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ABSTRACT 

The main aim of this paper is to introduce a new kind of Legendre matrix polynomials. Hypergeometric matrix 

representation of these matrix polynomials is given. The convergence properties and the integral form for the 

Legendre matrix polynomials are derived. The Legendre matrix differential equation of second order is established. 
Subsequently, Rodrigues formula, orthogonality property, matrix recurrence relation and types of generating matrix 

functions are then developed for the Legendre matrix polynomials. Furthermore, general families of bilinear and 

bilateral generating matrix functions for these matrix polynomials are obtained and their applications are presented. 
Finally, the composite Legendre matrix polynomials is introduced. 

Keywords: Hypergeometric matrix function; Legendre matrix polynomials; Legendre matrix differential equations; 

Rodrigues formula; Orthogonality; Matrix recurrence relation; Generating matrix functions. 

 

1. INTRODUCTION 

Orthogonal matrix polynomials comprise an emerging 

field of study, with important results in both theory and 

applications being still is contained to appear in the 

literature. Theory of classical orthogonal polynomials 

are extended to orthogonal matrix polynomials, see for 

example, [2, 4, 5, 18, 19, 20, 24, 28, 29, 30, 34, 36]. In 

[1, 6, 9, 11, 14, 35, 37], the authors introduced and 

studied Jacobi matrix polynomials. In [3, 13], the 

authors introduced the Chebyshev matrix polynomials 

of the first and second kind and gave some results with 

Chebyshev matrix polynomials. Legendre matrix 

polynomials have been introduced and studied in [33]. 

In the scalar case, Jacobi polynomials )(),( xP 
 are 

a class of classical orthogonal polynomials. They are 

orthogonal with respect to the weight 
 )(1)(1 xx   on the interval 1,1][ . For 

0==  , we have the classical Legendre 

polynomials. As in the corresponding problem for 

scalar polynomials, the problem of development of 

polynomials of Legendre matrix polynomials requires 

some new results about the matrix operational calculus 

not available in the literature. The Legendre ordinary 

differential equation is frequently encountered in 

physics and other technical fields. 

The present investigation is motivated essentially by 

several recent works [13, 14]. Our main aim here at 

presenting a new class of Legendre matrix polynomials 

and their interesting properties. The structure of the 

paper is organized as follows: In Section 2 the Legendre 
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matrix polynomials is defined and the hypergeometric 

matrix representation is given. The convergence, radius 

of convergence, an integral form are given and their 

connections with Legendre matrix differential equation 

of the second order are established. Rodrigues formula 

is given then developed for the Legendre matrix 

polynomials in Section 3. orthogonality properties of 

Legendre matrix polynomials are established in Section 

4. Matrix recurrence relation for the Legendre matrix 

polynomials is obtained in Section 5. Formulas of 

generating matrix functions for the Legendre matrix 

polynomials are obtained, bilinear and bilateral 

generating matrix functions are derived for the 

Legendre matrix polynomials and some applications of 

the results obtained are presented in Section 6. Finally, 

the composite Legendre matrix polynomials and the 

convergence properties are investigated in Section 7.  

1.1  Preliminaries 

Throughout this study, we concerned with the matrix 

polynomials  

01

1

1=)( AxAxAxAxP n

n

n

nn  

   

 where the coefficients 0A , 
nAA ,,1   are members 

of 
N N

, the space of real or complex matrices of 

common order N , and x  is a real number. The matrix 

polynomials )(xPn
 is of degree n  if the matrix 

nA  

is not zero matrix. For orthogonal matrix polynomials, 

the leading coefficient nA  being nonsingular matrix is 

important [15].Throughout this paper, if A  is a matrix 

in 
N N

, its spectrum )(A  denotes the set of all 

eigenvalues of A . The matrices I  and O  will denote 

the identity matrix and the null matrix (zero matrix) in 
N N

, respectively. In this expression, )(z  is the 

real part of the complex number z . The two-norm of 

A  is denoted by 2|||| A , and is defined by  

2

2

0
2

||||

||||
sup=||||

x

Ax
A

x

 

 where 2

1

2 )(=|||| xxx T
 denotes the usual Euclidean 

norm of a vector x  in 
N

.  

Fact 1.1 [16] If )(zf  and )(zg  are holomorphic 

functions of complex variable z , which are defined in 

an open set   of the complex plane, and A , B  are 

matrices in 
N N

 with )(A  and 

)(B , such that BAAB = , then from the 

properties of the matrix functional calculus, it follows 

that  

).()(=)()( AfBgBgAf  

Definition 1.1 [21] A matrix A  in 
N N

 is called a 

positive stable if  

).(0,>)( A                               (1.1) 

Fact 1.2 [22, 23] Let us denote the real numbers 

)(AM , )(Am  for a matrix A  in 
N N

 such that  

1

2

1
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 and considering that 
kAA ek ln= , one gets  
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A N n
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        (1.3) 

 

 where  

)}.(:)({min=)()};(:)({max=)( AzzAmAzzAM     (1.4) 

Definition 1.2 [21] If P  is a positive stable matrix in 
N N

, then the Gamma matrix function )(P  is defined by  

).ln)((exp=;=)(
0

tIPtdtteP IPIPt  


                                                                                             (1.5) 

 Notation 1.1 [22] The reciprocal Gamma function 
)(

1
=)(1

z
z




 is an entire function of complex variable z . Then 

for any matrix A  in 
N N

, the image of 
1( )z  acting on A  is denoted by the well-defined matrix 

1( )A . 

Furthermore, if  

is an invertible matrix for every an non negative integerA nI n                                            (1.6) 
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 then )(A  is an invertible matrix in 
N N

, its inverse matrix coincide with )(1 A . The Pochhammer symbol 

(shifted factorial) is defined as  

.=)(1;);()(=

)1)(()2)((=)(

0

1 IAnAnIA

InAIAIAAA n







                                                                         (1.7) 

Notation 1.2 [13] Using (1.7), one gets  

 .,0
)!(

!1)(
=)( nkI

kn

n
nI

k

k 



                                                                                           (1.8) 

Theorem 1.1 [21] Let A  be a matrix in 
N N

 satisfying ( ) > 0z , for every eigenvalue )(Az   and 1n  

be an integer, then  

 
A

n
n

nAnA 1])[(1)!(lim=)( 



                                                                                          (1.9) 

 where 
nA)(  is defined by (1.7).  

Definition 1.3 [21] If P  and Q  are positive stable matrices in 
N N

, then the Beta matrix function ),( QPB  is 

defined as  

 .)(1=),(
1

0
dtttQPB IQIP                                                                                             (1.10) 

Definition 1.4 [22, 23] If A , B , and C  are matrices in 
N N

 for which nIC   is an invertible matrix for every 

integer 0n , then the hypergeometric matrix function );;,(12 zCBAF  is defined as follows  

 .])[()()(
!

=);;,( 1

0=

12




 kkk

k

k

CBA
k

z
zCBAF                                                            (1.11) 

 Also the hypergeometric matrix differential equation is defined as in the form (see Theorem 4 [22] and eq. (38) [23])  

2

2

( ) ( ) ( )
(1 ) ( ( )) ( ) = ;0 <| |<1.

d W z dW z dW z
z z zA C z B I ABW z z

dz dz dz
      O (1.12) 

Fact 1.3 For any matrix A  in 
N N

, the hypergeometric matrix function );;(10 zAF   is given as  

 
1

0=

10 ])[(
!

=);;( 


 k

k

k

A
k

z
zAF                                                                                     (1.13) 

 where kIA  is an invertible matrix for all integers 0k  (see [22]).  

  

Fact 1.4 [22] The relation  

 1|<|;)(
!

1
=);;(=)(1

0=

01 zzA
n

zAFz n

n

n

A 


                                               (1.14) 

 is valid for 
N NA  .  

Fact 1.5 [22] If n  is large enough so that >n C , then by the perturbation lemma [16], for C  in 
N N

 we have 

the following inequality  
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1 1

( ) .C nI
n C

 


                                                                                                        (1.15) 

Fact 1.6 [17] Let A  and B  be matrices in 
N N

 and from (1.7), one can easily obtain the following inequalities  

 , , ( ) ( ) .
nn

n nAB A B A A A A                                                         (1.16) 

Theorem 1.2 [13] Let B  and C  are matrices in 
N N

 such that nIC   is an invertible matrix for all integers 

0n . Suppose that C  and BC   are positive stable matrices with CBBC = , the relation  

 2 1 2 1, ; ; = (1 ) , ; ;
1

n z
F nI B C z z F nI C B C

z

 
     

 
                                                                 (1.17) 

 is valid for 1|<| z  and < 1
1

z

z
.  

Lemma 1.1 [21] Let P  and Q  be positive stable matrices in 
N N

 such that  

.=and)(),(forall1,>)(and1>)( QPPQQwPzwz                         (1.18) 

 By virtue of (1.10), one can obtain  

 ).,(2=)(1)(1
1

1
QPBdxxx IQPIQIP 


                                                              (1.19) 

Lemma 1.2 [22] Let P , Q  and PQ  be positive stable matrices in 
N N

 satisfying QPPQ =  and nIP , 

nIQ  and nIQP   are invertible matrices for all nonnegative integers n . Then we have  

 ).()()(=),( 1 QPQPQPB  
                                                                                  (1.20) 

 At the end we recall that [12], if ),( nkA  and ),( nkB  are matrices in 
N N

 for 0n , 0k , then the 

following relations are satisfied  
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 Similarly, we can write  

 

.);,(=),(

),2,(=),(

),,(=),(

0=0=

]
1

[

0=0=

0=0=

]
2

1
[

0=0=

0=0=0=0=

NmmknkAnkA

knkAnkA

knkBnkB

kn

n
m

kn

kn

n

kn

kn

n

kn



















                                                             (1.22) 
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 For the purpose of this work, we recall the following definitions of the Jacobi and Legendre matrix polynomials.  

Definition 1.5 [14] Let A  and B  be matrices in 
N N

 satisfying the condition  

 ).(1,>)(and)(1,>)( BwwAzz                            (1.23) 

 For 0n , the Jacobi matrix polynomials 
, ( )A B

nP x  is defined by the hypergeometric matrix function  

 
,

2 1

( ) 1
( ) = ( 1) , ; ; .

! 2

A B n
n

B I x
P x F A B n I nI B I

n

  
     

 
                    (1.24) 

Definition 1.6 [31, 33] The Legendre matrix polynomials is defined by  
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                                                                    (1.25) 

 where A  be a positive stable matrix in 
N N

.  

2. LEGENDRE MATRIX POLYNOMIALS 

Definition 2.1 Let C  be a matrix in 
N N

 satisfying the condition  

 ).(allfor1,<)(<0 C                                                                                        (2.1) 

 The Legendre matrix polynomials ),( CxPn
 is defined in the form  

1

=0

( 1) ( )! 1
( , ) = ( ) ( ), 0
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                                                          (2.2) 

 such that kIC   is an invertible matrix for all integers 0k  and 
1

< 1
2

x
.  

Theorem 2.1 Let C  be a matrix in 
N N

 satisfying the condition (2.1), the hypergeometric matrix representations for 

the Legendre matrix polynomials is given as:  

2 1

1

=0

1 1
( , ) = = , ( 1) ; ;

2 2

( ) (( 1) ) [( ) ] 1
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! 2

n
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P x C W F nI n I C

nI n I C x
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                                                            (2.3) 

 where knI)(  is given by (1.8).  

Proof. This can be proved using (1.7), (1.8) and (2.2) and the above expressions. 

We are going to study the convergence properties of Legendre matrix polynomials of degree n . For this aim, we denote  

1 1 1( ) = ( ) ( ) ... ( ( 1) ) ; >1.k C C I C k I k                                                                         (2.4) 

 From (1.15), (1.16) and (2.4) for >k C , we have  
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Using the ratio test and the relation (1.9) for the series 
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It is easy to see that the power series (2.2) is absolutely convergent for 
1

< 1
2

x
, divergent for 

1
> 1

2

x
 and 

absolutely convergent for 
1

1
2

x
  under the condition ))((1)(>)( InMnIMCm  , where )( nIM  , 

))((1 InM   and )(Cm  are defined in (1.4). 

The radius of convergence R  is given from [26]  
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 i.e. the radius of convergence of the Legendre series is one and it is regular in a circle of radius one. 

To get an integral form for the Legendre matrix polynomials of degree n . Suppose that C  is a matrix in 
NNC 

, such 

that  
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)1)((=)1)(( InCCIn                                                                                                                                        (2.5) 

 and  

( 1) , and ( 1) are positive stable matrices.n I C C n I                                                       (2.6) 

 From (1.7) and (2.6) one gets the following  

   

1

1 1 1
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 Using Lemma 2 and the relation (2.13) of [21], we can get  
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 From (2.7) and (2.8), we have  

)())(1)(1)(()1)((=])[()1)(( 1)()(
1

0

111 CdtttInCInCIn IInCIkn
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 where 0>1)(  nc  for all )1)((1 InCnc    and 0>)1( kn   for all 

))1((1 Iknkn   . 

Using the above expressions, we have the proof of the following theorem.  

Theorem 2.2 Legendre matrix polynomials has the following integral form  

1
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                                                  (2.9) 

Next, we get the matrix differential equation in a different way and prove the following theorem.  

Theorem 2.3 Let C  be a matrix in 
N N

 satisfying the condition (2.1). For 0n , the Legendre matrix polynomials 

( ) ( , )nY x P x C  satisfy the matrix differential equation of second order as the following  

 2 1
(1 ) ( ) 2 (1 ) ( ) ( 1) ( ) = ; 0 1, = .

2

x d
x Y x x I C Y x n n Y x

dx


         O                  (2.10) 

Proof. From (2.3), it follows  
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x d x d
W F nI n I C P x C

dx dx

x d x d
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 The hypergeometric matrix function 2 1

1
, ( 1) ; ;

2

x
F nI n I C

 
  
 

 is a solution of (1.12) with nIA = , 

InB 1)(=  , in 1|<<|0 z . For 
2

1
=

x
z , one can see that ),( CxPn  satisfies (2.10) in 

1
0 < < 1

2

x
. 

Thus the proof is completed.  
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Postmultiplying (2.10) by 
1

1

I C
x

x


 

 
 

 and making up the relation, we have the following corollary.  

Corollary 2.1 For 0n , the Legendre matrix polynomials ( ) ( , )nY x P x C  is a solution of the matrix 

differential equation  

2 1 1 1
( )(1 ) ( 1) ( ) = ; 0 < <1

1 1 2

I C I C
d x x x

Y x x n n Y x
dx x x

       
       

      

O                     (2.12) 

Remark 2.1 From (2.10) it follows that ),( CxPn
 is a matrix polynomial in x  of degree n  precisely and 

.=)(1, ICPn
 

3. RODRIGUES FORMULA FOR THE LEGENDRE MATRIX POLYNOMIALS 

Theorem 3.1 Let C  be a matrix in 
N N

 satisfying the condition (2.1) and let ),( CxPn
 be the Legendre matrix 

polynomials. Then the following formula holds for 0n  and 
1

< 1
2

x
  

1
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n nn
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 by theorem 2.1 one gets  
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 From (1.7), we have  
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 Equation (3.2) can be written as in the form  
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 Consider the differential operator 
k

k
k

dx

xfd
xfD

)(
=))((  for an arbitrary matrix C  in 

N N
. From (1.7) and 

routine calculation [13], we have  

( )= ( )( ( 1) ) ( ( 1) ) , = 0,1,2, .s C mI C m s ID x C mI C m I C m s I x s         
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 or  

 ,])[()(= )(1 IsmC
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                                                                 (3.5) 

 for non-negative integers s  and m  

From (3.5), we obtain  
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     (3.8) 

 Using Leibnitz rule for the n -th derivative of a product, equation (3.8) yields the Rodrigues formula  
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 or equivalently  
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2
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              (3.10) 

Thus the formula (3.1) is established. 

Remark 3.1 The formula 3.1 is called Rodrigues formula for the Legendre matrix polynomials.  

4. ORTHOGONALITY FOR LEGENDRE MATRIX POLYNOMIALS 

From Corollary 3.1, the Legendre matrix polynomials satisfied 

2( , )(1 ) (1 ) (1 ) ( 1) ( , )(1 ) (1 ) = .I C C I I C C I

n n

d
P x C x x x n n P x C x x

dx
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m m

d
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dx
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 Premultiplying (4.1) by ),( CxPm  and (4.2) by ),( CxPn  and subtracting we have  
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 Integrating (4.3) between 1= x  and 1=x , we obtain  
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                      (4.4) 

Lemma 4.1 For the matrix C  in 
N N

 satisfies the condition (2.1), we have  
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                                                                                                        (4.5) 

 Using (4.5), we have  
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                         (4.6) 

 From (4.4) and (4.6) one gets the property of orthogonality  

 .0,=)(1))(1,(),(
1

1
mndxxxCxPCxP ICCI

nm  

                                             (4.7) 

 That is, the Legendre matrix polynomials form an orthogonal set over 1,1)(  with respect to the weight matrix 

function 
ICCI xx   )(1)(1 . 

In case of nm = , we put  

 dxCxPxxCg n

ICCI

n

2
1

1
)],([)(1)(1=)( 


                                                                (4.8) 

Using Rodrigues formula and integration by parts, we have a second derivation of the property of orthogonality (4.7). 

From (3.1), we obtain  
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2

])[(1)(
=),()(1)(1 2

1
ICCInn

n

n

n

n

ICCI xxxD
C

CxPxx 


 


                  (4.9) 

 Therefore, we get  
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                                              (4.10) 

 Integrate n  times by parts on the right-hand side by (4.10), we have  
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                                                        (4.11) 

 If mn   without loads of generality, we obtain  

1

1
(1 ) (1 ) ( , ) ( , ) = , > .I C C I

n mx x P x C P x C dx n m 


  O                                                (4.12) 
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 From (4.11), (4.8) and (2.10), we have  
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 The formula for the derivative of hypergeometric matrix functions gives  
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 from which we have  
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 or in the equivalent form  

 
11

( , ) = 2 ! [( ) ] .
2

n n

n n

n

D P x C n C  
 
 

                                                                      (4.14) 

 Now (4.11) with mn =  yields  
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 Using Lemma 1.1, we get  
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                                                                                      (4.15) 

 From (4.13) and (4.14), we conclude that  
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                                                                                                        (4.16) 

in which )(2 zn  is a matrix polynomial in x  of degree 2n . Thus we have the proof of the following theorem.  

Theorem 4.1 Let C  be a matrix in 
N N

 satisfying the condition (2.1). Then for any nonnegative integers n  and m , 

we have  
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Remark 4.1 The family 
0)},({ nn CxP  is orthogonal in 1,1)(  with respect to the weight matrix function 

ICCI xx   )(1)(1 .  

Remark 4.2 The leading matrix coefficient of ),( CxPn
 for 0=n  is I  and an invertible matrix 
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)!(21)( 1 CnIC
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n
n

n


 

 if 1n .  

Making use of the hypergeometric matrix representation (2.3) in the familiar property of orthogonality (4.17), and setting 

1<<0,21= ttx  , we obtain  
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 In view of the hypergeometric matrix function representation (2.3) and the property of orthogonality (4.17) with 

 <<1,
2

1= t
t

x , we have  
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 Thus, if we employ the hypergeometric representation (2.3) on the left-hand side of the property of orthogonality (4.17) 

and set 



<<0,

1

1
= t

t

t
x , we get  
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O                       (4.20) 

5. MATRIX RECURRENCE RELATION 

For this purpose, let )(xF  be a matrix polynomial of degree n  as [15]  

=0

( ) = ( , ); .
n

N N

k k k
k

F x A P x C A                                                                                                         (5.1) 

 Using Theorem 4.1 and (5.1), then  



     GU J Sci, 29(2):435-457 (2016) / Ayman SHEHATA                      447 

 

1

1
( )(1 ) (1 ) ( , ) = .I C C I

n
F x x x P x C dx 


  O                                                                                 (5.2) 

 From (5.1), we get  
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                                                                                                              (5.3) 

 Using Theorem 4.1, we have  
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Since 
k

H  is an invertible matrix for 0k , by (5.4) one gets =
k

A O  for 1< nk  and by (5.3), we have  

1 1 1 1
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 From (5.3), one gets  
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Identifying the matrix coefficients of each power of )(1 x  on both sides of (5.5) one gets a more explicit three-terms 

matrix recurrence relation for the Legendre matrix polynomials as the following  

).,(),(),(=),()(1 1111 CxPACxPACxPACxPx nnnnnnn                                                             (5.6) 

 Identifying equal powers of )(1 x  in (5.6), leads to explicit expressions for the recurrence coefficient matrices lnA  , 

nA , and lnA   as in the form  
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                                                    (5.7) 

 Thus we have the following theorem.  

Theorem 5.1 Let C  be a matrix in 
N N

 satisfying the condition (2.1). Then the Legendre matrix polynomials 

satisfies the three-term matrix recurrence relation  

 1 1 1 1 1 0
( , ) = (1 ) ( , ) ( , ); 1, ( , ) = 0, ( , ) = .

n n n n n n
A P x C x I A P x C A P x C n P x C P x C I

    
               (5.8)   

6.GENERATING MATRIX FUNCTIONS FOR THE LEGENDRE MATRIX POLYNOMIALS 

In this section, we present some types of generating matrix functions, new matrix polynomials, matrix differential 

equation, bilinear and bilateral generating matrix functions for the Legendre matrix polynomials. We first state our results 

as the following.  

Theorem 6.1 Let C  be a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(C . Then  

1

1 1 2 2
=0

1 2 ( 1) 2 ( 1)
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t t


   

  
  

                          (6.1) 

Proof. From (2.2) and (1.22), we have 
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 Thus the proof is completed. 

Theorem 6.2 Let C  be a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(C . Then the 

generating matrix function for the Legendre matrix polynomials is given as  
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Proof. From (3.2), (3.3) and (1.22), we get 
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 Thus, the proof is completed.  

Theorem 6.3 Let C  be a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(C . Then the 

derived generating matrix function for new matrix polynomials ),( Cxn  is given as  

 .),(=);;();;2(
0=

1010

n

n

n

tCxtCFxtCIF  


                                                                         (6.3) 

Proof. Let 
11 1

( , ) = [(2 ) ] ( 1) ,
! 1

n

n n n

x
x C I C x P C

n x

  
    

 
 and from (3.2), we obtain (6.3). Thus, we 

have the proof of the theorem.  

Consider the differential operator 
dz

d
z=  to the matrix function );;2(= 10 zCIFY   as the following  
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 The matrix function 
10F  is a solution of the matrix differential equation  
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 These results are summarized in the following theorem.  

Theorem 6.4 The new matrix polynomials ),( Cxn  satisfy the following matrix differential equation  
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This last major properties completes developed here are several families of bilinear and bilateral generating matrix 

functions for the Legendre matrix polynomials derived from generating matrix functions (6.2), then using Theorem 6.2 

and given explicitly by (2.2) without using Lie algebraic techniques but, with the help of the similar method as considered 

in [1]. We state our results as the following.  
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 where C  is a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(C  and (as usual) ][  

represents the greatest integer in R . Then we have 
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Proof. For convenience, let S  denote the first member of the assertion (6.7). Then, plugging the matrix polynomials 
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 Using (6.8) and (1.22), we can write  
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 which completes the proof of the theorem. 

Expressing the multivariable matrix function ),,,( 21 sk yyy  , 
0Nk  and Ns  in terms of simpler 

matrix function of one and more variables, we can give further applications to Theorem 6.5. For example, if we set 1=s  

and )(=)( ),( yLy A

kk


   in Theorem 6.5, where the Laguerre matrix polynomials )(),( xL A
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 defined as [8, 10]  
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t L x t x t R t
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                                                (6.10) 

 where A  is a matrix in 
N N

 satisfying the condition )(Ak   for every integer 0>k  and   is a complex 

parameter with 0>)( . 

In the following, we obtain the result which provides a class of bilateral generating matrix functions for the Laguerre 
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matrix polynomials and modified Laguerre matrix polynomials.  
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 Let us consider the modified Laguerre matrix polynomials  
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 where A  is a matrix in 
N N

 satisfying the condition )(Ak   for every integer 0>k  and   is a complex 

parameter with 0>)( . Here the modified Laguerre matrix polynomials )(),( xf A
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 are generated as [10, 32]  
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 if each member of (6.14) exists.  

Remark 6.2 Using the generating matrix function (6.13) for the modified Laguerre matrix polynomials and taking 

1=ka , 0=  and 1= , we have  
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 if each member of (6.15) exists.  

Remark 6.3 Using the generating matrix function (6.2) for the Legendre matrix polynomials and taking 1=ka , 

0=  and 1= , we have  

1
[ ]

1 1

=0 =0

0 1 0 1

0 1 0 1

1
[(2 ) ] [(2 ) ] ( , ) ( , )

!( )!

1 1
= ;2 ; ( 1) ; ; ( 1)

2 2

1 1
;2 ; ( 1) ; ; ( 1) .

2 2

n
m

k n mk

n mk k n mk k

n k

I C I B P x C P y B t
k n mk

F I C t x F C t x

F I B y F B y



 


  

  


   
       
   

   
       
   



 

Corollary 6.4 Let 00=, ,0,;),(=);( NazByazy k

k

kkk
 



   and  

NmnByCxPCI
mkn

ayx k

kmknmknk

n
m

k

mn 


 



 ,;),(),(])[(2
)!(

1
=);;( 1

]
1

[

0=

,,,    

 where B  is a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(B . Then  

, , , 0 1 0 1 ,

=0

1 1
; ; = ;2 ; ( 1) ; ; ( 1) ( ; )

2 2

n

n m m
n

x y t F I C t x F C t x y
t

   





     

           
     

       (6.16) 

 if each member of (6.16) exists.  

Remark 6.4 Using the generating matrix function (6.3) for ),( Byk  and taking 1=ka , 0=  and 1= , we 

have  
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7. COMPOSITE LEGENDRE MATRIX POLYNOMIALS 

Let us introduce in the following notations [27]  
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 are i  Legendre matrix polynomials with square complex matrices ,1C  2C  ,
iC,  in 

N N
 such that the condition 

(2.1) is valid. 

Consider the Legendre matrix polynomials ),( CxPn , which is defined as  
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     (7.2) 

We call this function the composite Legendre matrix polynomials of several complex variables izzz ,,, 21  . 

For calculating the radius of convergence R  of the series (7.2). We recall the relation (1.3.10) of [26] and keeping in 

mind that 1k . Hence  
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 If k , lk  and l  k  are positive numbers, we can write  

 .,1,2,=,= ilkk ll   

 Substitute from (1.3), (1.4) into (7.3) one gets 
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 Thus, we have  
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 i.e. the radius of convergence of the composite Legendre matrix polynomials is one and it is regular in the hypersphere 

RS ; 1=R  (c.f. [26]).  

8. CONCLUDING COMMENTS 

The material developed in Sections 2-7 provides several important properties of the Legendre matrix polynomials 

introduced in (2.2), under the condition 1<)(<0   for all )(C  on the matrix C  in 
N N

. The Legendre 

matrix polynomials ),( CxPn  are first shown to satisfy the second-order matrix differential equation (2.10). Rodrigues 

formula and the property of orthogonality of Legendre matrix polynomials are established (Theorem 3.1 and Theorem 

4.1). The matrix recurrence relation for the ),( CxPn  is derived (Theorem 5.1). New families of matrix generating 

functions, new matrix polynomials and identities concerning the Legendre matrix polynomials are derived (Theorem 6.1, 

Theorem 6.2 and Theorem 6.3). The families of bilinear and bilateral generating matrix functions in the sense provided by 

Theorem 6.5 are established.  

Definition 8.1 If C  is a matrix in 
N N

 satisfying the condition 1<)(<0   for all )(C . We will define 
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the associated Legendre matrix polynomials in the form  
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In the forthcoming investigation, we will discuss further associated Legendre matrix polynomials and discuss future 

direction of the present line of work. We will more deeply analyze in the matrix theory of the so far introduced matrix 

polynomials and discuss in detail their properties.  
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