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Abstract

In this paper, we established some new integral inequalities
for different kinds of convex functions by using some
classical inequalities.
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S —convex

1. Introduction

We recall following definitions.

The functions f: [a, b] = R, is said to be convex, if we have

fitx+ (A =y) <tf(x)+ (A -O)f )
for all x,y € [a,b] and t € [0,1]. We can define starshaped
functions on [0, b] which satisfy the condition
f(tx) < tf (%)

for t € [0,1]. TOADER (1984) defined the concept of
m —convexity as the following:

Definition 1. The function f:[a,b] = R is said to be
m —convex, where m € [0,1], if for every x,y € [a, b] and
t € [0,1], we have:

ftx +m(1 = )y) < tf(x) +m(1 =) f ).

Denote by K,,(b) the set of the m —convex functions on
[0, b] for which f(0) < 0.

Some interesting and important inequalities for

m —convex functions can be found in our references.
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HUDZIK and MALIGRANDA (1994) considered among
others the class of functions which are s —convex in the
second sense.

Definition 2. A function f: R* > R where RT = [0, ), is
said to be s —convex in the second sense if

flax+By) < a’f(x) + B°f ()

forall x,y € [0,0), a,f = 0 with a + § = 1 and for some
fixed s € (0,1]. This class of s —convex functions in the
second sense is usually denoted by K2.

s —convexity introduced by BRECKNER (1978) as a
generalization of convex functions. Also, BRECKNER
(1993) proved the fact that the set valued map is s —convex
only if the associated support function is s —convex
function.

DRAGOMIR and FITZPATRICK (1999) proved the
following Hadamard type integral inequality:

Theorem 1. Suppose that f:[0,00) = [0,0) is an
s —convex function in the second sense, where s € (0,1]
and let a,b € [0,00), a<b. If f€L0,1], then the
following inequalities hold:

(1.1)

fa)+ f(b)
s+1

a+b 1
)<

zs—lf( - b_af:f(x)dxs

The constant k = 5%1 is the best possible in the second

inequality in (1.1). The above inequalities are sharp.

Several properties of s —convexity in the first sense
are discussed in the paper that is written by HUDZIK and
MALIGRANDA (1994). Obviously, s —convexity means
just convexity when s = 1. Some new Hermite Hadamard
type inequalities based on concavity and s —convexity
established by KIRMACI et al. (2007). For related results
see the papers DRAGOMIR and FITZPATRICK (1999)
and KIRMACI et al (2007).

DRAGOMIR (2002) proved the following theorem.
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Theorem 2. Let f: [0, ) = R be an m —convex function
withm € (0,1] and 0 < a < b. If f € L,[0,1], then one has
the inequalities

(1.2)

f(a+b)£b1 L” f(x)-l—mf(%)

2 —a 2 dx

mes f(a);rf(b)+mf(%);’f(%)

MIHESAN (1993) gave definition of (o, m) —convexity as
following;

Definition 3. The function f: [0,b) —» R, b > 0 is said to be
(a,m) —convex, where (a, m) € [0,1]2, if we have

ftx+m(1=0)y) < t*f(x) + m(1 = t)f ()
forall x,y € [0,b] and t € [0,1].

Denote by K2 (b) the class of all (¢, m) —convex functions
on [0,b] for which f(0) <0. If we choose (a,m)=
(1,m), it can be easily seen that (a, m) —convexity reduces
to m —convexity and for (¢, m) = (1,1). We have ordinary
convex functions on [0, b]. For the recent results based on
the above definition see the papers BAKULA et al. (2006),
BAKULA et al. (2008), OZDEMIR et al (2010),
SARIKAYA et al. (2011), SET et al. (2009), OZDEMIR et
al. (2011).

Definition 4. (See PECARIC et al. (1992)) A function
f:1 = [0,00) is said to be log —convex or multiplicatively
convex if logf is convex or equivalently if for all x,y € |
and t € [0,1] one has the inequality:

(1.3)
fltx+ A =)y) < [FOILfFOI

We note that a log —convex function is convex, but the
converse may not necessarily be true.

Theorem 3. (OZDEMIR et al. (2010)) Let £, g: [a,b] » R
be real valued non-negative convex functions and

F(x,y)(0),G(x,y)(©): [0,1] » R*
following;

Fey)® = 5 [ftx + 1 —=0y) +f((1 - Dx + ty)]

are defined as the

Gy =5[g(tx+ (1 —)y) + g((A1 — )x + ty)]

for all t € [0,1], we have
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(1.4)

b i aJ;bF(x'asz) e (x’asz) (t)dx

b 3
o f FG09Ce) dx + = [M(a,b) + N(a,b)]
And
(1.5)
2 b rb
) [ Fen@en@drdy

< 1 ’ 1
< — f FOg() dx + 7 [M(a,b) + N(a, b))

where
M(a,b) = f(a)g(a) + f(b)g(b)
N(a,b) = f(a)g(b) + f(b)g(a).

The main purpose of this paper is to prove some new
inequalities as above, but now for m —convex and
s —convex functions by modified the mappings F(x,y)(t)
and G(x,y)(t).

2. Main Results

Theorem 4. Let f, g: [0,0) - R* be m —convex functions
with me (0,1] , 0<a<b and f,g,fg€ L[a b]

F(x,y)(0),G(x,y)(©): [0,1] » R*
followings:

are defined as the

F(x,y)(8) = 5[f(tx +m(1 = )y) + F((1 = )x + mty)]

G(lx,y)(t) = %[g(tx +m(1l—-t)y) + g((l —t)x + mty)]
forall t € [0,1], we have

@2.1)

fabF (x,asz> (a6 (x,asz> (Hdx < %Lbf(x)g(x) dx

mZ

m b b
+0 (b~ sy + [m f FG)dx+ f 900 dx]

where

o1 e o) va()
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a b
m:l f(a);rf(b)erf(m);rf(ﬁ)

Uy =
and

(2.2)

b

f f F(x,y) (06 G, y) () dx dy

a)2

L bg(y) dy.

Proof. Since f and g are m —convex functions, we can

write

F(x,y)(®)
1
<5 [tf()+mA-f() + A —-Of(x) +mtf(y)]

= [f() +mf O],
(2.3)

(vt ) <l emr ()]

. b
and analogously, if we set x = x and y = %,

G(x,y)(®)

we can write

1
=3 [tg(x) +m(A -t)g(y) + (1 —t)g(x) + mtg(y)]

NIH

[g(x) + mg()],

(2.4)
6 (x5 © =3[90 +mo (57|

By multiplying the inequalities (2.3) and (2.4), we get

Nwe(=2) o
Y oomo 2]

[ FG9CO+mf(%2)g(0+ mg(42)r ) +m? £(42)g (a;b)]
" :

(2.5)

F(x”

<3l +mr (57

Integrating the above inequality with respect to x on [a, b],
we obtain the following inequality:
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(2.6)
be(x, > b)(t)G(x,a

< %{ f g dx + f " (2 gy ax

hl b) (©) dx

+ ff mg (a+b) f(x) dx + m? f f (a+b) (a:b) dx}

Using the inequalities in (1.2) and by rewriting the (2.6), the
proof is completed.

Remark 1. If we choose m = 1, inequalities (2.1) and (2.2)
reduces to (1.4) and (1.5) respectively.

Theorem 5. Let f,g:[0,00) - R be s —convex functions
in the second sense and F(x,y)(t), G(x,y)(t): [0,1] —» R*
are defined as the following:

Feoy)(©) = SF(Ex + (1= %) + f((L - 0% + )]

G(x,y)(®) = 3 [9(t°x + (1 = £)°) + F((1 — )°x + £°Y)]

If f,9,fg € Ly[a, b], forall t € [0,1], we have

1
f [F(a,b)(®) + G(a,b)(D)]dt
0

f(a) +f(b) + g(a) + g(b)
s+1

and

le(a, b)(t) G(a,b)(t) dt
0

< [M(a,b) + N(a,b)] +%[3(s+1,s+1)

1
225+ 1)

where

M(a,b) = f(a)g(a) + f(b)g(b)
N(a,b) =f(a)g(b) + f(b)g(a)

and the Euler Beta function is defined by
Bx,y) =

Proof. Since f and g are s —convex functions in the second

[t @ -0, x,y > 0.
sense, we can write
2.7)

tSF)+(A-t) fF (M +A-t)5F () +t5f ()
2

Fx,y)(®) <
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(2.8)

s s s R
G(x,y)(t) < tSg(0)+(1-t) g(y);r(l 59 +t59(»)

If we set x =a,y =b in the above inequalities and by
addition, then by integrating with respect to t over [0,1], we
get:

1
f [F(a, b)(£)G(a b)(D)]dt
0

< [f(a)+ f(b):g(a)ﬂi(b)] [fol £5dt + fol(l _ t)sdt]

_fl@+ f(b) +g(a) + g(b)
- s+1

This completes the proof of the first inequality.

For the proof of the second inequality, if we multiply the
inequalities (2.7) and (2.8) for x =a,y=b and by
integrating with respect to t over [0,1], we have

1
f [F(a,b)(t)G(a,b)(t)]dt
0

= [M(a,b) + N(a, b)] + %ﬁ(s+1,s+1)

2(2s+1)
The proof is completed.

Theorem 6. Let f,g:[0,00) > RT be (a,m) —convex
fonctions with (a,m) € (0,1]> ,0<a<b and f,g,fg €
Ly[a,b]. F(x,y)(t),G(x,y)(t):[0,1] — R* are defined as
the followings:

1
Feuy)© = S[f(tx +m 1 =0y) + fm(1l - Ox + ty)]

1
Gly)(®) = Flg(tx +m (1 -0y) +gm(1-x +ty)]
for all t € [0,1], we have

(2.9)

1
f [F(a,b)(t) + G(a,b)(t)]dt
0

1[1+ma
S_
2

TP (@ + £0) + g@) + (b))

and
(2.10)
1
J [F(a,b)(t)G(a,b)(t)]dt
0

m?+1
2a+1

a(2m + m?

<
a+1

A

[M(a,b) + N(a,b)](
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where M(a,b) and N(a, b) as in Theorem 5.

Proof. Since f and g are (a, m) —convex functions, we can
write

tAf)+mA-tHfF )+t () +mA-tH)f(x)
<
Fx,y)() < !

Ifweset x =a and y = b, we get

2.11)

1
F(a,b)(®) <s[(f(@+ fB))(t* + m(1 —t)]

and analogously, we have

(2.12)

6@ b)(®) < 31(9(@) + gB)E + m(1 )
By adding the inequalities (2.11) and (2.12), we get
(2.13)

F(a,b)(t) + G(a, b)(t)

S%[(f(a) + f() +g(@) +gB))* + m(1 —t)]

Integrating the above inequality with respect to t on [0,1],
we obtain the inequality (2.9). For the proof of the
inequality (2.10), by multiplying the inequalities (2.11) and
(2.12), we have

F(a, b)(£)G(a, b)(t)
<:[M(a,b) + N(a,bI[E2 + 2m t9(1 — t9) + m?(1 — t9)?]

By integrating the above inequality with respect to t over
[0,1], we get the inequality (2.10).

Theorem 7. Let f,g:[0,0) > Rt be logarithmically
convex functions on [0,00) and f,g,fg € L,[a,b].
F(x,y)(t),G(x,y)(t):[0,1] » R* are defined as in
Theorem 3, then the following inequalities hold;

(2.14)

le(a, b)(t)G(a,b)(t)dt
0
< S [L(F@g(@), FBIg®)) + L(f(@)g(b), f(b)g(@))]

forall t € [0,1], where

fla)g(a) — f(b)g(b)

HI @@ f 09 ®) = a3 g @)~ in F D) B)

and
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f(@)g(b) — f(b)g(a)
Inf(a)g(b) — In f(b)g(a)
Proof. Since f,g are log —convex functions on [a,b] €
[0, ) , we can write

L(f(@)g(®), f(b)g(@)) =

1
FOuy) (@) <5100 + AP0 + A9 + fL )]

and

1
Gy)(®) <5[g°C) + 99700 + 9470 @) + 9" O]
If we set x = a and y = b, we have

(2.15)

Fl,y)(@) < %[ft(a) + fA70(b) + fA7D(a) + f1(b)]
and

(2.16)

1
G(a,b)(t) <[g"(a) + g0 ®) + g V(@) + g (b)]
By multiplying the inequalities (2.15) and (2.16), we get
F(a,b)(t)G(a, b)(t)

< 217 (@) + FU00) + FI- (@) + b))

x [g'(@) + g1 (b) + g9 (a) + gt (b)]

By integrating the above inequality with respect to t on
[0,1], we obtain the inequality (2.14).
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