
1.000 

1.000 

1.000 

1.000 
1.000 

1.000 

1.000 

5 200 𝑛 = 𝑚 = 20 

𝑛 = 𝑚 = 30 

𝑛 = 𝑚 = 50 

𝑛 = 𝑚 = 100 

1.000 
1.000 

0.208 

0.000 

1.000 
1.000 

1.000 

0.000 

1.000 
1.000 

1.000 

1.000 

1.000 
1.000 

1.000 

1.000 

 
 

In simulation 5, both the diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test have equal 

power performance with the robust versions for small sample sizes (20 and 30). As the sample sizes increase 

to 50, the power of diagonalized Hotelling’s 𝑇2 test reduce while the robust version power is very high. 

Both the regularized Hotelling’s 𝑇2 test and the robust version are the same with high performance. At 

same size 100, the power of diagonalized Hotelling’s 𝑇2 test and the regualarized Hotelling’s 𝑇2 test goes 

to zero while their robust versions maintain high power. In general, the robust versions of the diagonalized 

Hotelling’s 𝑇2 test and the regualarized Hotelling’s 𝑇2 test performs better than the diagonalized 

Hotelling’s 𝑇2 test and the regualarized Hotelling’s 𝑇2 test which can therefore be implemented for high 

dimensional data. 

 

3.2. Analysis of Real Data 

 

We analyse five real data sets to illustrate the performance of the proposed robust diagonalized Hotelling’s 

𝑇2 test and robust regularized Hotelling’s 𝑇2 test in high dimensional data. The real data sets are Arcene 

data, Madelon data, Small round blue cell tumor data set (SRBCT), Gisette data and colon data. Arcene 

data consists of 10,000 variables and two groups, positive and negative examples with sizes 56 and 44 

respectively. A random subset of 500 variables are selected for each of the two groups. The experiment was 
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repeated 500 times. In each replication, p-value is estimated and power is determined as the proportion of 

p-values less than level of significance. 
 

Madelon data is an artificial dataset, which consists of two groups with 500 continuous input variables. The 

groups are positive and negative, a random sample of size 200 is selected from each of the groups. The 

experiment was repeated 500 times. In each replication, p-value is estimated and power is determined as 
the proportion of p-values less than level of significance. 

 

Small round blue cell tumor data set, denoted by SRBCT, consists of gene expression level on 2308 genes 
for 83 patients. This dataset arose from the study of Khan et al. [19] on childhood cancer and is available 

on R package rda. The data set contains four classes; Ewing sarcoma (ES) of size 29, Burkitt lymphoma 

(BL) of size 11, neuroblastoma (NB) of size 18 and rhabdomyosarcoma (RMS) of size 25. The four classes 

are categorized in two groups. Group 1 consists of ES and BL while group 2 consists of NB and RMS. A 
random sample of size 35 is taken from each group. 

 

We analyse Gisette data. The data consist of two groups, each with size 300 and 50,001 features. Following 
Makinde and Fasoranbaku [20], zero and near-zero-valued variables are excluded in the data. A random 

sample of size 100 is selected from each of the groups with 2189 variables. Makinde and Fasorunbaku [20] 

used gisette data to validate maximum depth classifiers based on depth distribution approach. Colon tissue 
data set [21], denoted by colon, and contains 62 samples with 2000 genes from two classes. The classes are 

tumor tissues of size 40 and normal tissues of size 22. Random training samples of sizes 30 and 22 were 

selected from the two classes. Colon data has been used for gene expression data classification based on 

some distance-based methods [18]. 
 

Table 5 presents the powers of the diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test with 

the robust versions. The diagonalized Hotelling’s 𝑇2 test and regularized Hotelling’s 𝑇2 test and their robust 
versions achieve the statistical power of unity (power = 1) for the five. This shows that all these statistical 

tests perform well. 

 

Table 5. Comparison of powers of diagonalized, regularized Hotelling’s 𝑇2 test and their robust versions 
for arcene and madelon data 

Real data Diagonalized 

 Hotelling’s 

𝑇2 test 

Regularized  

Hotelling’s 

𝑇2 test 

Robust Diagonalized 

Hotelling’s 𝑇2 test 

Robust 

Regularized 

Hotelling’s 𝑇2 test 

Arcene 1.000 1.000 1.000 1.000 

Madelon 1.000 1.000 1.000 1.000 

SRBCT 1.000 1.000 1.000 1.000 

Gisette 1.000 1.000 1.000 1.000 

Colon 1.000 1.000 1.000 1.000 

  

4. CONCLUSION 

 

This paper demonstrates equivalence in the performance of Hotelling’s 𝑇2 test, diagonalized Hotelling’s 

𝑇2 test and regularized Hotelling’s 𝑇2 test in low dimension at different levels of significance. The 

performance of the regularized Hotelling’s 𝑇2 test depends on the values of the regularization parameter 

chosen. For high-dimensional data, the regularized Hotelling’s 𝑇2 test has higher power compared to the 

diagonalized Hotelling’s 𝑇2 test when the two competing samples have mixture distribution and their 

sample sizes are large. This study proposed robust diagonalized and regularized Hotelling’s 𝑇2 test and 

demonstrated better performance of the robust versions of the diagonalized Hotelling’s 𝑇2 test and 

regularized Hotelling’s 𝑇2 test over the existing diagonalized Hotelling’s 𝑇2 test and regularized 

Hotelling’s 𝑇2 test for simulated data. These tests were also applied on five deal datasets and all performed 

well in terms of their power. 
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