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• In this work, some properties of Cech fuzzy soft closure spaces are introduced and studied. 

• Also, several types of lower separation axioms in Cech fuzzy soft closure space are introduced. 

• In addition, the relationship between these types of separation axioms are discussed.  

• Moreover, several examples are given to support our study. 
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Abstract 

By considering �̌�ech fuzzy soft closure spaces (𝑋, 𝜃, 𝐾), we provide a basic structure of a fuzzy 

soft topological space (𝑋, 𝜏𝜃 , 𝐾) associated with �̌�ech fuzzy soft closure space  (𝑋, 𝜃, 𝐾). 
Separation axioms, namely, 𝑇𝑖  (𝑖 = 0,1,2), semi- (respectively, pseudo and Uryshon) 𝑇2 are 

studied in both �̌�ech fuzzy soft closure spaces and its associative fuzzy soft topological spaces. 

It is shown that hereditary property is satisfied for 𝑇𝑖, 𝑖 = 0,1 with respect to �̌�ech fuzzy soft 

closure space but for other mentioned types of separations axioms, hereditary property satisfies 

for closed subspaces of �̌�ech fuzzy soft closure space. Several examples are given to illustrate 

each type of the separation axioms and to study the relationship between them. 
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1. INTRODUCTION 

 

The notion of fuzzy sets was firstly proposed by Zadeh [1] in 1965 as one of the effective mathematical 

tools to deal with uncertainties, where each element in a fuzzy set has a grade of membership. In 1999, 

Molodsov [2] initiated a new theory called soft set theory, by using classical sets, that also deals with 

uncertainties and ambiguity. A combination of fuzzy sets and soft sets, namely fuzzy soft sets, is then 

formulated by Maji et al. [3]. By using fuzzy soft sets,  Tanay and Kandemir [4] defined fuzzy soft topology.   

 

The concept of  �̌�ech closure spaces (𝑋, 𝒞) was introduced by �̌�ech [5] in 1966, where 𝒞: 𝑃(𝑋) → 𝑃(𝑋) is 

a mapping satisfying 𝒞(∅) = ∅,𝐴 ⊆ 𝒞(𝐴) and 𝒞(𝐴 ∪ 𝐵) = 𝒞(𝐴) ∪ 𝒞(𝐵). The mapping 𝒞 is referred to as 

�̌�ech closure operator on 𝑋. In 1985, Mashhour and Ghanim [6] introduced the concept of �̌�ech fuzzy 

closure space by replacing ordinary sets with fuzzy sets in the definition of �̌�ech closure space. On the 

other hand, in 2014, Gowri and Jegadeesan [7] and Krishnaveni and Sekar [8], have introduced and studied 

soft �̆�ech closure spaces. Note that the soft closure operator in the sense of Gowri and Jegadeesan is defined 

from the power set 𝑃(𝑋𝐹𝐴) of 𝑋𝐹𝐴  to itself (where 𝐹𝐴 is a soft set over the universe set 𝑋 with the set of 

parameters 𝐾, and 𝐴 ⊆ 𝐾) while, Krishnaveni and Sekar, defined soft closure operator from the set of all 

soft sets over 𝑋 to itself. Very recently, Majeed [9] generalized soft �̌�ech closure space, in the sence of 

Krishnaveni and Sekar, into �̌�ech fuzzy soft closure spaces. Also, Majeed and Maibed [10] have further 

studied some structures of �̌�ech fuzzy soft closure spaces. Majeed and Maibed show that every �̌�ech fuzzy 

soft closure space gives a parameterized family of �̌�ech fuzzy closure spaces. 

In the present paper, we continue studying the properties of �̌�ech fuzzy soft closure spaces and their 

separation axioms. Some of the provided properties of �̌�ech fuzzy soft closure spaces are essential for 
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studying the separation axioms. In Section 3, basic structure of fuzzy soft topological space (𝑋, 𝜏𝜃, 𝐾) 
associated with �̌�ech fuzzy soft closure space (𝑋, 𝜃, 𝐾) is studied. The fuzzy soft topological closure 𝜏𝜃-𝑐𝑙 
(respectively, interior 𝜏𝜃- 𝑖𝑛𝑡) is defined and its relationship with the �̌�ech fuzzy soft closure operator 𝜃 

(respectively, interior operator 𝐼𝑛𝑡) is given (see Theorem 4). In Section 4, separation axioms 𝑇0 and 𝑇1 in 

�̌�ech fuzzy soft closure spaces are defined and their basic properties are discussed. Finally, in Section 5, 

 𝑇2 �̌�ech fuzzy soft closure space and some other types of separation axioms, namely, semi- (respectively, 

pseudo and Uryshon) 𝑇2 are defined. Some properties of each type are discussed and the relationship 

between aforementioned and 𝑇0 (respectively, 𝑇1) are given. Finally, several examples are given to support 

our study.  

 

2. PRELIMINARIES 

 

In this section we review some basic definitions and results related to fuzzy soft theory and �̌�ech fuzzy soft 

closure spaces that will be needed in the sequel, and we foresee the reader be familiar with the usual notions 

and most basic ideas of fuzzy set theory. Throughout our paper, 𝑋 will refer to the initial universe, 𝐼 =
[0,1], 𝐼0 = (0,1],  𝐼

𝑋 be the family of all fuzzy sets of 𝑋, and 𝐾 the set of parameters for 𝑋.  

 

Definition 1. [11, 12] A fuzzy soft set (fss, for short) λA on 𝑋 is a mapping from 𝐾 to 𝐼𝑋, i.e., λA: 𝐾 → 𝐼𝑋, 

where  λA(ℎ) ≠ 0̅  if ℎ ∈ 𝐴 ⊆ 𝐾 and  λA(ℎ) = 0̅ if ℎ ∉ 𝐴 ⊆ 𝐾, where 0̅ is the empty fuzzy set on 𝑋. The 

family of all fuzzy soft sets over 𝑋 denoted by ℱss(X,𝐾). 
 

In the next definition, the basic operations between fuzzy soft sets are given. 

 

Definition 2.  [12] Let  λA, 𝜇𝐵  ∈ ℱss(X,𝐾), then 

1.  λA is called a fuzzy soft subset of 𝜇𝐵, denoted by  λA ⊆ 𝜇𝐵, if  λA(ℎ) ≤ 𝜇𝐵(ℎ), for all ℎ ∈ 𝐾.  

2.  λA and 𝜇𝐵  are said to be equal, denoted by  λA = 𝜇𝐵 if   λA ⊆ 𝜇𝐵 and  𝜇𝐵 ⊆ 𝜆𝐴. 

3. The union of  λA and 𝜇𝐵, denoted by  λA ∪ 𝜇𝐵 is the fss 𝜎(𝐴⋃𝐵)(ℎ) defined by 𝜎(𝐴⋃𝐵)(ℎ) =

λA(ℎ) ∨ 𝜇𝐵(ℎ), for all ℎ ∈ 𝐾. 

4. The intersection of  λA and 𝜇𝐵, denoted by   λA ∩ 𝜇𝐵 is the fss 𝜎(𝐴⋂𝐵) defined by 𝜎(𝐴⋂𝐵)(ℎ) =

  λA(ℎ) ∧ 𝜇𝐵(ℎ), for all ℎ ∈ 𝐾. 

 

Definition 3. [12]  The null fss, denoted by 0̅𝐾, is a fss defined by 0̅𝐾(ℎ) = 0̅, for all ℎ ∈ 𝐾, where 0̅ is the 

empty fuzzy set of 𝑋. 

 

Definition 4.  [12]  The universal fss, denoted by 1̅𝐾, is a fss defined by 1̅𝐾(ℎ) = 1̅, for all ℎ ∈ 𝐾, where 

1̅ is the universal fuzzy set of 𝑋. 

 

Definition 5. [12]  The complement of a fss   λA ∈ ℱss(X,𝐾), denoted 1̅𝐾 −  λA, is the fss defined by 

(1̅𝐾 −  λA)(ℎ) = 1 ̅ −   λA(ℎ), for each ℎ ∈ 𝐾, Its clear that 1̅𝐾 − (1̅𝐾 −  λA) = 𝜆𝐴.  

 

Definition 6. [13] Two fss's 𝜆𝐴, 𝜇𝐵 ∈ ℱss(X,𝐾) are said to be disjoint, denoted by 𝜆𝐴 ∩ 𝜇𝐵 = 0̅𝐾, if  𝜆𝐴(ℎ) ∩
𝜇𝐵(ℎ) = 0̅ for all ℎ ∈ 𝐾. 

 

Definition 7. [14] A fuzzy soft set  𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾)  is called fuzzy soft point, denoted by 𝑥𝑡
ℎ, if there exist 

𝑥 ∈ 𝑋 and ℎ ∈ 𝐾 such that  λA(ℎ)(𝑥) = 𝑡 ( 0 < 𝑡 ≤ 1) and 0 otherwise for all  𝑦 ∈ 𝑋 − {𝑥}.  
 

Definition 8.  [14] The fuzzy soft point 𝑥𝑡
ℎ is said to be belongs to the fss 𝜆𝐴 , denoted by 𝑥𝑡

ℎ ∈̃ λA if for 

the element ℎ ∈ 𝐾, 𝑡 ≤ λA(ℎ)(𝑥).  
 

Definition 9. [15] Two fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ are said to be distinct if 𝑥 ≠ 𝑦 or ℎ ≠ ℎ′. 
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Definition 10. [5,12] A fuzzy soft topological space(fsts, for short) (𝑋, 𝜏, 𝐾) where 𝑋 is a nonempty set 

with a fixed set of parameters and 𝜏 is a family of fuzzy soft sets over 𝑋 satisfying the following properties: 

1. 0̅𝐾 , 1̅𝐾 ∈ 𝜏, 
2. If 𝜆𝐴, 𝜇𝐵 ∈ 𝜏, then 𝜆𝐴 ∩ 𝜇𝐵 ∈ 𝜏, 
3. If (𝜆𝐴)𝑖 ∈ 𝜏, then ⋃ (𝜆𝐴)𝑖𝑖∈𝐽∈ ∈ 𝜏. 

𝜏 is called a topology of fuzzy soft sets on 𝑋. Every member of 𝜏 is called open fuzzy soft set (open-fss, for 

short). The complement of open-fss is called a closed fuzzy soft set (closed-fss, for short). 

 

Definition 11. [9] An operator 𝜃:ℱ𝑠𝑠(𝑋, 𝐾) → ℱ𝑠𝑠(𝑋, 𝐾) is called �̌�ech fuzzy soft closure operator (�̌�-fsco, 

for short) on 𝑋, if the following axioms are satisfied: 

   (C1) 𝜃(0̅𝐾) = 0̅𝐾 ,  

   (C2)  λA ⊆ 𝜃(𝜆𝐴), for all 𝜆𝐴 ∈ ℱss(X,𝐾), 
   (C3) 𝜃(𝜆𝐴 ∪ 𝜇𝐵) = 𝜃(𝜆𝐴) ∪ 𝜃(𝜇𝐴), for all 𝜆𝐴, 𝜇𝐵 ∈ ℱss(X,𝐾).  
The triple (𝑋, 𝜃, 𝐾) is called a C̆ech fuzzy soft closure space (�̌�ℱ-fscs, for short). 

 

A fss λA is said to be closed-fss in (𝑋, 𝜃, 𝐾) if  λA = 𝜃(𝜆𝐴). And a fss λA is said to be an open-fss if  1̅𝐾 −
 λA is a closed-fss.  

 

Proposition 1. [9] Let (𝑋, 𝜃, 𝐾) be a Čℱ-scs, and λA,  𝜇𝐵 ∈ ℱss(X,𝐾) such that λA ⊆ 𝜇𝐵, then 𝜃(𝜆𝐴) ⊆
𝜃(𝜇𝐵). 
 

Definition 12. [9] Let (𝑋, 𝜃, 𝐾) be a  Čℱ-scs, and let λA ∈ ℱss(X,𝐾). The  interior of  λA, denoted by 

𝐼𝑛𝑡( λA) is defined as 𝐼𝑛𝑡( λA) =1̅𝐾 − (𝜃(1̅𝐾 −   λA)). 
 

Proposition 2. [9] Let (𝑋, 𝜃, 𝐾) be a  Čℱ-scs, and let λA,  𝜇𝐵 ∈ ℱss(X,𝐾). Then 

1.  𝐼𝑛𝑡(0̅𝐾) = 0̅𝐾 and 𝐼𝑛𝑡(1̅𝐾) = 1̅𝐾 , 
2.  𝐼𝑛𝑡( 𝜆𝐴) ⊆  𝜆𝐴, 
3.  𝐼𝑛𝑡( 𝜆𝐴⋂𝜇𝐵) =𝐼𝑛𝑡( 𝜆𝐴)⋂𝐼𝑛𝑡(𝜇𝐵), 
4.  If 𝜆𝐴 ⊆ 𝜇𝐵, then 𝐼𝑛𝑡( 𝜆𝐴) ⊆ 𝐼𝑛𝑡(𝜇𝐵), 
5.   𝜆𝐴 is an open-fss ⇔ 𝐼𝑛𝑡( 𝜆𝐴) =  𝜆𝐴, 
6.  𝐼𝑛𝑡( 𝜆𝐴)⋃𝐼𝑛𝑡(𝜇𝐵) ⊆ 𝐼𝑛𝑡( 𝜆𝐴 ⋃𝜇𝐵). 

 

Theorem 1. [9] Let (𝑋, 𝜃, 𝐾) be a  Čℱ-scs and let 𝜏𝜃 ⊆ ℱss(X,𝐾), defined as  follows 

𝜏𝜃 = {1̅𝐾 −   λA: 𝜃(  λA) =   λA}. 
Then 𝜏𝜃 is a fuzzy soft topology on 𝑋 and (𝑋, 𝜏𝜃, 𝐾) is called an associative fsts of (𝑋, 𝜃, 𝐾). 
 

Definition 13. [9] Let 𝑉 be a non-empty subset of 𝑋, then �̅�𝐾 denotes the fuzzy soft set 𝑉𝐾 over 𝑋 for which 

𝑉(ℎ) = 1̅𝑉 for all ℎ ∈ 𝐾, (where 1̅𝑉: 𝑋 → 𝐼 such that 1̅𝑉(𝑥) = 1 if  𝑥 ∈ 𝑉 and 1̅𝑉(𝑥) = 0 if  𝑥 ∉ 𝑉). 

 

Theorem 2. [9] Let (𝑋, 𝜃, 𝐾) be a  Čℱ-scs, 𝑉 ⊆ 𝑋 and let 𝜃𝑉: ℱ𝑠𝑠(𝑉, 𝐾) → ℱ𝑠𝑠(𝑉, 𝐾) defined as 𝜃𝑉( λA) =

�̅�𝐾⋂𝜃(𝜆𝐴). Then 𝜃𝑉 is a �̌�ℱ-sco. The triple (𝑉, 𝜃𝑉, 𝐾) is said to be �̌�ech fuzzy soft closure subspace (Čℱ-

sc subspace, for short) of (𝑋, 𝜃, 𝐾). 
 

Definition 14. [9] Let 𝜃1 and 𝜃2 be two �̌�-fsco's on 𝑋. Then 𝜃1 is said to finer than 𝜃2, or equiventily 𝜃2 is 

coarser than 𝜃1, if for each  λA ∈ ℱss(X,𝐾), 𝜃2( λA)  ⊆ 𝜃1( λA). 
 

3. SOME PROPERTIES OF ASSOCIATIVE FUZZY SOFT TOPOLOGICAL SPACES 

 

In [10], Majeed and Maibed show that from each Čℱ-scs (𝑋, 𝜃, 𝐾) there exists an associated fsts  (𝑋, 𝜏𝜃, 𝐾) 
(see Theorem 1). In this section we study the associated fsts (𝑋, 𝜏𝜃, 𝐾). Namely, we define the fuzzy soft 

topological closure 𝜏𝜃-𝑐𝑙 (respectively, interior 𝜏𝜃- 𝑖𝑛𝑡 ) and study it is basic properties. In addition, we 

discuss the relation between the �̆�ech fuzzy soft closure operator 𝜃 (respectively, interior operator 𝐼𝑛𝑡) and 

the fuzzy soft topological closure 𝜏𝜃-𝑐𝑙 (respectively, Interior 𝜏𝜃-𝑖𝑛𝑡). 
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Definition 15. Let (X, 𝜏𝜃, 𝐾) be an associative fsts of (𝑋, 𝜃, 𝐾) and let  𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾). The fuzzy soft 

topological closure of  λAwith respect to θ, denoted by 𝜏𝜃-𝑐𝑙(𝜆𝐴),  is the intersection of all closed fuzzy soft 

super sets of 𝜆𝐴 . i.e., 

𝜏𝜃-𝑐𝑙(𝜆𝐴) =∩ {𝜌𝐶 ∶ 𝜆𝐴 ⊆ 𝜌𝐶  𝑎𝑛𝑑 𝜃(𝜌𝐶) = 𝜌𝐶  }.  (1) 

 

From Theorem 1, it is clear that 𝜏𝜃-𝑐𝑙(𝜆𝐴) is the smallest closed-fss over 𝑋 which contains 𝜆𝐴 . 
 

Proposition 3.  Let (X, 𝜏𝜃, 𝐾) be an associative fsts of (𝑋, 𝜃, 𝐾) and let  𝜆𝐴, 𝜇𝐵  ∈ ℱ𝑠𝑠(𝑋, 𝐾). Then 

1.  𝜏𝜃- 𝑐𝑙 ( 0̅𝐾)=0̅𝐾 and 𝜏𝜃-𝑐𝑙( 1̅𝐾) = 1̅𝐾 , 
2.  𝜆𝐴 ⊆ 𝜏𝜃-𝑐𝑙(𝜆𝐴), 
3.  If 𝜆𝐴 ⊆ 𝜇𝐵, then 𝜏𝜃-𝑐𝑙(𝜆𝐴) ⊆ 𝜏𝜃-𝑐𝑙(𝜇𝐵), 
4.  𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵) = 𝜏𝜃-𝑐𝑙(𝜆𝐴)⋃𝜏𝜃-𝑐𝑙(𝜇𝐵), 
5.  𝜏𝜃-𝑐𝑙(𝜏𝜃-𝑐𝑙(𝜆𝐴)) = 𝜏𝜃-𝑐𝑙(𝜆𝐴), 
6.  𝜆𝐴 is a closed-fss if and only if 𝜆𝐴=𝜏𝜃-𝑐𝑙(𝜆𝐴). 

 

Proof. The proof of parts from 1 to 3 and 5 are follows directly from the Definition 15. To prove  part 4, 

since 𝜆𝐴 ⊆  𝜆𝐴  ∪ 𝜇𝐵 and 𝜇𝐵 ⊆  𝜆𝐴  ∪ 𝜇𝐵, then by 3, we have 𝜏𝜃-𝑐𝑙(𝜆𝐴) ⊆ 𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵) and  𝜏𝜃-𝑐𝑙(𝜇𝐵) ⊆
𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵).Thus,𝜏𝜃-𝑐𝑙(𝜆𝐴)⋃ 𝜏𝜃-𝑐𝑙(𝜇𝐵) ⊆ 𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵). Conversely, by 2,  𝜆𝐴  ∪ 𝜇𝐵 ⊆ 𝜏𝜃-

𝑐𝑙(𝜆𝐴)⋃ 𝜏𝜃-𝑐𝑙(𝜇𝐵). Since 𝜏𝜃-𝑐𝑙(𝜆𝐴) and 𝜏𝜃-𝑐𝑙(𝜇𝐵) are closed-fss. Then from Theorem 1, 𝜏𝜃-𝑐𝑙(𝜆𝐴) ∪ 𝜏𝜃-

𝑐𝑙(𝜇𝐵) is the smallest  closed-fss contains 𝜆𝐴  ∪ 𝜇𝐵. But 𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵) is the smallest  closed-fss 

contains 𝜆𝐴  ∪ 𝜇𝐵, this implies 𝜏𝜃-𝑐𝑙(𝜆𝐴⋃𝜇𝐵) ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴)⋃ 𝜏𝜃-𝑐𝑙(𝜇𝐵). Hence, we obtain the equality. 

Finally, to prove 6, let 𝜆𝐴 be a closed-fss. By 2, we get  𝜆 𝐴  ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴)  and 𝜏𝜃-𝑐𝑙(𝜆𝐴) is the smallest 

closed-fss which contains  𝜆 𝐴 and since   𝜆 𝐴 is a closed-fss, then  𝜏𝜃-𝑐𝑙(𝜆𝐴) ⊆  𝜆 𝐴. Hence, 𝜆 𝐴 =  𝜏𝜃-

𝑐𝑙(𝜆𝐴). Conversely, suppose that  𝜆 𝐴 =  𝜏𝜃-𝑐𝑙(𝜆𝐴). Since 𝜏𝜃-𝑐𝑙(𝜆𝐴) is the closed-fss, then 𝜆𝐴 is a closed-

fss.    ∎ 

 

Now, we introduce the definition of fuzzy soft interior of a fss in the associative fsts of (X, 𝜏𝜃, 𝐾) and give 

some properties of it. 

 

Definition 16. Let (X, 𝜏𝜃, 𝐾) be an associative fsts of (𝑋, 𝜃, 𝐾) and let  𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾). The fuzzy soft 

topological interior of 𝜆𝐴with respect to θ, denoted by 𝜏𝜃- 𝑖𝑛𝑡( 𝜆𝐴) is the union of all open fuzzy soft subset 

of 𝜆𝐴. i.e., 

𝜏𝜃- 𝑖𝑛𝑡( 𝜆𝐴) = ⋃{𝜌𝐶: 𝜌𝐶 ⊆  𝜆𝐴 𝑎𝑛𝑑 𝜃(1̅𝐾 − 𝜌𝐶) = 1̅𝐾 − 𝜌𝐶}.                    

    (2) 

 

Clearly, 𝜏𝜃- 𝑖𝑛𝑡( 𝜆𝐴) is the largest open-fss contained in 𝜆𝐴. 
 

Proposition 4. Let (X, 𝜏𝜃, 𝐾) be an associative fuzzy soft topological space of (𝑋, 𝜃, 𝐾) and let 𝜆𝐴, 𝜇𝐵  ∈
ℱ𝑠𝑠(𝑋, 𝐾). Then 

1. 𝜏𝜃- 𝑖𝑛𝑡(0̅𝐾) = 0̅𝐾 and 𝜏𝜃- 𝑖𝑛𝑡( 1̅𝐾) = 1̅𝐾, 
2. 𝜏𝜃- 𝑖𝑛𝑡( 𝜆𝐴) ⊆   𝜆𝐴, 
3. If  𝜆𝐴 ⊆ 𝜇𝐵, then 𝜏𝜃- 𝑖𝑛𝑡( 𝜆𝐴) ⊆  𝜏𝜃- 𝑖𝑛𝑡(𝜇𝐵), 
4. 𝜏𝜃-𝑖𝑛𝑡( 𝜆𝐴⋂𝜇𝐵) = 𝜏𝜃-𝑖𝑛𝑡( 𝜆𝐴) ∩ 𝜏𝜃-𝑖𝑛𝑡(𝜇𝐵), 
5. 𝜏𝜃-𝑖𝑛𝑡(𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴)) = 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴), 
6. 𝜆𝐴 is an open-fss if and only if 𝜆𝐴 = 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴). 

 

Proof. The prove is similar to the proof of Proposition 3.     ∎  

 

Theorem 3. Let (X, 𝜏𝜃, 𝐾) be an associative fsts of (𝑋, 𝜃, 𝐾) and 𝜆𝐴  ∈ ℱ𝑠𝑠(𝑋, 𝐾). Then 

1. 1̅𝐾 − (𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴)) = 𝜏𝜃-𝑐𝑙(1̅𝐾 − 𝜆𝐴), 
2.  1̅𝐾 − (𝜏𝜃-𝑐𝑙(𝜆𝐴)) = 𝜏𝜃-𝑖𝑛𝑡(1̅𝐾 − 𝜆𝐴). 

 

Proof. The proof is obtained by using Proposition 4 part 2, and Proposition 3 part 3.  ∎ 
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In the next theorem, we discuss the relationship between the �̆�ech fuzzy soft closure operator 𝜃 

(respectively, interior operator 𝐼𝑛𝑡) and the fuzzy soft topological closure 𝜏𝜃-𝑐𝑙 (respectively, Interior 𝜏𝜃-

𝑖𝑛𝑡) for any fss 𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾). 
 

Theorem 4. Let (X, 𝜃, 𝐾) be Čℱ-scs and (X, 𝜏𝜃, 𝐾) be an associative fuzzy soft topological space 

of  (𝑋, 𝜃, 𝐾). Then for any fss  𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾) 
𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆ 𝐼𝑛𝑡( 𝜆𝐴) ⊆  𝜆𝐴 ⊆ 𝜃( 𝜆𝐴) ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴). (3) 

 

Proof. First, we prove 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆ 𝐼𝑛𝑡( 𝜆𝐴) ⊆  𝜆𝐴. Since 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆  𝜆𝐴, then by 4 of Proposition 2, 

𝐼𝑛𝑡(𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴)) ⊆ 𝐼𝑛𝑡( 𝜆𝐴). But 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) is an open-fss, this implies 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆ 𝐼𝑛𝑡( 𝜆𝐴), and from 

the definition of �̆�ech fuzzy soft interior operator, we get 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆ 𝐼𝑛𝑡( 𝜆𝐴) ⊆  𝜆𝐴. 

 

Now, to prove  𝜆𝐴 ⊆ 𝜃( 𝜆𝐴) ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴). Since  𝜆𝐴 ⊆ 𝜏𝜃-𝑐𝑙(𝜆𝐴) and 𝜏𝜃-𝑐𝑙(𝜆𝐴) is a closed-fss, then 

𝜃( 𝜆𝐴) ⊆ 𝜃(𝜏𝜃-𝑐𝑙(𝜆𝐴)) = 𝜏𝜃-𝑐𝑙(𝜆𝐴) and by (C2) of Definition 11, we have 𝜆𝐴 ⊆ 𝜃( 𝜆𝐴) ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴). 
Hence, we obtain the required result.    ∎ 

 

Remark 1.  In the above theorem the equality hold for the part 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) ⊆ 𝑖𝑛𝑡(𝜆𝐴) ⊆  𝜆𝐴 (respectively, 

 𝜆𝐴 ⊆ 𝜃( 𝜆𝐴) ⊆  𝜏𝜃-𝑐𝑙(𝜆𝐴)) if  𝜆𝐴 is an open- (respectively, closed-) fss in  (𝑋, 𝜃, 𝐾).   But in general, the 

equality of the above theorem is not true, so we give an example to explain that. 

 

Example 1. Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝐾 = {ℎ1, ℎ2}. Define 𝜇𝐵 ∈ ℱ𝑠𝑠(𝑋, 𝐾) such that𝜇𝐵 = {(ℎ1, 𝑏0.5), (ℎ2, 𝑏0.5)}. 
Define �̆�-fsco 𝜃: ℱ𝑠𝑠(𝑋, 𝐾) → ℱ𝑠𝑠(𝑋, 𝐾) as follows: 

 

𝜃( 𝜆𝐴) = {

0̅𝐾                                                                  𝑖𝑓  𝜆𝐴 = 0̅𝐾,  

{(ℎ1, 𝑎0.5 ∨ 𝑏0.5), (ℎ2, 𝑎0.5 ∨ 𝑏0.5)}       𝑖𝑓  𝜆𝐴 ⊆ 𝜇𝐵,

1̅𝐾                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

 

 

It is clear that 𝜃 satisfy the axioms (𝐶1), (𝐶2) and (𝐶3) of Definition 11, in addition 𝜃(𝜇𝐵) ≠ 𝜃(𝜃(𝜇𝐵)). 
Thus, (X, 𝜃, 𝐾) is a Čℱ-scs. The associative fuzzy soft topology 𝜏𝜃 of  (X, 𝜃, 𝐾) is {0̅𝐾 , 1̅𝐾 }. Now, consider 

the fss 𝜆𝐴 = {(ℎ1, 𝑎1 ∨ 𝑏0.7 ∨ 𝑐1), (ℎ2, 𝑎1 ∨ 𝑏0.9 ∨ 𝑐1)}. Then, 𝐼𝑛𝑡( 𝜆𝐴) = {(ℎ1, 𝑎0.5 ∨ 𝑏0.5 ∨ 𝑐1), (ℎ2, 𝑎0.5 ∨
𝑏0.5 ∨ 𝑐1)} and 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴) = 0̅𝐾. Hence, 𝐼𝑛𝑡( 𝜆𝐴) ⊈ 𝜏𝜃-𝑖𝑛𝑡(𝜆𝐴). On the other hand consider 𝜆𝐴 =
{(ℎ1, 𝑏0.4), (ℎ2, 𝑏0.2)}. Then 𝜏𝜃-𝑐𝑙(𝜆𝐴)) = 1̅𝐾 ⊈ {(ℎ1, 𝑎0.5 ∨ 𝑏0.5), (ℎ2, 𝑎0.5 ∨ 𝑏0.5)} = 𝜃( 𝜆𝐴). Thus, 𝜏𝜃-

𝑐𝑙(𝜆𝐴)) ⊈  𝜃( 𝜆𝐴). 
 

4. 𝐓𝐢-�̌�ECH FUZZY SOFT CLOSURE SPACES, 𝒊 = 𝟎, 𝟏 

 

This section is devoted to defining separation axioms  T0 and  T1 in Čℱ-scs's and its associated fsts's. We 

discuss the relation between  T0 and  T1, and study the hereditary property on Čℱ-scs's. Also, we give the 

relation between Čℱ-scs (𝑋, 𝜃, 𝐾) and its associated fsts (𝑋, 𝜏𝜃, 𝐾) when (𝑋, 𝜏𝜃, 𝐾) is  Ti, 𝑖 = 0,1. 

 

Definition 17.  A Čℱ-scs (𝑋, 𝜃, 𝐾) is said to be T0-Čℱ-scs, if for every pair of distinct fuzzy soft points 𝑥𝑡
ℎ 

and 𝑦𝑠
ℎ′, either 𝑥𝑡

ℎ ∉̃ 𝜃(𝑦𝑠
ℎ′) or 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝑥𝑡
ℎ). 

 

Now we give some examples to illustrate Definition 17. 

 

Example 2. Let (𝑋, 𝜃, 𝐾) be the discrete Čℱ-scs (i.e., 𝜃(𝜆𝐴) =  𝜆𝐴 for all  𝜆𝐴 ∈ ℱss(X,𝐾)), then (𝑋, 𝜃, 𝐾) 
is a  T0-Čℱ-scs. 

 

Example 3.  Let (𝑋, 𝜃, 𝐾) be the trivial Čℱ-scs (i.e., 𝜃(𝜆𝐴) = 1̅𝐾 for all  𝜆𝐴 ∈ ℱss(X,𝐾)), then (𝑋, 𝜃, 𝐾) is 

not  T0-Čℱ-scs, because for any distinct fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, we have 𝑥𝑡
ℎ ∈̃ 1̅𝐾 = 𝜃(𝑦𝑠

ℎ′) and 

𝑦𝑠
ℎ′ ∈̃ 1̅𝐾 = 𝜃(𝑥𝑡

ℎ). 
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Example 4.  Let 𝑋={𝑎, 𝑏}, K={ℎ1, ℎ2} and let 𝜆𝐴
∗ ⊆ ℱss(X,𝐾) such that 𝜆𝐴

∗ ={(ℎ1,𝑎𝑡1 ∨ 𝑏𝑠1),( ℎ2, 𝑎𝑡2 ∨ 𝑏𝑠2); 

𝑡1, 𝑡2, 𝑠1, 𝑠2 ∈ 𝐼0}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
 
 
 
 

 
 
 
 

0̅𝐾                    𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                                                                       

 𝑎1
ℎ1                    𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡1

ℎ1;   𝑡1 ∈ 𝐼0},                                                                      

  𝑎1
ℎ2                   𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡2

ℎ2;  𝑡2 ∈ 𝐼0},                                                                       

 

𝑏𝑠1+0.2
ℎ1               𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠1

ℎ1;  0 < 𝑠1  <  0.8},                                                          

 𝑏1
ℎ1                   𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠1

ℎ1;  0.8 ≤  𝑠1 ≤ 1},                                                            

  {(ℎ1, 𝜃(𝑎𝑡1
ℎ1) ∪ 𝜃(𝑏𝑠1

ℎ1)) , (ℎ2, 𝜃(𝑎𝑡2
ℎ2) ∪ 𝜃(𝑏𝑠2

ℎ2))}  𝑖𝑓  𝜆𝐴 ∈  𝜆𝐴
∗  .                            

 

  

Then (𝑋, 𝜃, 𝐾) is a Čℱ-scs. To show (𝑋, 𝜃, 𝐾) is  T0-Čℱ-scs, we have three cases for distinct fuzzy soft 

points in 𝑋. 

Case(1).  If 𝑎 ≠ 𝑏 and ℎ1 = ℎ2, then we have 𝑎𝑡1
ℎ1 and 𝑏𝑠1

ℎ1 are distinct fuzzy soft points. It is clear that 𝑏𝑠1
ℎ1 

∉̃ 𝜃(𝑎𝑡1
ℎ1) because 𝑠1 > (𝑎1

ℎ1)(ℎ1)(𝑏)=(𝑎1)(𝑏) = 0. Similarly, 𝑎𝑡1
ℎ2 and 𝑏𝑠1

ℎ2 are distinct fuzzy soft points 

and 𝑏𝑠1
ℎ2 ∉̃ 𝜃(𝑎𝑡1

ℎ2). 

Case(2).  If 𝑎 = 𝑏 and ℎ1 ≠ ℎ2, then 𝑎𝑡1
ℎ1 and 𝑎𝑡2

ℎ2 are distinct fuzzy soft points. It is clear that 𝑎𝑡1
ℎ1 ∉̃ 𝜃(𝑎𝑡2

ℎ2) 

because 𝑡1 > 𝜃(𝑎1
ℎ2)(ℎ1)(𝑎)=0̅(𝑎) = 0. Similarly, 𝑏𝑠1

ℎ1 and 𝑏𝑠2
ℎ2 are distinct fuzzy soft points and 𝑏𝑠2

ℎ2 

∉̃ 𝜃(𝑏𝑠1
ℎ1). 

Case(3). If 𝑎 ≠ 𝑏 and ℎ1 ≠ ℎ2, then we have 𝑎𝑡
ℎ1 and 𝑏𝑠

ℎ2 are distinct fuzzy soft points such that 𝑏𝑠
ℎ2 

∉̃ 𝜃(𝑎𝑡
ℎ1). Similarly, 𝑎𝑡

ℎ2 and 𝑏𝑠
ℎ1 are distinct fuzzy soft points and 𝑏𝑠

ℎ1 ∉̃ 𝜃(𝑎𝑡
ℎ2). Hence, (𝑋, 𝜃, 𝐾) is  T0-

Čℱ-scs. 

 

Theorem 5. Let (𝑋, 𝜃, 𝐾) be a 𝑇0- Čℱ-scs, then for any two distinct fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, 𝜃(𝑥𝑡
ℎ) ≠

𝜃(𝑦𝑠
ℎ′). 

Proof. Let (𝑋, 𝜃, 𝐾) be a 𝑇0-Čℱ-scs, and let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two distinct fuzzy soft points. Suppose that 

𝜃(𝑥𝑡
ℎ) = 𝜃(𝑦𝑠

ℎ′). Since 𝑥𝑡
ℎ ∈̃ 𝜃(𝑥𝑡

ℎ) and 𝑦𝑠
ℎ′ ∈̃ 𝜃(𝑦𝑠

ℎ′).  Then from hypothesis, 𝑥𝑡
ℎ ∈̃ 𝜃(𝑦𝑠

ℎ′) and 

𝑦𝑠
ℎ′ ∈̃  𝜃(𝑥𝑡

ℎ). This implies (𝑋, 𝜃, 𝐾) is not 𝑇0- Čℱ-scs, which is a contradiction. Hence, 𝜃(𝑥𝑡
ℎ) ≠ 𝜃(𝑦𝑠

ℎ′).∎ 

 

The converse of above theorem is not true, as the following example show. 

 

Example 5.  Let 𝑋={𝑎, 𝑏}, 𝐾 = {ℎ}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
  
 

  
 

0̅𝐾                                       𝑖𝑓   𝜆𝐴 = 0̅𝐾 ,              

 {(ℎ, 𝑎0.2 ∨ 𝑏0.1)}               𝑖𝑓   𝜆𝐴 ⊆ 𝑎0.2
ℎ ,                

 {(ℎ, 𝑎0.1 ∨ 𝑏0.2)}               𝑖𝑓   𝜆𝐴 ⊆ 𝑏0.2
ℎ ,                 

              

 𝜆𝐴                                       𝑖𝑓   𝜆𝐴 ∈ {𝑎𝑡
ℎ;  0.2 < 𝑡 ≤ 1},   

 𝜆𝐴                                      𝑖𝑓   𝜆𝐴 ∈ {𝑏𝑠
ℎ; 0.2 < 𝑠 ≤ 1},   

𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑏𝑠

ℎ)                           𝑖𝑓   𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑏𝑠) ;  𝑡, 𝑠 ∈ 𝐼0}.

 

 

Then (𝑋, 𝜃, 𝐾) is  Čℱ-scs. It is clear that from the definition of 𝜃, 𝜃(𝑎𝑡
ℎ) ≠ 𝜃(𝑏𝑠

ℎ) for any two-distinct 

fuzzy soft points 𝑎𝑡
ℎ and 𝑏𝑠

ℎ. However, (𝑋, 𝜃, 𝐾) is not 𝑇0-Čℱ-scs, since there exist two distinct fuzzy soft 

point 𝑎0.1
ℎ  and 𝑏0.1

ℎ  such that 𝑎0.1
ℎ ∈̃ 𝜃(𝑏0.1

ℎ ) and  𝑏0.1
ℎ ∈̃ 𝜃(𝑎0.1

ℎ ).   
   

Next, we show that 𝑇0 is hereditary property on  Čℱ-scs's. 

 

Theorem 6.  A Čℱ-sc subspace of a  𝑇0-Čℱ-scs, is a  𝑇0-Čℱ-sc subspace. 
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Proof. Let (𝑋, 𝜃, 𝐾) be a 𝑇0-Čℱ-scs and (𝑉, 𝜃𝑉 , 𝐾) be a Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′be any 

two-distinct fuzzy soft points in (𝑉, 𝜃𝑉 , 𝐾). Since  ℱss(𝑉, 𝐾) ⊆ ℱss(X,𝐾), then 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ are distinct fuzzy 

soft points in ℱss(X,𝐾). Since (𝑋, 𝜃, 𝐾) is  𝑇0-�̌�-fscs. Then 𝑥𝑡
ℎ ∉̃ 𝜃(𝑦𝑠

ℎ′) or 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝑥𝑡

ℎ). This implies 

either 𝑥𝑡
ℎ ∉̃ 𝜃(𝑦𝑠

ℎ′)⋂�̅�𝐾 or 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝑥𝑡

ℎ)⋂�̅�𝐾. Then 𝑥𝑡
ℎ ∉̃ 𝜃𝑉(𝑦𝑠

ℎ′) or 𝑦𝑠
ℎ′ ∉̃ 𝜃𝑉(𝑥𝑡

ℎ). Hence (𝑉, 𝜃𝑉, 𝐾)  is 

 𝑇0-Čℱ-sc subspace. ∎ 

 

Definition 18. An associative fsts (𝑋, 𝜏𝜃, 𝐾) of �̌�ℱ-fscs (𝑋, 𝜃, 𝐾) is said to be T0-fsts, if for every two 

distinct fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, either 𝑥𝑡
ℎ ∉̃ 𝜏𝜃-cl(𝑦𝑠

ℎ′) or 𝑦𝑠
ℎ′ ∉̃ 𝜏𝜃-cl(𝑥𝑡

ℎ). 
 

The next theorem give the relationship between the associative fsts (𝑋, 𝜏𝜃, 𝐾) which is T0-fsts and �̌�ℱ-fscs 
(𝑋, 𝜃, 𝐾). 
 

Theorem 7.  If (𝑋, 𝜏𝜃, 𝐾) is a 𝑇0-fsts, then (𝑋, 𝜃, 𝐾) is also 𝑇0-Čℱ-scs. 

 

Proof. Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two distinct fuzzy soft point in (𝑋, 𝜃, 𝐾). Since (𝑋, 𝜏𝜃, 𝐾) is a  𝑇0-fsts, then 

𝑥𝑡
ℎ ∉̃ 𝜏𝜃-𝑐𝑙(𝑦𝑠

ℎ′) or 𝑦𝑠
ℎ′ ∉̃ 𝜏𝜃-𝑐𝑙(𝑥𝑡

ℎ). By Theorem 4 we get, 𝑥𝑡
ℎ ∉̃ 𝜃(𝑦𝑠

ℎ′) or 𝑦𝑠
ℎ′ ∉̃ 𝜃( 𝑥𝑡

ℎ). This implies 

(𝑋, 𝜃, 𝐾) is 𝑇0-�̌�ℱ-scs.∎ 

 

The converse Theorem 7 is not true, as we shown in the following example. 

 

Example 6.  Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ1, ℎ2}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

 

𝜃( 𝜆𝐴) =

{
 
 
 
 
 
 

 
 
 
 
 
 

 

0̅𝐾                                   𝑖𝑓          𝜆𝐴 = 0̅𝐾 ,                                                                    

 {(ℎ1, 𝑎1), (ℎ2, 𝑏1) }                 𝑖𝑓          𝜆𝐴 ⊆ 𝑎1
ℎ1 ,                                                                                

{(ℎ1, 𝑏1), (ℎ2, 𝑎1)}                  𝑖𝑓           𝜆𝐴 ⊆ 𝑏1
ℎ1 ,                                                                               

 

{(ℎ1, 𝑎1), (ℎ2, 𝑎1)}                 𝑖𝑓           𝜆𝐴 ⊆ 𝑎1
ℎ2 ,                                                                                

{(ℎ1, 𝑏1), (ℎ2, 𝑏1)}                 𝑖𝑓            𝜆𝐴 ⊆ 𝑏1
ℎ2 ,                                                                                

{(ℎ1, 𝑎1), (ℎ2, 𝑎1 ∨ 𝑏1)}      𝑖𝑓    𝜆𝐴 ⊆ {(ℎ1, 𝑎1), (ℎ2, 𝑎1)};   𝜆𝐴 ∉ {𝑎𝑡
ℎ𝑖 , 𝑖 = 1,2, 𝑡 ∈ 𝐼0},        

 {(ℎ1 , 𝑎1 ∨ 𝑏1), (ℎ2, 𝑏1)}       𝑖𝑓    𝜆𝐴 ⊆ {(ℎ1, 𝑎1), (ℎ2, 𝑏1)};   𝜆𝐴 ∉ {𝑎𝑡
ℎ1 , 𝑏𝑠

ℎ2;  𝑡, 𝑠 ∈ 𝐼0},            

{(ℎ1, 𝑎1 ∨ 𝑏1), (ℎ2, 𝑎1)}       𝑖𝑓    𝜆𝐴 ⊆ {(ℎ1, 𝑏1), (ℎ2, 𝑎1)};   𝜆𝐴 ∉ {𝑎𝑡
ℎ2 , 𝑏𝑠

ℎ1;  𝑡, 𝑠 ∈ 𝐼0},           

{(ℎ1, 𝑏1), (ℎ2, 𝑎1 ∨ 𝑏1)}        𝑖𝑓     𝜆𝐴 ⊆ {(ℎ1, 𝑏1), (ℎ2, 𝑏1)};   𝜆𝐴 ∉ { 𝑏𝑠
ℎ𝑖; 𝑖 = 1,2, 𝑠 ∈ 𝐼0},         

   1̅𝐾                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                 

 

 

Then (𝑋, 𝜃, 𝐾) is  𝑇0-Čℱ-scs. But (𝑋, 𝜏𝜃, 𝐾) is not  𝑇0-fsts, because 𝜏𝜃 ={1̅𝐾 −  𝜆𝐴: 𝜃( 𝜆𝐴) =  𝜆𝐴} ={0̅𝐾 , 1̅𝐾}. 
 

Definition 19.  A �̌�-fscs (𝑋, 𝜃, 𝐾) is said to be  T1-Čℱ-scs, if for every two distinct fuzzy soft points 𝑥𝑡
ℎ and 

𝑦𝑠
ℎ′ we have  𝑥𝑡

ℎ ∉̃ 𝜃(𝑦𝑠
ℎ′) and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝑥𝑡
ℎ). 

 

Example 7. Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ1, ℎ2}, and let 𝜆𝐴
∗ ⊆ ℱss(X,𝐾) such that 𝜆𝐴

∗={(ℎ1,𝑎𝑡1 ∨ 𝑏𝑠1),( ℎ2, 𝑎𝑡2 ∨ 𝑏𝑠2); 

𝑡1, 𝑡2, 𝑠1, 𝑠2 ∈ 𝐼0}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
 
 
 
 

 
 
 
 

0̅𝐾                                                                                     𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                      

 𝑎1
ℎ1                                                                                    𝑖𝑓  𝜆𝐴 ⊆ 𝑎1

ℎ1 ,                                        

𝑎1
ℎ2                                                                                     𝑖𝑓  𝜆𝐴  ⊆ 𝑎1

ℎ2 ,                                        

 

 𝑏1
ℎ1                                                                                  𝑖𝑓  𝜆𝐴 ⊆ 𝑏1

ℎ1 ,                                          

𝑏0.9
ℎ2                                                                                     𝑖𝑓  𝜆𝐴  ∈ {𝑏𝑠

ℎ2 , 0 < 𝑠 <0.9},                 

 𝑏1
ℎ2                                                                                   𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠

ℎ2 , 0.9 ≤  𝑠 ≤ 1},              

  {(ℎ1, 𝜃(𝑎𝑡1
ℎ1) ∪ 𝜃(𝑏𝑠1

ℎ1)) , (ℎ2, 𝜃(𝑎𝑡2
ℎ2) ∪ 𝜃(𝑏𝑠2

ℎ2))} 𝑖𝑓  𝜆𝐴 ∈  𝜆𝐴
∗  .                                              
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Then (𝑋, 𝜃, 𝐾) is 𝑇1-Čℱ-scs. Since for any two distinct fuzzy soft points 𝑎𝑡
ℎ and 𝑏𝑠

ℎ′ we have 𝑎𝑡
ℎ ∉̃ 𝜃(𝑏𝑠

ℎ′) 

and 𝑏𝑠
ℎ′ ∉̃ 𝜃(𝑎𝑡

ℎ).   
 

Proposition 5.  Every  𝑇1-Čℱ-scs is  𝑇0-Čℱ-scs. 

 

Proof. Follows directly from the definition of  𝑇1- Čℱ-scs. ∎ 

 

The converse of Proposition 5 is not true, as seen in the following example. 

 

Example 8.  Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
 
 

 
 0̅𝐾                    𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                                                            

𝑎𝑡+0.1
ℎ                𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡

ℎ , 0 < 𝑡 < 0.9},                                                    

𝑎1
ℎ                     𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡

ℎ , 0.9 ≤ 𝑡 ≤ 1} ,                                                  

 

  1̅𝐾                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                             

 

 

Then (𝑋, 𝜃, 𝐾) is T0-Čℱ-scs. Since for any two distinct fuzzy soft points 𝑎𝑡
ℎ and 𝑏𝑠

ℎ, t, s ∈(0,1]. We have, 

𝑏𝑠
ℎ ∉̃ 𝜃(𝑎𝑡

ℎ). However, it is not  𝑇1- Čℱ-scs because 𝑎𝑡
ℎ ∈̃ 𝜃(𝑏𝑠

ℎ)=1̅𝐾.  

 

Theorem 8.  If every fuzzy soft point in a Čℱ-scs (𝑋, 𝜃, 𝐾) is closed-fss, then (𝑋, 𝜃, 𝐾) is  𝑇1- Čℱ-scs. 

 

Proof: Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′be any two distinct fuzzy soft points in (𝑋, 𝜃, 𝐾). From hypothesis, we have 

𝜃(𝑥𝑡
ℎ)=𝑥𝑡

ℎ  and  𝜃(𝑦𝑠
ℎ′) = 𝑦𝑠

ℎ′. This implies 𝑥𝑡
ℎ ∉̃ 𝜃(𝑦𝑠

ℎ′) and 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝑥𝑡

ℎ). Thus,  (𝑋, 𝜃, 𝐾) is a 𝑇1- Čℱ-

scs. ∎ 

 

 The converse of  above theorem is not true in general as we seen in the following example. 

 

 Example 9. In Example 7,  (𝑋, 𝜃, 𝐾) is  𝑇1- Čℱ-scs, yet there exists fuzzy soft point 𝑏𝑜.6
ℎ2  such that 𝜃(𝑏𝑜.6

ℎ2 ) =

𝑏𝑜.9
ℎ2 . 

 

Theorem 9.  A �̌�-fsc subspace of  𝑇1-Čℱ-scs is  𝑇1- Čℱ-sc subspace. 

 

Proof. Similar to the proof of Theorem 6. ∎  

 

Definition 20.  An associative fsts (𝑋, 𝜏𝜃, 𝐾) of  Čℱ-scs, (𝑋, 𝜃, 𝐾) is said to be  T1-fsts, if for every two 

distinct fuzzy soft points 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′, we have  𝑥𝑡
ℎ ∉̃ 𝜏𝜃-cl(𝑦𝑠

ℎ′) and 𝑦𝑠
ℎ′ ∉̃ 𝜏𝜃-cl(𝑥𝑡

ℎ). 
 

Theorem 10.  If (𝑋, 𝜏𝜃, 𝐾) is a 𝑇1-fsts , then (𝑋, 𝜃, 𝐾) is also 𝑇1- Čℱ-scs.  

 

Proof. Similar  to the proof of Theorem 7.  ∎ 

 

Proposition 6.  If (𝑋, 𝜃1, 𝐾) is  𝑇𝑖-Čℱ-scs and 𝜃2 is a �̌�-fsco on 𝑋 such that 𝜃2 is coarser than 𝜃1, then 

(𝑋, 𝜃2, 𝐾) is 𝑇𝑖- Čℱ-scs, 𝑖 = 0,1.  

 

Proof. We prove the proposition when 𝑖 = 1, and the proof is similar for 𝑖 = 0. Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two 

distinct fuzzy soft points in (𝑋, 𝜃2, 𝐾). From hypothesis  (𝑋, 𝜃1, 𝐾) is  𝑇1- Čℱ-scs, this yield  𝑥𝑡
ℎ ∉̃ 𝜃1(𝑦𝑠

ℎ′) 

and 𝑦𝑠
ℎ′ ∉̃ 𝜃1(𝑥𝑡

ℎ). Since 𝜃2 is coarser than 𝜃1, that means 𝜃2(𝜆𝐴) ⊆  𝜃1(𝜆𝐴) for all 𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾). This 

implies,  𝑥𝑡
ℎ ∉̃ 𝜃2(𝑦𝑠

ℎ′) and 𝑦𝑠
ℎ′ ∉̃ 𝜃2(𝑥𝑡

ℎ). Hence, (𝑋, 𝜃2, 𝐾) is 𝑇1- Čℱ-scs. ∎ 
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5. 𝐓𝟐-�̌�ECH FUZZY SOFT CLOSURE SPACES  

 

In this section we define  𝑇2- Čℱ-scs and other types, namely, semi- (respectively, pseudo and Uryshon) 

 𝑇2- Čℱ-scs, the properties of each type are discussed as in Section 4. In addition, the relationships between 

separation axioms that introduced in the current section and in the previous section are obtained.   

 

Definition 21. A Čℱ-scs, (𝑋, 𝜃, 𝐾) is said to be T2- Čℱ-scs, if for every two distinct fuzzy soft points 

𝑥𝑡
ℎ  and 𝑦𝑠

ℎ′, there exist disjoint open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵. 

 

Example 10. Let 𝑋={𝑎, 𝑏, 𝑐}, 𝐾={ℎ}. Define 𝜃: ℱss(X, 𝐾) → ℱss(X,𝐾) as follows: 

 

𝜃( 𝜆𝐴) =

{
 
 
 
 
 
 

 
 
 
 
 
 

0̅𝐾                                   𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                                    

{(ℎ, 𝑎𝑡+0.1 ∨ 𝑏𝑡+0.1)}       𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡
ℎ;  0 < 𝑡 < 0.9},                              

{(ℎ, 𝑎1 ∨ 𝑐1)}                       𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡
ℎ;  0.9 ≤ 𝑡 ≤ 1},                             

  

{(ℎ, 𝑏𝑠+0.1)}                   𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠
ℎ;  0 < 𝑠 < 0.9},                             

{(ℎ, 𝑏1)}                      𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠
ℎ;  0.9 ≤ 𝑠 ≤ 1},                           

{(ℎ, 𝑐𝑟+0.1)}                       𝑖𝑓  𝜆𝐴 ∈ {𝑐𝑟
ℎ;  0 < 𝑟 < 0.9},                               

 {(ℎ, 𝑐1)}                       𝑖𝑓  𝜆𝐴 ∈ {𝑐𝑟
ℎ; 0.9 ≤ 𝑟 ≤ 1 },                               

𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑏𝑠

ℎ)                   𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑏𝑠); 𝑡, 𝑠 ∈ 𝐼0},                         

 𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑐𝑟

ℎ)                  𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑐𝑟); 𝑡, 𝑟 ∈ 𝐼0} ,                         

  𝜃(𝑏𝑠
ℎ)⋃𝜃(𝑐𝑟

ℎ)                   𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑏𝑠 ∨ 𝑐𝑟); 𝑠, 𝑟 ∈ 𝐼0},                             

𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑏𝑠

ℎ)⋃𝜃(𝑐𝑟
ℎ)       𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑏𝑠 ∨ 𝑐𝑟); 𝑡, 𝑠, 𝑟 ∈ 𝐼0}.                 

 

 

Then (𝑋, 𝜃, 𝐾) is Čℱ-scs. and (𝑋, 𝜃, 𝐾) is  𝑇2- Čℱ-scs. To explain that we have three cases for distinct fuzzy 

soft points as follows: 

 

Case (1). 𝑎𝑡
ℎ, 𝑏𝑠

ℎ are distinct fuzzy soft points, it follows there exist disjoint open-fss's 𝜆𝐴={(ℎ, 𝑎1)}, 
𝜇𝐵={(ℎ, 𝑏1)} such that 𝑎𝑡

ℎ ∈̃ 𝜆𝐴 and 𝑏𝑠
ℎ ∈̃ 𝜇𝐵. 

 

Case (2). 𝑎𝑡
ℎ, 𝑐𝑠

ℎ are distinct fuzzy soft points, it follows there exist disjoint open-fss's 𝜆𝐴={(ℎ, 𝑎1)}, 
𝜇𝐵={(ℎ, 𝑐1)} such that 𝑎𝑡

ℎ ∈̃ 𝜆𝐴 and 𝑐𝑠
ℎ ∈̃ 𝜇𝐵. 

 

Case (3). 𝑏𝑠
ℎ, 𝑐𝑠

ℎ are distinct fuzzy soft points, it follows there exist disjoint open-fss's 𝜆𝐴={(ℎ, 𝑏1)}, 
𝜇𝐵={(ℎ, 𝑐1)} such that 𝑎𝑡

ℎ ∈̃ 𝜆𝐴 and 𝑐𝑠
ℎ ∈̃ 𝜇𝐵. Therefore, (𝑋, 𝜃, 𝐾) is  𝑇2- Čℱ-scs. 

 

Remark 2.  If  (𝑋, 𝜃, 𝐾) is  𝑇2-Čℱ-scs, then (𝑋, 𝜃, 𝐾) need not to be  𝑇1- Čℱ-scs. To see that, in Example 

10, (𝑋, 𝜃, 𝐾) is  𝑇2- Čℱ-scs but it is not (𝑋, 𝜃, 𝐾) is  𝑇1- Čℱ-scs. Since there exist 𝑎0.5
ℎ   and 𝑏0.5

ℎ  are distinct 

fuzzy soft points, and 𝑏0.5
ℎ ∈̃ 𝜃(𝑎0.5

ℎ ). 
 

In order to study the hereditary property in Čℱ-scs's, we need first to give the following lemmas. 

 

Lemma 1. Let (𝑋, 𝜃, 𝐾) be a Čℱ-scs  and (𝑉, 𝜃𝑉 , 𝐾) be a Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). Then for any 𝜆𝐴 ∈
ℱss(X,𝐾), we have 

(1̅𝐾 −𝜆𝐴)⋂�̅�𝐾 = �̅�𝐾  − (𝜆𝐴⋂�̅�𝐾).  (4) 

 

Proof. Let 𝜆𝐴 ∈ ℱss(X,𝐾). From the definition of �̅�𝐾, it is clear that for any ℎ ∈ 𝐾 and 𝑥 ∈ 𝑉, 𝜆𝐴⋂�̅�𝐾 = 𝜆𝐴 

. Now, for any ℎ ∈ 𝐾 and 𝑥 ∈ 𝑉 

[�̅�𝐾 − (𝜆𝐴⋂�̅�𝐾)](ℎ)=( �̅�𝐾 − 𝜆𝐴) (ℎ) ∈ 𝐼𝑋. Now  

( �̅�𝐾 − 𝜆𝐴) (ℎ) (x)  = (1̅𝑉 −𝜆𝐴(ℎ))(𝑥) 
                              = ((1̅𝑋 −𝜆𝐴(ℎ)) ∩ 1̅𝑉)(𝑥)  
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                              = (1̅𝑉 −𝜆𝐴) ∩ �̅�𝐾. ∎ 

 

Lemma 2. Let (𝑋, 𝜃, 𝐾) be a Čℱ-scs and let (𝑉, 𝜃𝑉, 𝐾) be a closed Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). If 𝜆𝐴 is an 

open-fss of (X, 𝜃, 𝐾) then 𝜆𝐴⋂�̅�𝐾 is also open-fss in (𝑉, 𝜃𝑉 , 𝐾). 
 

Proof. Let 𝜆𝐴 be an open-fss in (X, 𝜃, 𝐾). Then 1̅𝐾 − 𝜆𝐴 is a closed-fss in (X, 𝜃, 𝐾). Since �̅�𝐾 is a closed 

fuzzy soft set in (X, 𝜃, 𝐾), then (1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾 is a closed-fss in X. That means, 𝜃((1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾)=(1̅𝐾 −
𝜆𝐴) ∩ �̅�𝐾. From Lemma 1, we have (1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾= �̅�𝐾 −(𝜆𝐴⋂�̅�𝐾). To complete the prove we must show 

that 𝜃𝑉(�̅�𝐾 − (𝜆𝐴⋂�̅�𝐾))= �̅�𝐾 −(𝜆𝐴⋂�̅�𝐾). Now, 

 𝜃𝑉(�̅�𝐾 − (𝜆𝐴⋂�̅�𝐾)) = �̅�𝐾 ∩ 𝜃(�̅�𝐾 −(𝜆𝐴⋂�̅�𝐾))        (By Theorem 2) 

                                 = �̅�𝐾 ∩ 𝜃((1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾)     (By Lemma 1)   

                                 = �̅�𝐾 ∩ ((1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾)        (since 𝜃((1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾) = (1̅𝐾 − 𝜆𝐴) ∩ �̅�𝐾) 

                                 = �̅�𝐾 ∩ (�̅�𝐾 − (𝜆𝐴⋂�̅�𝐾))           (By Lemma 1) 

                                 = �̅�𝐾 − (𝜆𝐴⋂�̅�𝐾). 
 Thus, 𝜆𝐴⋂�̅�𝐾 is an open-fss in (𝑉, 𝜃𝑉, 𝐾) . ∎ 

 

Theorem 11. Let (𝑋, 𝜃, 𝐾) be a 𝑇2- Čℱ-scs and let (𝑉, 𝜃𝑉 , 𝐾) be a closed  Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). 
Then (𝑉, 𝜃𝑉, 𝐾) is a 𝑇2-Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). 
 

Proof. Let 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′be any two distinct fuzzy soft points in (𝑉, 𝜃𝑉 , 𝐾) . Then 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′are distinct fuzzy 

soft point in (𝑋, 𝜃, 𝐾). Since (𝑋, 𝜃, 𝐾) is a 𝑇2-Čℱ-scs, there exist two disjoint open-fss's 𝜆𝐴 and 𝜇𝐵 such 

that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵. Consequently, 𝑥𝑡
ℎ ∈̃ 𝜆𝐴⋂�̅�𝐾, 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵⋂�̅�𝐾 and (𝜆𝐴⋂�̅�𝐾)⋂ (𝜇𝐵⋂�̅�𝐾) = 0̅𝐾. By 

Lemma 2, 𝜆𝐴⋂�̅�𝐾 and  𝜇𝐵⋂�̅�𝐾 are open-fss's in (𝑉, 𝜃𝑉, 𝐾). Hence (𝑉, 𝜃𝑉, 𝐾) is a 𝑇2-Čℱ-sc subspace of 

(𝑋, 𝜃, 𝐾). ∎ 

 

Definition 22.  An associative fsts (𝑋, 𝜏𝜃, 𝐾) of (𝑋, 𝜃, 𝐾) is said to be T2-fsts, if for every two distinct fuzzy 

soft points  𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, there exist an open-fss's 𝜆𝐴 and 𝜇𝐵 in (𝑋, 𝜏𝜃, 𝐾) such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴,  𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 

𝜆𝐴 ⋂𝜇𝐵=0̅𝐾. 

 

Theorem 12. An associative fsts (𝑋, 𝜏𝜃, 𝐾) is 𝑇2-fsts of (𝑋, 𝜃, 𝐾) if and only if  (𝑋, 𝜃, 𝐾) is 𝑇2-Čℱ-scs. 

 

Proof. Suppose (𝑋, 𝜏𝜃, 𝐾) is 𝑇2-fsts and let 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′ be two distinct fuzzy soft points in 𝑋. Since 

(𝑋, 𝜏𝜃, 𝐾) is 𝑇2-fsts, there exist 𝜆𝐴 and 𝜇𝐵 open-fss's in (𝑋, 𝜏𝜃, 𝐾) such that 𝑥𝑡
ℎ ∈̃  𝜆𝐴, 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 

𝜆𝐴⋂𝜇𝐵=0̅𝐾. Since 𝜆𝐴 and 𝜇𝐵 are open-fss's in (𝑋, 𝜏𝜃, 𝐾), then 𝜏𝜃-int(𝜆𝐴) =𝜆𝐴 and 𝜏𝜃-int(𝜇𝐵)= 𝜇𝐵. From 

Theorem 4, we get Int(𝜆𝐴)= 𝜆𝐴 and Int(𝜇𝐵)= 𝜇𝐵. Thus, 𝜆𝐴 and 𝜇𝐵 are open-fss's in (𝑋, 𝜃, 𝐾) such that 

𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 𝜆𝐴⋂𝜇𝐵=0̅𝐾. Hence, (𝑋, 𝜃, 𝐾) is 𝑇2-Čℱ-scs.  
 Conversely, similar to first direction.   ∎ 

 

Lemma 3. Let (𝑋, 𝜃1, 𝐾), (𝑋, 𝜃2, 𝐾) be Čℱ-scs's. For any 𝜆𝐴 ∈ ℱ𝑠𝑠(𝑋, 𝐾), if 𝜃1(𝜆𝐴) ⊆ 𝜃2(𝜆𝐴), then 

𝐼𝑛𝑡2(𝜆𝐴) ⊆ 𝐼𝑛𝑡1(𝜆𝐴).  
 

Proof. Let 𝜆𝐴 ∈ ℱss(X,𝐾). From hypothesis, 𝜃1(1̅𝐾 − 𝜆𝐴) ⊆ 𝜃2(1̅𝐾 − 𝜆𝐴), implies 1̅𝐾 − 𝜃2(1̅𝐾 − 𝜆𝐴) ⊆
1̅𝐾 − 𝜃1(1̅𝐾 − 𝜆𝐴)). Therefore, Int2(𝜆𝐴) ⊆ Int1(𝜆𝐴). ∎ 

 

Proposition 7.  If (𝑋, 𝜃1, 𝐾) is 𝑇2-Čℱ-scs and 𝜃2 is coarser that 𝜃1. Then (𝑋, 𝜃2, 𝐾) is  𝑇2-Čℱ-scs. 
 

Proof. Let 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′be any two distinct fuzzy soft points in X. Since (𝑋, 𝜃1, 𝐾) is a 𝑇2-Čℱ-scs, then there 

exist two disjoint open-fss's 𝜆𝐴 and 𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵. That is mean Int1(𝜆𝐴) = 𝜆𝐴 and 

Int1(𝜇𝐵) = 𝜇𝐵. Since 𝜃2 is coarser than 𝜃1, this yields by Lemma 3, 𝜆𝐴 ⊆ Int1(𝜆𝐴) ⊆ Int2(𝜆𝐴) ⊆ 𝜆𝐴 and 

𝜇𝐵 ⊆ Int1(𝜇𝐵) ⊆ Int2(𝜇𝐵) ⊆ 𝜇𝐵. Therefore, there exist two disjoint open-fss's 𝜆𝐴 and 𝜇𝐵 in (𝑋, 𝜃2, 𝐾) 

such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵. Hence, (𝑋, 𝜃2, 𝐾) is 𝑇2-Čℱ-scs. ∎ 
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Definition 23.  A Čℱ-scs (𝑋, 𝜃, 𝐾) be a is said to be semi T2-Čℱ-scs, if for every two distinct fuzzy soft 

points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, either there exists an open-fss 𝜆𝐴 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) or there exists an 

open-fss 𝜇𝐵 such that 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). 
 

Example 11.  Let 𝑋={𝑎, 𝑏}, K={ℎ}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃(𝜆𝐴) =

{
 
 

 
 

0̅𝐾                       𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                                  

 𝑏1
ℎ                        𝑖𝑓  𝜆𝐴 ⊆ 𝑏1

ℎ,                                                     
 

 𝑎𝑡+0.1
ℎ                  𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡

ℎ , 0 < 𝑡 < 0.9},                            

 𝑎1
ℎ                       𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡

ℎ  , 0 ≤ 𝑡 ≤  1},                               

𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑏𝑠

ℎ)            𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑏𝑠) ;  𝑡, 𝑠 ∈ 𝐼0}.                         

 

 

(𝑋, 𝜃, 𝐾) is semi 𝑇2-Čℱ-scs. Since  𝑎𝑡
ℎ, 𝑏𝑠

ℎ are distinct fuzzy soft points, there exists an open fuzzy soft set 

𝜆𝐴 = 𝑎1
ℎ such that 𝑎𝑡

ℎ ∈̃ 𝜆𝐴 and 𝑏𝑡
ℎ ∉̃ 𝜃(𝜆𝐴)= 𝑎𝑡

ℎ. 

 

Proposition 8.  Every semi 𝑇2-Čℱ-scs is 𝑇0-Čℱ-scs. 
 

Proof.  Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two distinct fuzzy soft points in (𝑋, 𝜃, 𝐾). From (𝑋, 𝜃, 𝐾) is semi 𝑇2-Čℱ-scs, 

there exists an open-fss 𝜆𝐴 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) or there exists an open-fss 𝜇𝐵 such that 

𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). This implies 𝑥𝑡
ℎ ∈̃ 𝜃(𝑥𝑡

ℎ) ⊆ 𝜃(𝜆𝐴)  and 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝑥𝑡

ℎ) or 𝑦𝑠
ℎ′ ∈̃  𝜃(𝑦𝑠

ℎ′) ⊆

𝜃(𝜇𝐵 ) and 𝑥𝑡
ℎ ∉̃  𝜃(𝑦𝑠

ℎ′). Hence (𝑋, 𝜃, 𝐾) is a 𝑇0-Čℱ-scs. ∎ 

 

The converse of above proposition is not true. 

 

Example 12. Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ1ℎ2, }and let 𝜆𝐴
∗ ⊆ ℱss(X,𝐾) such that 𝜆𝐴

∗={(ℎ1,𝑎𝑡1 ∨ 𝑏𝑠1),( ℎ2, 𝑎𝑡2 ∨ 𝑏𝑠2); 

𝑡1, 𝑡2, 𝑠1, 𝑠2 ∈ 𝐼0}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
 
 
 
 

 
 
 
 

0̅𝐾                    𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                                                                       

 𝑎1
ℎ1                    𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡1

ℎ1;   𝑡1 ∈ 𝐼0},                                                                      

  𝑎1
ℎ2                   𝑖𝑓  𝜆𝐴 ∈ {𝑎𝑡2

ℎ2;  𝑡2 ∈ 𝐼0},                                                                       

 

𝑏𝑠1+0.2
ℎ1               𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠1

ℎ1;  0 < 𝑠1  <  0.8},                                                          

 𝑏1
ℎ1                   𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠1

ℎ1;  0.8 ≤  𝑠1 ≤ 1},                                                            

  {(ℎ1, 𝜃(𝑎𝑡1
ℎ1) ∪ 𝜃(𝑏𝑠1

ℎ1)) , (ℎ2, 𝜃(𝑎𝑡2
ℎ2) ∪ 𝜃(𝑏𝑠2

ℎ2))}  𝑖𝑓  𝜆𝐴 ∈  𝜆𝐴
∗  .                            

 

 

Then (𝑋, 𝜃, 𝐾) is a 𝑇0- Čℱ-scse (see the details in Example 4.4). But (𝑋, 𝜃, 𝐾) is not semi 𝑇2-Čℱ-scs, since 

there exist 𝑎0.5
ℎ1 , 𝑏0.5

ℎ2  distinct fuzzy soft points such that  for any open-fss  𝜆𝐴, we have 𝑎0.5
ℎ1  ∈̃ 𝜆𝐴 and 

 𝑏0.5
ℎ2  ∈̃ 𝜃( 𝜆𝐴)  and for any open-fss 𝜇𝐵, we have 𝑏0.5

ℎ2  ∈̃ 𝜇𝐵 , 𝑎0.5
ℎ1  ∈̃ 𝜃(𝜇𝐵).  

 

Theorem 13. Let (𝑋, 𝜃, 𝐾) be a semi 𝑇2-Čℱ-scs and let (𝑉, 𝜃𝑉 , 𝐾) be a closed  �̌�-fsc subspace of (𝑋, 𝜃, 𝐾). 
Then (𝑉, 𝜃𝑉, 𝐾) is a semi 𝑇2-Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). 
 

Proof. Let 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′ be any two distinct fuzzy soft points in (𝑉, 𝜃𝑉, 𝐾). Then 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′are distinct fuzzy 

soft points in (𝑋, 𝜃, 𝐾). Since (𝑋, 𝜃, 𝐾) is a semi 𝑇2-Čℱ-scs, then either there exists an open-fss 𝜆𝐴 such 

that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) or there  exists an open-fss 𝜇𝐵 such that  𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). Now, if 

𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴), then by Lemma 2,  𝑥𝑡
ℎ ∈̃ 𝜆𝐴⋂�̅�𝐾 which is open-fss in (𝑉, 𝜃𝑉 , 𝐾) .  That is mean 

we find an open-fss 𝜆𝐴⋂�̅�𝐾 in (𝑉, 𝜃𝑉 , 𝐾) contains 𝑥𝑡
ℎ. To complete the proof, we must show 

𝑦𝑠
ℎ′ ∉̃ 𝜃𝑉(𝜆𝐴⋂�̅�𝐾). It is clear that from the definition of 𝜃𝑉 we have,  𝜃𝑉(𝜆𝐴⋂�̅�𝐾)= �̅�𝐾⋂𝜃(𝜆𝐴⋂�̅�𝐾) ⊆

�̅�𝐾⋂𝜃(𝜆𝐴)⋂𝜃(�̅�𝐾) = �̅�𝐾⋂𝜃(𝜆𝐴). And since 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝜆𝐴), then we have 𝑦𝑠

ℎ′ ∉̃ 𝜃𝑉(𝜆𝐴⋂�̅�𝐾). Similarly, if 
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there exists an open-fss 𝜇𝐵 such that  𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). Hence, (𝑉, 𝜃𝑉, 𝐾) is a semi 𝑇2-Čℱ-sc 

subspace of (𝑋, 𝜃, 𝐾).  ∎ 

 

Definition 24.  An associative fsts (𝑋, 𝜏𝜃, 𝐾) of (𝑋, 𝜃, 𝐾) is said to be semi 𝑇2-fsts, if for every distinct 

fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, either there exists a 𝜏𝜃-open-fss 𝜆𝐴 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜏𝜃-cl(𝜆𝐴), or 

there exists a 𝜏𝜃-open-fss  𝜇𝐵 such that 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜏𝜃-cl(𝜇𝐵). 
 

Theorem 14.  If (𝑋, 𝜏𝜃, 𝐾) is a semi 𝑇2-fsts, then (𝑋, 𝜃, 𝐾) is also semi 𝑇2-Čℱ-scs. 

 

Proof. Let 𝑥𝑡
ℎ and  𝑦𝑠

ℎ′ be any two distinct fuzzy soft points in (𝑋, 𝜃, 𝐾). From hypothesis, either there 

exists a 𝜏𝜃-open-fss 𝜆𝐴 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜏𝜃-cl(𝜆𝐴), or there exists a 𝜏𝜃-open-fss 𝜇𝐵 such that 

𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜏𝜃-cl(𝜇𝐵).  By Theorem 4, we have the following, either there exists an open-fss 𝜆𝐴 

such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) or there exists an open-fss 𝜇𝐵 such that 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). 
Thus, (𝑋, 𝜃, 𝐾) is a semi 𝑇2- Čℱ-scs. ∎ 

 

Proposition 9.  If (𝑋, 𝜃1, 𝐾) is a semi 𝑇2-Čℱ-scs, 𝜃2coarser than 𝜃1. Then (𝑋, 𝜃2, 𝐾) is semi 𝑇2-Čℱ-scs. 

 

Proof.  Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′be any two distinct fuzzy soft points in X. Since (𝑋, 𝜃1, 𝐾) is semi 𝑇2- Čℱ-scs, then 

either there exist an open-fss 𝜆𝐴 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∉̃ 𝜃1(𝜆𝐴), or  there exist an open-fss 𝜇𝐵 such 

that 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃1(𝜇𝐵).  Suppose, if there exists an open-fss  𝜆𝐴 in (𝑋, 𝜃1, 𝐻)  that is mean 

𝐼𝑛𝑡1(𝜆𝐴) = 𝜆𝐴. Since 𝜃2coarser than 𝜃1, then by Lemma 3, we have  𝐼𝑛𝑡1(𝜆𝐴) ⊆ 𝐼𝑛𝑡2(𝜆𝐴) and that is mean 

there exists an open-fss 𝜆𝐴 in(𝑋, 𝜃2, 𝐾) such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴. On the other hand since 𝑦𝑠

ℎ′ ∉̃ 𝜃1(𝜆𝐴) then 

𝑦𝑠
ℎ′ ∉̃ 𝜃2(𝜆𝐴). This implies (𝑋, 𝜃2, 𝐾) is a semi 𝑇2- Čℱ-scs. Similarly, if there exists an open-fss 𝜇𝐵 such 

that 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and 𝑥𝑡

ℎ ∉̃ 𝜃1(𝜇𝐵).∎ 

 

Definition 25.  A Čℱ-scs (𝑋, 𝜃, 𝐾) be a is said to be pseudo T2- Čℱ-scs, if for every two distinct fuzzy soft 

points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, there exist open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴, 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) and 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵,  

𝑥𝑡
ℎ ∉̃ 𝜃(𝜇𝐵). 

 

Example 13. Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

 

𝜃( 𝜆𝐴) =

{
  
 

  
 

0̅𝐾                 𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                               

  𝜆𝐴                  𝑖𝑓  𝜆𝐴 ∈  {(ℎ, 𝑎1−𝑡 ∨ 𝑏1); 0 ≤ 𝑡 < 1},    

  𝜆𝐴                 𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎1 ∨ 𝑏1−𝑠);  0 ≤ 𝑠 < 1},   

              

 𝜆𝐴               𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡); 0 < 𝑡 ≤ 1},                              

  𝜆𝐴               𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑏𝑠); 0 < 𝑠 ≤ 1},                               

𝜃(𝑎𝑡
ℎ)⋃𝜃(𝑏𝑠

ℎ)   𝑖𝑓  𝜆𝐴 ∈ {(ℎ, 𝑎𝑡 ∨ 𝑏𝑠) ;  𝑡, 𝑠 ∈ 𝐼0}.                            

 

 

Then (𝑋, 𝜃, 𝐾) is the discrete Čℱ-scs. It is clear Čℱ-scs (𝑋, 𝜃, 𝐾) is pseudo 𝑇2- Čℱ-scs, Since for any 𝑎𝑡
ℎ, 

𝑏𝑠
ℎ are distinct fuzzy soft points there exist an open-fss's 𝜆𝐴 = {(ℎ, 𝑎𝑡)} and 𝜇𝐵 = {(ℎ, 𝑏𝑠)}  such that 

𝑎𝑡
ℎ ∈̃ 𝜆𝐴 = {(ℎ, 𝑎𝑡)}, 𝑏𝑠

ℎ ∉̃ 𝜃(𝜆𝐴) =  𝜆𝐴 and  𝑏𝑠
ℎ ∈̃ 𝜇𝐵 = {(ℎ, 𝑏𝑠)} , 𝑎𝑡

ℎ ∉̃ 𝜃(𝜇𝐵) = 𝜇𝐵.  

 

Proposition 10.  Every pseudo T2- Čℱ-scs is semi 𝑇2-Čℱ-scs. 

 

Proof. Follows directly from the definition of  pseudo T2- Čℱ-scs.  ∎ 

 

Proposition 11.  Every pseudo T2- Čℱ-scs is 𝑇1-Čℱ-scs. 

 

Proof. Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′be any two distinct fuzzy soft points in X. From hypothesis (𝑋, 𝜃, 𝐾) is pseudo 𝑇2-

Čℱ-scs, then there exist open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴, 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴) and 𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵,  𝑥𝑡

ℎ ∉̃ 𝜃(𝜇𝐵). 
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Since  𝑥𝑡
ℎ ∈̃ 𝜆𝐴 and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵, then it follows 𝑥𝑡
ℎ ∈̃ 𝜃(𝑥𝑡

ℎ) ⊆ 𝜃(𝜆𝐴) and 𝑦𝑠
ℎ′ ∈̃ 𝜃(𝑦𝑠

ℎ′) ⊆ 𝜃(𝜇𝐵). And since 

𝑦𝑠
ℎ′ ∉̃ 𝜃(𝜆𝐴) and 𝑥𝑡

ℎ  ∉̃ 𝜃(𝜇𝐵), then 𝑦𝑠
ℎ′ ∉̃ 𝜃(𝑥𝑡

ℎ) and 𝑥𝑡
ℎ ∉̃ 𝜃(𝑦𝑠

ℎ′). Hence (𝑋, 𝜃, 𝐾) is a 𝑇1-Čℱ-scs.

∎ 
The next example shows that converse of above proposition is not true. 

 

Example 14.  Let Let 𝑋={𝑎, 𝑏}, K={ℎ1, ℎ2} and let 𝜆𝐴
∗ ⊆ ℱss(X,𝐾) such that 𝜆𝐴

∗={(ℎ1,𝑎𝑡1 ∨ 𝑏𝑠1),( ℎ2, 𝑎𝑡2 ∨

𝑏𝑠2); 𝑡1, 𝑡2, 𝑠1, 𝑠2 ∈ 𝐼0}. Define 𝜃: ℱss(X,𝐾) → ℱss(X,𝐾) as follows: 

𝜃( 𝜆𝐴) =

{
 
 
 
 

 
 
 
 

0̅𝐾                      𝑖𝑓  𝜆𝐴 =  0̅𝐾 ,                                     

 𝑎1
ℎ1                       𝑖𝑓  𝜆𝐴 ⊆ 𝑎1

ℎ1 ,                                       

𝑎1
ℎ2                       𝑖𝑓  𝜆𝐴  ⊆ 𝑎1

ℎ2 ,                                      

 

 𝑏1
ℎ1                       𝑖𝑓  𝜆𝐴 ⊆ 𝑏1

ℎ1 ,                                         

𝑏0.9
ℎ2                       𝑖𝑓  𝜆𝐴  ∈ {𝑏𝑠

ℎ2;  0 < 𝑠 <0.9},             

 𝑏1
ℎ2                       𝑖𝑓  𝜆𝐴 ∈ {𝑏𝑠

ℎ2; 0.9 ≤  𝑠 ≤ 1},             

  {(ℎ1, 𝜃(𝑎𝑡1
ℎ1) ∪ 𝜃(𝑏𝑠1

ℎ1)) , (ℎ2, 𝜃(𝑎𝑡2
ℎ2) ∪ 𝜃(𝑏𝑠2

ℎ2))}  𝑖𝑓  𝜆𝐴 ∈  𝜆𝐴
∗  .                             

 

 

Then (𝑋, 𝜃, 𝐾) is 𝑇1-Čℱ-scs. But (𝑋, 𝜃, 𝐾) is not pseudo 𝑇2-Čℱ-scs. To show that consider 𝑎0.5
ℎ1  and 𝑏0,7

ℎ2   are 

distinct fuzzy soft points. The open-fss's  𝜆𝐴 such that 𝑎0.5
ℎ1  ∈̃ 𝜆𝐴 are: 

1. 𝜆𝐴 = 1̅𝐻, implies 𝑏0.7
ℎ2 ∈̃ 𝜃(1̅𝐻). 

2. 𝜆𝐴 = {(ℎ1, 𝑎1 ∨ 𝑏1), (ℎ1, 𝑏1)}, implies 𝑏0.7
ℎ2 ∈̃ 𝜃(𝜆𝐴). 

3. 𝜆𝐴 = {(ℎ1, 𝑎1), (ℎ2, 𝑎1 ∨ 𝑏1)}, implies 𝑏0.7
ℎ2 ∈̃ 𝜃(𝜆𝐴). 

4. 𝜆𝐴 = {(ℎ1, 𝑎1 ∨ 𝑏1), (ℎ2, 𝑎1)}, implies 𝑏0.7
ℎ2 ∈̃ 𝜃(𝜆𝐴). 

Hence, for all open-fss 𝜆𝐴 such that 𝑎0.5
ℎ1 ∈̃ 𝜆𝐴, we have 𝑏0,7

ℎ2 ∈̃ 𝜃(𝜆𝐴). Thus, (𝑋, 𝜃, 𝐾) is not pseudo 𝑇2-Čℱ-

scs. 

 

Theorem 15.  Let (𝑋, 𝜃, 𝐾) be a pseudo 𝑇2-Čℱ-scs and let (𝑉, 𝜃𝑉 , 𝐾) be a closed �̌�-fsc subspace of 

(𝑋, 𝜃, 𝐾). Then (𝑉, 𝜃𝑉 , 𝐾) is a pseudo 𝑇2-Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). 
 

Proof: Similar of Theorem 13. ∎ 

 

Definition 26. An associative fsts (𝑋, 𝜏𝜃, 𝐾) of (𝑋, 𝜃, 𝐾) is said to be a pseudo T2-fsts, if for every distinct 

fuzzy soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′  there exist 𝜏𝜃-open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴, 𝑦𝑠

ℎ′ ∉̃ 𝜏𝜃-cl(𝜆𝐴) and 

𝑦𝑠
ℎ′ ∈̃ 𝜇𝐵 and  𝑥𝑡

ℎ ∉̃ 𝜏𝜃-cl(𝜇𝐵). 
 

Theorem 16.  If (𝑋, 𝜏𝜃, 𝐾) is a pseudo 𝑇2-fsts, then (𝑋, 𝜃, 𝐾) is also  pseudo 𝑇2-Čℱ-scs. 

 

Proof. Similar of Theorem 14.  ∎ 

 

Proposition 12. If (𝑋, 𝜃1, 𝐾) be a pseudo 𝑇2- Čℱ-scs, 𝜃2coarser than 𝜃1, then (𝑋, 𝜃2, 𝐾) is pseudo 𝑇2- Čℱ-

scs. 

Proof. Similar of proof Proposition 9. ∎    

 

Definition 27.  A �̌� ℱ-scs (𝑋, 𝜃, 𝐾) be a is said to be Uryshon T2- Čℱ-scs, if for every two distinct fuzzy 

soft points 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, there exist open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴,  𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 𝜃(𝜆𝐴) 
⋂𝜃(𝜇𝐵)=0̅𝐾. 

 

Example 15.  Let 𝑋={𝑎, 𝑏}, 𝐾={ℎ}. Define 𝜃: ℱss(X,𝐾) → ℱss(X, 𝐾) as follows: 
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𝜃( 𝜆𝐴) =

{
 
 

 
 0̅𝐾                      𝑖𝑓  𝜆𝐴 = 0̅𝐾 ,                                              

 𝑎1
ℎ                       𝑖𝑓  𝜆𝐴 ⊆ 𝑎1

ℎ ,                                                 
 

 𝑏1
ℎ                       𝑖𝑓  𝜆𝐴 ⊆ 𝑏1

ℎ ,                                                   

  1̅𝐾                       𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒.                                                   

 

 

Then (𝑋, 𝜃, 𝐾) is a Uryshon 𝑇2-Čℱ-scs. Since Consider 𝑎𝑡
ℎ and 𝑏𝑠

ℎ are distinct fuzzy soft points, there exist 

open-fss's  𝜆𝐴=𝑎1
ℎ and 𝜇𝐵=𝑏1

ℎ such that 𝑎𝑡
ℎ ∈̃ 𝜆𝐴, 𝑏𝑠

ℎ ∈̃ 𝜆𝐴 and 𝜃(𝜆𝐴) ⋂𝜃(𝜇𝐵)= 𝑎1
ℎ ⋂𝑏1

ℎ=0̅𝐾.  

  

Proposition 13.  Every Uryshon 𝑇2-Čℱ-scs is pesudo 𝑇2-Čℱ-scs. 

 

Proof. Let  𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two-distinct fuzzy soft points in (𝑋, 𝜃, 𝐻). Since (𝑋, 𝜃, 𝐻) is Uryshon 𝑇2- 

Čℱ-scs, there exist 𝜆𝐴 and  𝜇𝐵 open fuzzy soft sets such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴,  𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 𝜃(𝜆𝐴) ⋂𝜃(𝜇𝐵)=0̅𝐾. 

This implies 𝑥𝑡
ℎ ∉̃ 𝜃(𝜇𝐵) and 𝑦𝑠

ℎ′ ∉̃ 𝜃(𝜆𝐴). Therefore, (𝑋, 𝜃, 𝐾) is pesudo 𝑇2- Čℱ-scs. ∎  

 

Proposition 14.  Every Uryshon 𝑇2- Čℱ-scs is 𝑇2- Čℱ-scs. 

 

Proof. The proof follows immediately from the definition of Uryshon 𝑇2- Čℱ-scs and the property 𝜆𝐴 ⊆
𝜃(𝜆𝐴) for any fuzzy soft set 𝜆𝐴.  ∎ 

 

Theorem 17.  Let (𝑋, 𝜃, 𝐾) be an Uryshon 𝑇2-Čℱ-scs and let (𝑉, 𝜃𝑉 , 𝐾)  be a closed Čℱ-sc subspace of 

(𝑋, 𝜃, 𝐾). Then (𝑉, 𝜃𝑉 , 𝐾)  is an Uryshon 𝑇2- Čℱ-sc subspace of (𝑋, 𝜃, 𝐾). 
 

Proof. Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two-distinct fuzzy soft points in (𝑉, 𝜃𝑉 , 𝐾). Then 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ are distinct 

fuzzy soft points in (𝑋, 𝜃, 𝐾). Since (𝑋, 𝜃, 𝐾) is a Uryshon 𝑇2-Čℱ-scs, it follows there exist open-fss's 𝜆𝐴 

and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴, 𝑦𝑠

ℎ′  ∈̃ 𝜇𝐵 and 𝜃(𝜆𝐴)⋂𝜃(𝜇𝐵)=0̅𝐾. By Lemma 2,  𝜆𝐴⋂�̅�𝐾 and 𝜇𝐵⋂�̅�𝐾 are open 

fuzzy soft sets in �̅�𝐾 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴⋂�̅�𝐾, 𝑦𝑠

ℎ′ ∈̃  𝜇𝐵⋂�̅�𝐾. Next, we must show that 𝜃𝑉(𝜆𝐴⋂�̅�𝐾) ∩
𝜃𝑉(𝜇𝐵⋂�̅�𝐾) =0̅𝐾. Now, from the definition of 𝜃𝑉 we get, 

 

𝜃𝑉(𝜆𝐴⋂�̅�𝐾) ∩ 𝜃𝑉(𝜇𝐵⋂�̅�𝐾) = [�̅�𝐾 ∩ 𝜃(𝜆𝐴⋂�̅�𝐾)] ∩ [�̅�𝐾 ∩ 𝜃(𝜇𝐵⋂�̅�𝐾)] 
                                           =[ 𝜃(𝜆𝐴) ⋂𝜃(𝜇𝐵)] ⋂�̅�𝐾 

                                           = 0̅𝐾⋂�̅�𝐾 

                                           = 0̅𝐾. 

Therefore,  (𝑉, 𝜃𝑉, 𝐾) is an Uryshon 𝑇2-Čℱ-sc subspace of (𝑋, 𝜃, 𝐾).  ∎ 

 

Definition 28. An associative fsts (𝑋, 𝜏𝜃, 𝐾) of (𝑋, 𝜃, 𝐾) is said to be a Uryshon T2-fst, if for every distinct 

fuzzy soft points  𝑥𝑡
ℎ and 𝑦𝑠

ℎ′, there exist 𝜏𝜃-open fuzzy soft sets 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴,  𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 

and 𝜏𝜃-cl(𝜆𝐴) ∩ 𝜏𝜃-cl(𝜇𝐵)=0̅𝐾. 

 

Theorem 18. If (𝑋, 𝜏𝜃, 𝐾) is an Uryshon 𝑇2-fsts, then (𝑋, 𝜃, 𝐾) is also Uryshon 𝑇2-Čℱ-scs. 

 

Proof: Let 𝑥𝑡
ℎ and 𝑦𝑠

ℎ′ be any two-distinct fuzzy soft points in 𝑋. Since (𝑋, 𝜏𝜃, 𝐾) is an Uryshon 𝑇2-fsts, 

then there exist 𝜏𝜃-open-fss's 𝜆𝐴 and  𝜇𝐵 such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴,  𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 𝜏𝜃-cl(𝜆𝐴) ∩ 𝜏𝜃-cl(𝜇𝐵)=0̅𝐾. By 

Theorem 4, we obtain 𝜆𝐴 and  𝜇𝐵 are open fuzzy soft sets in (𝑋, 𝜃, 𝐾) such that 𝑥𝑡
ℎ ∈̃ 𝜆𝐴  and 𝑦𝑠

ℎ′ ∈̃ 𝜇𝐵 and 

𝜃(𝜆𝐴) ⋂𝜃(𝜇𝐵)=0̅𝐾. Hence, (𝑋, 𝜃, 𝐾) is an Uryshon 𝑇2-Čℱ-scs. ∎ 

 

Proposition 15.  If (𝑋, 𝜃1, 𝐾) be a Uryshon 𝑇2-Čℱ-scs, 𝜃2coarser than 𝜃1, then (𝑋, 𝜃2, 𝐾) is Uryshon 𝑇2-

Čℱ-scs. 

Proof. Similar of proof Proposition 9.  ∎ 
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Remark 3.  The relationships between the above types of separation axioms in Čℱ-scs's as shown in the 

following diagram. 

𝑇2-Čℱ-scs             𝑇1-Čℱ-scs            𝑇0-Čℱ-scs 

 

 

Uryshon  𝑇2-Čℱ-scs          Pseudo 𝑇2-Čℱ-scs         Semi 𝑇2-Čℱ-scs 
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