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Abstract 

 

        In this paper, we extend Quadrapell numbers to 

Hyperbolic Quadarapell numbers, respectively. 

Moreover we obtain Binet-like formulas, generating 

functions and some identities related with Hyperbolic 

Quadarpell numbers. 
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1. Introduction 

 

        Hyperbolic numbers have applications in 

different areas of mathematics and theoretical physics. 

In particular, they are related to Lorentz-Minkowski 

(Space-time) geometry in the plane as well as complex 

numbers are to Euclidean one ( Catoni 2008). The 

work on the function theory for hyperbolic numbers 

can be found in (Aydın 2019, Barreira 2016, Gargoubi 

2016, Khadjiev 2016, Motter 2016, Güncan 2012). The 

set of hyperbolic numbers H can be described in the 

form as 

ℍ = {𝑧 = 𝑥 + ℎ𝑦 | ℎ ∉ ℝ, ℎ2 = 1, 𝑥, 𝑦 ∈ ℝ} 

Addition, substruction and multiplication of two 

hyperbolic numbers 𝑧1 and 𝑧2 are defined by 

𝑧1 ± 𝑧2 = (𝑥1 + ℎ𝑦1) ± (𝑥2 + ℎ𝑦2)
= (𝑥1 ± 𝑥2) + ℎ(𝑦1 ± 𝑦2) 

                             𝑧1 × 𝑧2 = (𝑥1 + ℎ𝑦1) × (𝑥2 +
ℎ𝑦2) = (𝑥1𝑥2) + (𝑦1𝑦2) + ℎ(𝑥1𝑦2 + 𝑦1𝑥2) 

On the other hand, the division of two hyperbolic 

numbers are given by 
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𝑧1

𝑧2

=
𝑥1 + ℎ𝑦1

𝑥2 + ℎ𝑦2

 

 
(𝑥1 + ℎ𝑦1)(𝑥2 − ℎ𝑦2)

(𝑥2 + ℎ𝑦2)(𝑥2 − ℎ𝑦2)

=
𝑥1𝑥2 + 𝑦1𝑦2

𝑥2
2 − 𝑦2

2 + ℎ
(𝑥1𝑦2 + 𝑦1𝑥2)

𝑥2
2 − 𝑦2

2  

 

If 𝑥2
2 − 𝑦2

2 ≠ 0, then the division 
𝑧1

𝑧2
  is possible. The 

hyperbolic conjugation of 𝑧 = 𝑥 + ℎ𝑦 is defined by 

𝑧̅ = 𝑥 − ℎ𝑦. 

 

2. Materials and Methods 

 

        Many studies have been done on pell sequence in 

the past. Some of these are (Voet 2012, Atanassov 

2009, Çağman and Polat 2021, Çağman 2021a, 

Çağman 2021b,  Deveci 2015, Deveci 2018, Deveci 

2020, Shannon 2006, Tas 2014, Berzsenyi 1977, 

Horadam 1963). The Quadrapell sequence is studied 

by Dursun Taşçı (Taşçı 2018). 

The QuadraPell sequence is the sequence of integers 

𝐷𝑛 defined by the initial values 𝐷0 = 𝐷1 = 𝐷2 =

1, 𝐷3 = 2 and the recurrence relation 

𝐷𝑛 = 𝐷𝑛−2 + 2𝐷𝑛−3 + 𝐷𝑛−4 

for all 𝑛 ≥ 4. The first few values of 𝐷𝑛 are 

1, 1, 1, 2, 4, 5, 9, 15, 23, 38, 12, 62, 99, 161, 261, 421. 

  

 

3. Results 

 

Definition 3.1. The Hyperbolic Quadrapell numbers 

𝐻𝐷𝑛are defined by the initial values 𝐻𝐷0 = 𝐻𝐷1 =
1 + ℎ, 𝐻𝐷2 = 1 + 2ℎ, 𝐻𝐷3 = 2 + 4ℎ and the 

recurrence relation 

 

𝐻𝐷𝑛 = 𝐷𝑛 + ℎ𝐷𝑛+1 

 

                           𝐻𝐷𝑛 = 𝐻𝐷𝑛−2 + 2𝐻𝐷𝑛−3 + 𝐻𝐷𝑛−4 

 

 

for all 𝑛 ≥ 4.  
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The first few values of 𝐻𝐷𝑛 are 1 + ℎ, 1 + ℎ, 1 +

2ℎ, 2 + 4ℎ, 4 + 5ℎ, 5 + 9ℎ, 9 + 15ℎ, 15 + 23ℎ, 23 +

38ℎ, 38 + 62ℎ, 62 + 99ℎ. 

Theorem 3.2. The generating function of the 

Hyperbolic Quadrapell sequnce is 

 

𝑔(𝑥) =
1 + ℎ + (1 + ℎ)𝑥 + ℎ𝑥2 + (−1 + ℎ)𝑥3

1 − 𝑥2 − 2𝑥3 − 𝑥4
 

 

Proof. Let 

𝑔(𝑥) = ∑ 𝐻𝐷𝑛𝑥𝑛

∞

𝑛=0

= 𝐻𝐷0 + 𝐻𝐷1𝑥 + 𝐻𝐷2𝑥2 + 𝐻𝐷3𝑥3

+ ⋯ + 𝐻𝐷𝑛𝑥𝑛 + ⋯ 

be generating function of the Hyperbolic Quadrapell 

sequence. On the other hand, since 

𝑥2𝑔(𝑥) = 𝐻𝐷0𝑥2 + 𝐻𝐷1𝑥3 + 𝐻𝐷2𝑥4 + 𝐻𝐷3𝑥5 + ⋯

+ 𝐻𝐷𝑛−2𝑥𝑛 + ⋯ 

          2𝑥3𝑔(𝑥) = 2𝐻𝐷0𝑥3 + 2𝐻𝐷1𝑥4 + 2𝐻𝐷2𝑥5

+ 2𝐻𝐷3𝑥6 + ⋯ + 2𝐻𝐷𝑛−3𝑥𝑛 + ⋯ 

and 

𝑥4𝑔(𝑥) = 𝐻𝐷0𝑥4 + 𝐻𝐷1𝑥5 + 𝐻𝐷2𝑥6 + 𝐻𝐷3𝑥7 + ⋯

+ 𝐻𝐷𝑛−3𝑥𝑛 + ⋯ 

 

we write 

(1 − 𝑥2 − 2𝑥3 − 𝑥4)𝑔(𝑥)

= 𝐻𝐷0 + 𝐻𝐷1𝑥 + (𝐻𝐷2 − 𝐻𝐷0)𝑥2

+ (𝐻𝐷3 − 𝐻𝐷1 − 2𝐻𝐷0)𝑥3 

 

                                                       + ⋯ + (𝐻𝐷𝑛 −

𝐻𝐷𝑛−2 − 2𝐻𝐷𝑛−3 − 𝐻𝐷𝑛−4)𝑥𝑛 + ⋯ 

 

Now consider 𝐻𝐷0 = 𝐻𝐷1 = 1 + ℎ, 𝐻𝐷2 = 1 +

2ℎ, 𝐻𝐷3 = 2 + 4ℎ and 𝐻𝐷𝑛 = 𝐻𝐷𝑛−2 + 2𝐻𝐷𝑛−3 +

𝐻𝐷𝑛−4. Thus, we obtain 

(1 − 𝑥2 − 2𝑥3 − 𝑥4)𝑔(𝑥)

= 𝐻𝐷0 + 𝐻𝐷1𝑥 + (𝐻𝐷2 − 𝐻𝐷0)𝑥2

+ (𝐻𝐷3 − 𝐻𝐷1 − 2𝐻𝐷0)𝑥3 

 

        (1 − 𝑥2 − 2𝑥3 − 𝑥4)𝑔(𝑥) = 1 + ℎ + (1 +

ℎ)𝑥 + ℎ𝑥2 + (−1 + ℎ)𝑥3        

or 

𝑔(𝑥) =
1 + ℎ + (1 + ℎ)𝑥 + ℎ𝑥2 + (−1 + ℎ)𝑥3

1 − 𝑥2 − 2𝑥3 − 𝑥4
 

So, the proof is complete. 

 

Now we give Binet-like formula for the Hyperbolic 

Quadrapell sequence. 

  

Theorem 3.3. Binet-like formula for the Hyperbolic 

Quadrapell sequence is  

 

𝐻𝐷𝑛 = (
1 + ℎ𝛼

2
) 𝛼𝑛 + (

1 + ℎ𝛽

2
) 𝛽𝑛 + (

1 + ℎ𝛾

2√3𝑖
) 𝛾𝑛

+ (
1 + ℎ𝛿

2√3𝑖
) 𝛿𝑛 

where 

𝛼 =
1 + √5

2
, 𝛽 =

1 − √5

2
 

and 

𝛾 =
−1 + √3𝑖

2
, 𝛿 =

−1 − √3𝑖

2
 

 

are the roots of the equation 𝑥4 − 𝑥2 − 2𝑥 − 1 = 0. 

 

Proof. It is easily seen that 

𝐻𝐷𝑛 = 𝐷𝑛 + ℎ𝐷𝑛+1 

 

On the other hand, we know that the Binet-like formula 

for the Quadrapell sequence is 

 

 

𝐷𝑛 =
𝛼𝑛 + 𝛽𝑛

2
+

𝛾𝑛 − 𝛿𝑛

2√3𝑖
. 

 

Theorem 3.4.  

∑ 𝐻𝐷𝑗

3𝑘+1

𝑗=0

= 𝐻𝐷3𝑘+3 − 2ℎ. 

 

Proof. We use the principle of mathematical induction. 

Since 

𝐻𝐷0 + 𝐻𝐷1 = 2 + 2ℎ = 𝐻𝐷3 − 2ℎ 

clearly the result is true for 𝑘 = 0. 

Now assume it is true for an arbitrary positive integer 

𝑘 > 1 

                                                                   

∑ 𝐻𝐷𝑗

3𝑘+1

𝑗=0

= 𝐻𝐷3𝑘+3 − 2ℎ. 

Then we have 

∑ 𝐻𝐷𝑗

3𝑘+4

𝑗=0

= ∑ 𝐻𝐷𝑗

3𝑘+1

𝑗=0

+ 𝐻𝐷3𝑘+2 + 𝐻𝐷3𝑘+3

+ 𝐻𝐷3𝑘+4. 

= 𝐻𝐷3𝑘+3 − 2ℎ + 𝐻𝐷3𝑘+2 + 𝐻𝐷3𝑘+3 + 𝐻𝐷3𝑘+4 
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                                         = 𝐻𝐷3𝑘+4 + 2𝐻𝐷3𝑘+3 +

𝐻𝐷3𝑘+2 − 2ℎ  

                                         = 𝐻𝐷3𝑘+6 − 2ℎ  

So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

 

Theorem 3.5.  

∑ 𝐻𝐷𝑗

3𝑘+2

𝑗=0

= 𝐻𝐷3𝑘+4 − (1 + ℎ). 

 

Proof. We proceed by induction on 𝑘. Since 

𝐻𝐷0 + 𝐻𝐷1 + 𝐻𝐷2 = 3 + 4ℎ = 𝐻𝐷4 − (1 + ℎ) 

the  statement is true for 𝑘 = 0. 

Now assume it is true for 𝑘 > 1 

                                                                   

∑ 𝐻𝐷𝑗

3𝑘+2

𝑗=0

= 𝐻𝐷3𝑘+4 − (1 + ℎ). 

Then, we show that the formula holds for 𝑘 + 1. 

Indeed, 

∑ 𝐻𝐷𝑗

3𝑘+5

𝑗=0

= ∑ 𝐻𝐷𝑗

3𝑘+2

𝑗=0

+ 𝐻𝐷3𝑘+3 + 𝐻𝐷3𝑘+4

+ 𝐻𝐷3𝑘+5. 

                                                    = 𝐻𝐷3𝑘+4 − (1 +

ℎ) + 𝐻𝐷3𝑘+3 + 𝐻𝐷3𝑘+4 + 𝐻𝐷3𝑘+5 

                                                    = 𝐻𝐷3𝑘+5 +

2𝐻𝐷3𝑘+4 + 𝐻𝐷3𝑘+3 − (1 + ℎ) 

                                                    = 𝐻𝐷3𝑘+7 − (1 + ℎ)  

So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

Lemma 3.6.  

𝐻𝐷𝑛 + 𝐻𝐷𝑛+1 + 𝐻𝐷𝑛+3 + 𝐻𝐷𝑛+5 = 𝐻𝐷𝑛+6. 

Proof. By the Hyperbolic Quadrapell recurrence 

relation, we have  

𝐻𝐷𝑛+5 = 𝐻𝐷𝑛+3 + 2𝐻𝐷𝑛+2 + 𝐻𝐷𝑛+1. 

Then we obtain 

𝐻𝐷𝑛 + 𝐻𝐷𝑛+1 + 𝐻𝐷𝑛+3 + 𝐻𝐷𝑛+5

= 𝐻𝐷𝑛 + 2𝐻𝐷𝑛+1 + 2𝐻𝐷𝑛+2

+ 2𝐻𝐷𝑛+3 

                                                                           =

𝐻𝐷𝑛+2 + 2𝐻𝐷𝑛+1 + 𝐻𝐷𝑛 + 2𝐻𝐷𝑛+3 + 𝐻𝐷𝑛+2 

                                                                           =

𝐻𝐷𝑛+4 + 2𝐻𝐷𝑛+3 + 𝐻𝐷𝑛+2 

                                                                           =

𝐻𝐷𝑛+6. 

So the lemma is proved. 

Theorem 3.7.  

∑ 𝐻𝐷2𝑗

3𝑘+1

𝑗=0

= 𝐻𝐷6𝑘+3 − ℎ. 

 

Proof. We use the principle of mathematical induction. 

Since 

𝐻𝐷0 + 𝐻𝐷2 = 2 + 3ℎ = 𝐻𝐷3 − ℎ 

clearly the result is true for 𝑘 = 0. 

Now assume it is true for an arbitrary positive integer 

𝑘 > 1 

                                                                   

∑ 𝐻𝐷2𝑗

3𝑘+1

𝑗=0

= 𝐻𝐷6𝑘+3 − ℎ. 

Then we have 

∑ 𝐻𝐷2𝑗

3𝑘+4

𝑗=0

= ∑ 𝐻𝐷2𝑗

3𝑘+1

𝑗=0

+ 𝐻𝐷6𝑘+4 + 𝐻𝐷6𝑘+6

+ 𝐻𝐷6𝑘+8. 

                                                    = 𝐻𝐷6𝑘+3 − ℎ +

𝐻𝐷6𝑘+4 + 𝐻𝐷6𝑘+6 + 𝐻𝐷6𝑘+8 

                                                    = 𝐻𝐷6𝑘+9 − ℎ  

So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

Theorem 3.8.  

∑ 𝐻𝐷2𝑗

3𝑘+2

𝑗=0

= 𝐻𝐷6𝑘+5 + (1 − ℎ). 

 

Proof. We proceed by induction on 𝑘. Since 

𝐻𝐷0 + 𝐻𝐷2 + 𝐻𝐷4 = 6 + 8ℎ = 𝐻𝐷5 + (1 − ℎ) 

the  statement is true for 𝑘 = 0. 

Now assume it is true for 𝑘 > 1 

                                                                   

∑ 𝐻𝐷2𝑗

3𝑘+2

𝑗=0

= 𝐻𝐷6𝑘+5 + (1 − ℎ). 

Then, we show that the formula holds for 𝑘 + 1. 

Indeed, 

∑ 𝐻𝐷2𝑗

3𝑘+5

𝑗=0

= ∑ 𝐻𝐷2𝑗

3𝑘+2

𝑗=0

+ 𝐻𝐷6𝑘+6 + 𝐻𝐷6𝑘+8

+ 𝐻𝐷6𝑘+10. 

                                                    = 𝐻𝐷6𝑘+5 + (1 −

ℎ) + 𝐻𝐷6𝑘+6 + 𝐻𝐷6𝑘+8 + 𝐻𝐷6𝑘+10 

                                                    = 𝐻𝐷6𝑘+11 + (1 −

ℎ)  
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So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

Theorem 3.9.  

∑ 𝐻𝐷2𝑗+1

3𝑘

𝑗=0

= 𝐻𝐷6𝑘+2 − ℎ. 

 

Proof. We use the principle of mathematical induction 

on 𝑘. Since 

𝐻𝐷0 = 1 + ℎ = 𝐻𝐷2 − ℎ 

clearly the result is true for 𝑘 = 0. 

Now we suppose that the statement holds for 𝑘 > 1. 

Indeed, 

                                                                   

∑ 𝐻𝐷2𝑗+1

3𝑘

𝑗=0

= 𝐻𝐷6𝑘+2 − ℎ. 

Then we have 

∑ 𝐻𝐷2𝑗+1

3𝑘+3

𝑗=0

= ∑ 𝐻𝐷2𝑗+1

3𝑘

𝑗=0

+ 𝐻𝐷6𝑘+3 + 𝐻𝐷6𝑘+5

+ 𝐻𝐷6𝑘+7. 

                                                     = 𝐻𝐷6𝑘+2 − ℎ +

𝐻𝐷6𝑘+3 + 𝐻𝐷6𝑘+5 + 𝐻𝐷6𝑘+7 

                                                     = 𝐻𝐷6𝑘+8 − ℎ  

So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

Theorem 3.10.  

∑ 𝐻𝐷2𝑗+1

3𝑘+1

𝑗=0

= 𝐻𝐷6𝑘+4 − 1. 

 

Proof. We use the principle of mathematical induction 

on 𝑘. Since 

𝐻𝐷1 + 𝐻𝐷3 = 3 + 5ℎ = 𝐻𝐷2 − 1 

clearly the result is true for 𝑘 = 0. 

Now we suppose that the statement holds for 𝑘 > 1. 

Indeed, 

                                                                   

∑ 𝐻𝐷2𝑗+1

3𝑘+1

𝑗=0

= 𝐻𝐷6𝑘+4 − 1. 

Then we have 

∑ 𝐻𝐷2𝑗+1

3𝑘+4

𝑗=0

= ∑ 𝐻𝐷2𝑗+1

3𝑘+1

𝑗=0

+ 𝐻𝐷6𝑘+5 + 𝐻𝐷6𝑘+7

+ 𝐻𝐷6𝑘+9. 

                                                     = 𝐻𝐷6𝑘+4 − 1 +

𝐻𝐷6𝑘+5 + 𝐻𝐷6𝑘+7 + 𝐻𝐷6𝑘+9 

                                                     = 𝐻𝐷6𝑘+10 − 1  

So the formula works for 𝑘 + 1. Thus, by the principle 

of mathematical induction the formula holds for every 

integer 𝑘 ≥ 0. 

 

Now we investigate the new property of Hyperbolic 

Quadrapell numbers in relation with Quadrapell matrix 

formula. We consider the following matrices: 

 

𝑄4 = [

0   1   2   1
1   0   0   0
0   1   0   0
0   0   1   0

] ,

𝐾4 = [

2 + 4ℎ       1 + 2ℎ       1 + ℎ       1 + ℎ
1 + 2ℎ       1 + ℎ       1 + ℎ     − 1 + ℎ

1 + ℎ        1 + ℎ  − 1 + ℎ       2 − ℎ
      1 + ℎ       − 1 + ℎ         2 − ℎ    − 2 + 2ℎ

] 

and 

 

𝑀4
𝑛 = [ 

𝐻𝐷𝑛+3 𝐻𝐷𝑛+2 𝐻𝐷𝑛+1 𝐻𝐷𝑛

𝐻𝐷𝑛+2

𝐻𝐷𝑛+1

𝐻𝐷𝑛+1 𝐻𝐷𝑛

𝐻𝐷𝑛   𝐻𝐷𝑛−1

𝐻𝐷𝑛−1

𝐻𝐷𝑛−2

𝐻𝐷𝑛 𝐻𝐷𝑛−1 𝐻𝐷𝑛−2 𝐻𝐷𝑛−3

] 

Theorem 3.11. For all 𝑛 ∈ ℤ+ we have 

 

𝑄4
𝑛𝐾4 = 𝑀4

𝑛. 

 

Proof. The proof is easily seen that using the induction 

on 𝑛. 

 

 

4. Discussion 

 

        We defined Hyperbolic Quadrapell numbers and 

we obtain Binet-like formulas, generating functions 

and some identities related with Hyperbolic 

Quadrapell numbers. 
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