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Abstract 

 

        In plant mitochondrion, electron transport chain 

has a second terminal oxidases named as alternative 

oxidase (AOX) in addition to cytochrome oxidase 

(COX). AOX pathway is known to be alternative 

respiration or cyanide-resistant respiration and linked 

to stress tolerance of plants. This study aimed to assess 

cold-hardening levels of four different cultivars of 

wheat by comparing alterations in protein levels of 

AOX. The AOX protein levels of Yıldırım and Dogu-

88 cultivars were markedly higher than those of 

Ayyıldız and Alpaslan cultivars in control conditions, 

which indicate that alternative respirations of Yıldırım 

and Dogu-88 cultivars are more active than those of the 

other cultivars. Cold stress resulted significant 

increases AOX protein levels of all cultivars in 

comparison to their controls. The increases rates were 

47, 34, 31, and 70% in Yıldırım, Doğu-88, Ayyıldız, 

and Alpaslan cultivars, respectively. These findings 

revealed that although all cultivars tried to resist to cold 

stress by improving their alternative respirations, 

Yıldırım and Dogu-88 cultivars are more tolerant to 

cold stress than the other cultivars. 

 

Keywords: Alternative oxidase, cold stress, wheat, 

immuno-blot analysis 

 

1. Introduction 

The cyanide-resistant respiration, known as 

alternative respiration, in plant mitochondria was first 
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discovered by van Herk in 1937 (van Herk 1937). This 

pathway is common to all plants besides some fungi 

and protists (Schonbaum et al. 1971). Electron transfer 

through alternative respiration is not coupled to ATP 

synthesis because it prevents formation of membrane 

potential, and eventually occurs heat instead of ATP 

(Bendall and Bonner 1971; Siedow and Moore 1993). 

This heat produced by AOX activity is used to make 

primary amines volatile in thermogenic plants and thus 

pollinating insects and animals are attracted (Meeuse 

1975), (Watling et al. 2006).  

       AOX is found in the structure of dimer or 

monomer depending on its oxidized or reduced state in 

inner mitochondrial membrane (Lambowitz et al. 

1989), (Elthon et al. 1989), (Erdal et al. 2015). AOX 

protein was firstly proposed to be consist of two 

transmembrane helices (Siedow and Umbach 1995). In 

the following years, Andersson and Nordlund (1999) 

suggested a new model of AOX as an interfacial 

protein rather than a transmembrane protein (Figure 1).  

        

 
 

Figure 1. The structure of alternative oxidase (AOX) 

(MAY et al. 2017) (A) In the dimeric structure of 

AOX, helices are labelled α1- α6 and α1*- α6* on the 

neighbouring monomer. (B) Surface model of AOX 

hydrophobic cavity. 
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Low temperature is a crucial factor restricting the 

crop production (Erdal 2012), (Turk and Erdal 2015), 

(Turk and Genisel 2019), (Turk et al. 2019a).  In 

addition to normal metabolic processes, low-

temperatures enhances alternative pathway capacity in 

plants (Vanlerberghe and Mcintosh 1992), (Purvis and 

Shewfelt 1993), (Erdal and Genisel 2016). Today, one 

of the major troubles for plant breeders is to augment 

plant tolerance to low temperatures and to select cold-

resistant varieties of plants (Fowler et al. 1995). 

        It is well-documented that under the cold 

conditions, the transcription of some cold-responsive 

genes (COR/LEA) are significantly activated, and the 

high level of these proteins confers to freezing 

tolerance to plants (Thomashow 1999). Kobayashi et 

al. (2004) reported that differences in the protein levels 

of COR/LEA are linked to tolerance of wheat cultivars 

to low temperature stress. Similarly, Nobuyuki et al. 

(2008) informed that alternative respiration might be 

partly linked to the cold/freezing tolerance in wheat. 

However, there is limited information about AOX 

protein levels of different cultivars of plants to reveal 

the relationship between AOX protein level and cold 

hardiness.  

        The aim of study was to determine and to compare 

differences among protein expression levels of AOX 

in four different wheat varieties. The comparison of 

alternative respiration pathways in laboratory 

conditions would be a very useful method for 

determination of cold hardiness levels in both between 

cultivars of one species and many species. 

 

2. Material and methods 

 

2.1. Plant material, growth conditions, and 

applications  

 

The seeds of wheat (Triticum aestivum cv. 

Yıldırım, Doğu 88, Ayyıldız, and Alpaslan) were 

subjected to surface-sterilization for 10 minutes with 

5% NaOCl solution, and then the seeds were rinsed a 

few times with pure water. All of the sterilized seeds 

were sown in pots containing sand and grown for 14 

days in a plant growth cabinet set at a constant 

temperature regime of 20 ± 1 °C (day/night) for a 14 h 

photoperiod at 40 ± 5% relative humidity. The plants 

were divided into two groups (control and cold group) 

and cold stress (5/2 °C for 48 h for wheat cultivars) 

were applicated to the seedlings in the second groups. 

The control group was grown on same cycle of 20 ± 1 

°C (day/night). After 48 h, the seedlings were 

harvested for biochemical analyses.  

 

2.2. Mitochondria isolation  

 

The leaves of wheat cultivars studied were 

extracted in grinding based on the method of Chien et 

al. (2011). After differential centrifugation steps and 

Percoll gradient, the purified mitochondrial pellet was 

obtained (Grabel’nykh et al. 2011). The protein 

concentration of the pellet was determined according 

to the method of coomassie brilliant blue (Bradford 

1976).  

 

2.3. Immuno-blot analysis  

 

The mitochondrial proteins separated SDS-

polyacrylamide gel were transferred to PDVF western 

blotting membrane in semi-dry Western blotting. 

While the monoclonal antibody (Sauromatum 

guttatum) and the anti-mouse secondary antibody were 

used (Elthon et al. 1989). The density of the occurring 

protein bands was calculated by comparing band 

intensities of their controls.  

 

2.4. Statistical analysis  

 

All experiments were an entirely random design 

with three replications. The data was analysed by 

ANOVA with Duncan’s multiple range test with SPSS 

20.0. The significant differences were evaluated at P < 

0.05.  

 

3. Results and Discussion 

 

        In the present study, it was assessed the 

alterations in level and intensity of AOX protein in the 

leaves of four different wheat cultivars grown normal 

and cold conditions, and they were compared with 

among themselves. Immuno-blot analysis showed that 

AOX protein bands of Yıldırım and Dogu-88 cultivars 

were obviously more intensify than those of Ayyıldız 

and Alpaslan cultivars grown under control conditions 

(Figure 2).  
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Cold stress gave rise to significant increases in 

intensify of AOX protein bands of all varieties studied 

when compared with their controls. 

 

 
 

Figure 2. The AOX protein bands in the leaves of 

wheat cultivars grown under control and cold stress. 

(A) The AOX protein bands of Yıldırım and Dogu-88 

varieties. (B) The AOX protein bands of Ayyıldız and 

Alpaslan cultivars. 

 

        As seen from Figure 3, Yıldırım and Dogu-88 

cultivars exhibited more two-fold intensity of AOX 

protein than Ayyıldız and Alpaslan cultivars. 

Similarly, under cold stress, AOX protein intensity of  

these cultivars was higher than in the other cultivars. 

However, cold-induced increase rates of AOX proteins 

were significantly different among cultivars. 

 

 

 

Figure 3. AOX protein intensity in the leaves of four 

wheat cultivars grown under control and cold stress. 

        Compared to their controls, the increase ratios in 

AOX protein intensities were 47% for Yıldırım, 34% 

for Dogu-88, 31% for Ayyıldız, and 70% for Alpaslan, 

respectively (Figure 4). These data means that even if 

their AOX protein levels are different from each other, 

all cultivars attempted to improve their alternative 

respiration pathways in response to cold stress. 

 

 

Figure 4. The cold-induced increase rates of AOX 

protein in the leaves of four wheat cultivars in 

comparison to their controls.  

 

        It is well-documented that plants tend to enhance 

activity of their alternative respiration pathways in 

response to environmental stresses, such as low 

temperatures and salinity (Turk 2019), (Turk and 

Genisel 2019). Number of studies have reported that 

low temperatures increase velocity and activity of 

mitochondrial respiration, in particular alternative 

respiration, in plants. It was informed that cold stress 

augmented alternative respiration rate and AOX 

protein level in chickpea (Erdal et al. 2015). Similarly, 

in cold-stressed maize seedlings, the activity of 

alternative respiration and AOX protein level was 

higher than control plants (Erdal and Genisel 2016). 

The enhanced mitochondrial respiration rate is 

considered as a common phenomenon in response to 

cold stress.    Although alternative respiration pathway 

constitutes a small part of the total mitochondrial 

respiration, its stimulation contributes to increasing 

plant’s resistance to cold stress (Wang et al. 2011). The 

stress alleviating effect of alternative respiration is 

linked to its multifarious properties. Firstly, it prevents 
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the blockage of mitochondrial electron transport chain 

in plants exposed to cold stress or the other abiotic 

stress conditions. Since cytochrome pathway is very 

sensitive to environmental stress conditions, it might 

be easily affected and thus mitochondrial electron 

transport might be disturbed. In similar cases, electrons 

are transferred through AOX and the possible 

congestion in electron transport chain is prevented. 

The other property of AOX is to produce heat. Because 

AOX activity produces heat instead of ATP energy, 

enhanced activity of AOX results in an elevation in 

inner heat level, and thus confer to tolerance to plants 

against cold stress. 

        On the other side, cold stress leads to excessive 

production of reactive oxygen species (ROS) in plants 

by disturbing mitochondrial respiration pathway and 

the other main processes. The high level of ROS causes 

drastic damages to biological macromolecules, cellular 

compartments, and genetic material (Dumlupinar et al. 

2007), (Cakmak et al. 2010), (Erdal and Demirtas 

2010), (Erdal 2012), (Genisel et al. 2013), (Turk and 

Erdal 2015), (Turk et al. 2019b), (Turk and Genisel 

2019). The mitigating role of AOX on reactive oxygen 

species has been well documented in plants in response 

to cold stress (Cvetkovska and Vanlerberghe 2012). 

AOX minimizes the production of reactive oxygen 

species by preventing the over-reduction of ubiquinone 

via direct transportation of electrons from ubiquinone 

to oxygen. Eventually, cold-induced damages are 

reduced to some extent by activation of alternative 

respiration. It has been reported that when the 

expression levels of antioxidant enzymes’ genes are 

low levels, activity, gene expression, and protein level 

of AOX augments significantly and finally reduce the 

level of reactive oxygen species (Maxwell et al. 1999), 

(Cvetkovska and Vanlerberghe 2012), (Wang et al. 

2011), (Erdal and Genisel 2016).  

        In this study, high level of AOX protein in 

Yıldırım and Dogu-88 indicates that these cultivars 

had more effective alternative respiration and thus 

more tolerant to cold stress than Ayyıldız and Alpaslan 

cultivars. Cold stress-induced elevations in AOX 

protein level of all cultivars studied suggest that plants 

improve their alternative respiration capacities to resist 

to cold stress and to maintain their survival.  

 

2. Conclusion 

 

        When taking account into the properties of 

alternative respiration on plant resistance to 

environmental stress factors, it is possible to say that 

determining alternative respiration capacities, 

including activity, gene expression, and protein level 

of AOX in laboratory conditions could be useful in the 

selection of more tolerant varieties or cultivars of 

plants depending on environmental conditions, and 

this method could be used in practice to save time and 

to prevent product loss. 
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